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Abstract

Every semisimple Lie algebra defines a root system on the dual space of a Cartan subalgebra and a Cartan matrix, which
expresses the dual of the Killing form on a root base. Serre’s Theorem [J.-P. Serre, Complex Semisimple Lie Algebras (G.A. Jones,
Trans.), Springer-Verlag, New York, 1987] gives then a representation of the given Lie algebra in generators and relations in terms
of the Cartan matrix.

In this work, we generalize Serre’s Theorem to give an explicit representation in generators and relations for any simply laced
semisimple Lie algebra in terms of a positive quasi-Cartan matrix. Such a quasi-Cartan matrix expresses the dual of the Killing
form for a Z-base of roots. Here, by a Z-base of roots, we mean a set of linearly independent roots which generate all roots as
linear combinations with integral coefficients.
c© 2007 Elsevier B.V. All rights reserved.

MSC: 17B20

1. Introduction and main result

A square matrix with integer coefficients A is called a quasi-Cartan matrix, see [1], if it is symmetrizable (that is,
there exists a diagonal matrix D with positive diagonal entries such that D A is symmetric) and Ai i = 2 for all i . A
quasi-Cartan matrix is called a Cartan matrix, see [3], if it is positive definite, that is, all principal minors are positive,
and Ai j ≤ 0 for all i 6= j .

A unit form is a quadratic form q : ZN
→ Z, q(x) =

∑N
i=1 x2

i +
∑

i< j qi j xi x j , with integer coefficients
qi j ∈ Z. Any unit form q : ZN

→ Z has an associated symmetric quasi-Cartan matrix A = A(q) given by
Ai j = q(ci + c j )− q(ci )− q(c j ), where c1, . . . , cn is the canonical basis of ZN . To simplify notation, set qi j = q j i
for i > j . It will be convenient to switch sometimes to a more graphical language and associate with any unit form
q : ZN

→ Z a bigraph B(q) with vertices 1, . . . , N and edges as follows. Two different vertices i and j are joined by
|qi j | full edges if qi j < 0 and by qi j broken edges if qi j > 0. If A(q) is a Cartan matrix then B(q) is a graph (there are
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no broken edges) ∆, which by the Cartan–Killing classification is a disjoint union of Dynkin diagrams Am (m ≥ 1),
Dm (m ≥ 4) and Em (m = 6, 7, 8). In that case, we write q = q∆ and call ∆ the Dynkin type of q (or of A).

Given a unit form q , set A = A(q) and let g4(q) be the Lie algebra defined by the generators ei , e−i , hi (1 ≤ i ≤ N )
and the relations

R1(q) [hi , h j ] = 0 for all i, j ,
R2(q) [hi , eε j ] = −εAi j eε j , for all i, j and ε ∈ {1,−1},
R3(q) [eεi , e−εi ] = εhi for all i and ε ∈ {1,−1},
R4(q) (ad eεi )1+n(eδ j ) = 0, where n = max{0,−εδAi j }, for ε, δ ∈ {1,−1} and 1 ≤ i, j ≤ N .

Theorem 1.1 ([5]). If q is positive definite unit form such that its quasi-Cartan matrix is a Cartan matrix then g4(q)
is a semisimple (and finite dimensional) Lie algebra.

Notice that in general, when A is not necessarily a Cartan matrix, the relations R4(q) are a subset of the relations

R∞(q) [eε1i1 , . . . , eεt it ] = 0 if q(
∑t

j=1 ε j ci j ) > 1 and ε j ∈ {1,−1},

where we used multibrackets, defined inductively by

[x1, x2, . . . , xt ] = [x1, [x2, . . . , xt ]].

Let g∞(q) be the Lie algebra defined by the generators ei , e−i , hi (1 ≤ i ≤ N ) and by the relations R1(q), R2(q),
R3(q) and R∞(q). We recall that any positive definite unit form has a unique associated Dynkin type ∆ such that q
is equivalent to q∆, that is q = q∆ ◦ T for some Z-invertible integer matrix T ; see also the proof of Proposition 2.1.
The fact that two unit forms q and q ′ are equivalent will be denoted by q ∼ q ′.

Theorem 1.2 ([2]). If q is positive definite of Dynkin type ∆ then g∞(q) is isomorphic to g4(q∆).

Notice that the set of relations R∞(q) is infinite and although it has been shown in [2, Proposition 6.6] that there
exists a finite subset S of R∞(q) which suffices to define g∞(q), it remains unsatisfactory, because S is usually
very large and its definition depends heavily on a factorization of the matrix T , for which q = q∆ ◦ T , into certain
elementary transformations.

The main result of this paper is to give an explicit and finite set of relations for which the defined Lie algebra is
isomorphic to g4(q∆). This set includes R1(q), R2(q), R3(q) and R4(q) as above and additionally some relations
R5(q) depending on the set of chordless cycles in q: a chordless cycle is a tuple of indices (i1, . . . , it ) such that
qia ib 6= 0 if and only if a − b ≡ ±1 mod t . Clearly the chordless cycles in q correspond to the chordless cycles in
B(q) (in graph theory a cycle is a closed path (i1, . . . , it ) and a chord is an edge {ia, ib} for which a−b 6≡ ±1 mod t).
The importance of chordless cycles for the classification of cluster algebras [1] of finite type should be mentioned at
this point.

Let

R5(q) [eε1i1 , . . . , eεt it ] = 0, where (i1, . . . , it ) is a chordless cycle in q and εt ∈ {1,−1}, εl = −qil ,il+1εl+1 for
1 ≤ l ≤ t − 1.

Example 1.3. Let q : Z4
→ Z, q(x) = x2

1 + x2
2 + x2

3 + x2
4 − x1x2 + x1x3 + x1x4 − x2x3 + x3x4. The bigraph B(q)

of q looks as follows:

1

2

3

4
@@

��

There are two subsets, namely {1, 2, 3} and {1, 3, 4}, each of which gives rise to six chordless cycles, which in turn
define two relations each. Therefore R5(q) consists of the following relations:

[e1, e2, e3] = 0, [e2, e3, e−1] = 0, [e3, e−1, e−2] = 0,
[e1, e−3, e−2] = 0, [e2, e1, e−3] = 0, [e3, e2, e1] = 0,
[e−1, e−2, e−3] = 0, [e−2, e−3, e1] = 0, [e−3, e1, e2] = 0,
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[e−1, e3, e2] = 0, [e−2, e−1, e3] = 0, [e−3, e−2, e−1] = 0,
[e1, e−4, e3] = 0, [e4, e−3, e1] = 0, [e3, e−1, e4] = 0,
[e1, e−3, e4] = 0, [e4, e−1, e3] = 0, [e3, e−4, e1] = 0,
[e−1, e4, e−3] = 0, [e−4, e3, e−1] = 0, [e−3, e1, e−4] = 0,
[e−1, e3, e−4] = 0, [e−4, e1, e−3] = 0, [e−3, e4, e−1] = 0.

Let g5(q) be the Lie algebra defined by the generators ei , e−i , hi (1 ≤ i ≤ N ) and by the relations R1(q), R2(q),
R3(q), R4(q) and R5(q). Observe that all these sets are finite and given in a very combinatorial way.

The following is the main result of this paper.

Theorem 1.4. Let q and q ′ be positive definite unit forms. Then
(i) q ∼ q ′ if and only if g5(q) ' g5(q ′),

(ii) g5(q) ' g4(q∆), where ∆ is the Dynkin type of q.

Remark 1.5. By Theorem 1.2, it follows that g5(q) ' g∞(q) for any positive definite unit form q.

Remark 1.6. In order to prove Theorem 1.4 it is sufficient to show the implication q ∼ q ′ ⇒ g5(q) ' g5(q ′) for any
two positive definite unit forms.

Proof. Indeed, the rest then follows easily: to see (ii), let q = q∆. Then g5(q) ' g5(q∆), but g5(q∆) = g4(q∆), since
there is no chordless cycle for q∆ and consequently R5(q) is empty.

Now, suppose that g5(q) ' g5(q ′). If ∆ is the Dynkin type of q and ∆′ is the Dynkin type of q ′ then it follows
from (ii) that g4(q∆) ' g4(q∆′) and therefore ∆ = ∆′; see [5]. Consequently q ∼ q∆ = q∆′ ∼ q ′. �

If q is a positive definite unit form then q(ci ± c j ) ≥ 1 and hence |qi j | ≤ 1. If a unit form q satisfies
(−qi1i2)(−qi2i3) . . . (−qit−1it )(−qit i1) = −1 for any chordless cycle (i1, . . . , it ) in q, we say that q satisfies the cycle
condition. For instance, if q is a positive definite unit form then q satisfies the cycle condition.

Remark 1.7. If q is positive definite then the set of relations R5(q) is a subset of R∞(q).

Proof. Let γ = (i1, . . . , it ) be a chordless cycle and ε1, . . . , εt be defined as in R5(q). Then ε1 =
∏t−1

l=1(−qil il+1)εt =

qit i1εt since q satisfies the cycle condition and hence q(
∑t

l=1 εlcil ) = t + qi1it ε1εt +
∑t−1

l=1 qil il+1εlεl+1 =

t + ε2
1 +

∑t−1
l=1 qil il+1(−qil il+1εl+1)εl+1 = t + 1− (t − 1) = 2. �

The article is structured as an iterated reduction to more and more special situations, where the main steps and the
implications are as follows

Theorem 1.4⇐ Proposition 2.8⇐ Lemma 3.2⇐ Lemma 4.3.

We show each of the above implications in a separate section and use the last two sections to prove Lemma 4.3 itself.

2. Reduction to elementary transformations

Given a unit form q : ZN
→ Z, we define a linear transformation Ir , given by Ir (ci ) = ci for any i 6= r and

Ir (cr ) = −cr . We say that q ′ is obtained from q by a sign inversion if q ′ = q ◦ Ir for some r .
Let q : ZN

→ Z be a unit form. For any r 6= s and σ ∈ {1,−1} we define a linear transformation T σsr by T σsr ci = ci
for any i 6= r and T σsr cr = cr + σcs .

Note that if σ := −qrs ∈ {1,−1}, the form q ′ = q ◦ T σsr is again a unit form and T σsr is called a Gabrielov
transformation for q . Let q and q ′ be two unit forms. If q ′ = q ◦ P where P is a permutation matrix or q ′ = q ◦ T−qrs

sr
or q ′ = q ◦ Ir then we write q ∼G q ′. Closing by transitivity, we get an equivalence relation ∼G on the unit forms and
call two unit forms in the same equivalence class Gabrielov-equivalent, or just G-equivalent, for short.

Although the proof of the following result is well known to specialists it is rather hard to find an explicit reference
for it and therefore we include a proof of it.

Proposition 2.1. If q and q ′ are positive definite unit forms then q ∼ q ′ if and only if q and q ′ have the same Dynkin
type if and only if q ∼G q ′.
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Proof. For any positive definite unit form q there exists a Dynkin type ∆ such that q ∼G q∆; see for example [4,
Theorem 6.2]. This Dynkin type is uniquely determined by q: Define the graph G(q) to have as vertices the elements
of q−1(1) and edges {x, y} for every two vertices x, y for which q(x − y) ∈ {0, 1}. Observe that G(q) ' G(q ′) if
q and q ′ are equivalent. Hence the components of G(q) correspond to the components of ∆ and for each component
G of G(q), the number of vertices of G together with the number of indices i such that ±ci ∈ G determine the
corresponding Dynkin diagram uniquely.

Hence, if ∆ and ∆′ denote the Dynkin types of the positive definite unit forms q and q ′ respectively, we have
q ∼G q∆ and q ′∼G q∆′ . Hence q ∼ q ′ ⇒ ∆ = ∆′ ⇒ q ∼G q∆ = q∆′ ∼G q ′ ⇒ q ∼ q ′. �

In order to prove Theorem 1.4 it is enough to show the following result.

Theorem 2.2. If q and q ′ are positive definite unit forms then q ∼G q ′ if and only if g5(q) is isomorphic to g5(q ′).

Remark 2.3. Again, we only have to show the implication q ∼G q ′ ⇒ g5(q) ' g5(q ′).

Proof. Indeed assume this is shown; then by Proposition 2.1 we get q ∼ q ′ ⇒ q ∼G q ′ ⇒ g5(q) ' g5(q ′) and
hence by Remark 1.6, Theorem 1.4 holds. Therefore g5(q) ' g5(q ′) ⇒ q ∼ q ′ ⇒ q ∼G q ′, the latter again by
Proposition 2.1. �

The following result is useful for reducing to special situations.

Lemma 2.4. Let q be a unit form, s 6= r , σ = −qsr and 1 ≤ i1, . . . , it ≤ n. Then q ◦ T σsr ◦ Ii1 ◦ · · · ◦ Iit =

q ◦ Ii1 ◦ · · · ◦ Iit ◦ T σ
′

sr , where σ ′ = (−1)εσ and ε is the number of indices a with 1 ≤ a ≤ t and ia ∈ {r, s}.

Proof. This follows directly from the fact that T σsr ◦ Ii = Ii ◦ T−σsr for i = r, s and T σsr ◦ Ii = Ii ◦ T σsr else. �

Remark 2.5. In order to show Theorem 2.2, it is enough to consider the two cases q ′ = q ◦ Ir and q ′ = q ◦ T+1
sr if

qrs = −1.

Proof. By the definition of G-equivalence, it is enough to consider the cases q ′ = q ◦ P where P is a permutation
matrix, q ′ = q ◦ Ir and q ′ = q ◦ T−qrs

sr if qrs ∈ {1,−1}. However, the first case, that is, q ′ = q ◦ P , is straightforward
and if qsr = 1 then q ◦ T−1

sr = q ◦ Ir ◦ T+1
sr ◦ Ir , by Lemma 2.4. �

Proposition 2.6. Let q be a positive unit form. If q ′ = q ◦ Ir then the Lie algebras g5(q) and g5(q ′) are isomorphic.

Proof. Denote by ei , e−i , hi and by e′i , e′
−i , h′i the generators of g5(q) and g5(q ′) respectively. Let A = A(q) and

A′ = A(q ′). Further we set

ẽεi =
{

eεi , if i 6= r
e−εr , if i = r and h̃i =

{
hi , if i 6= r
−hr , if i = r. (2.1)

The verification that these elements satisfy the relations R1(q ′) to R4(q ′) is easy (it was also stated in [2]) and we
leave it to the interested reader.

To verify R5(q ′) let γ = (i1, . . . , it ) be any chordless cycle for q ′. Observe first that γ is also a chordless cycle
for q . If r 6∈ {i1, . . . , it } the verification is straightforward. If r ∈ {i1, . . . , it }, say r = ia , then let ε′t ∈ {1,−1} and
inductively ε′l = −q ′il il+1

ε′l+1 for 1 ≤ l ≤ t − 1. Then

[̃eε′1i1
, . . . , ẽε′a−1ia−1

, ẽε′a ia , ẽε′a+1ia+1
, . . . , ẽε′t it ] = [eε′1i1

, . . . , eε′a−1ia−1
, e−ε′a ia , eε′a+1ia+1

, . . . , eεt it ]

= [eε1i1 , . . . , eεa−1ia−1 , eεa ia , eεa+1ia+1 , . . . , eεt it ] =: x,

where εa = −ε
′
a and ε j = ε′j for all j 6= a. In order to see that x = 0, we will use R5(q). To do so we have to

ensure that εl = −qil il+1εl+1, for 1 ≤ l ≤ t − 1. This follows easily from q ′il il+1
= qil il+1 for l 6= a, a − 1 and from

q ′il il+1
= −qil il+1 in the case where l = a or l = a − 1.

The Lie subalgebra of g5(q) generated by ẽεi and h̃i for (i = 1, . . . , N , and ε ∈ {1,−1}) is clearly g5(q). Therefore
we obtain a homomorphism of Lie algebras ϕ : g5(q ′) → g5(q) which maps e′εi to ẽεi and h′i to h̃i . Similarly, we
obtain a homomorphism of Lie algebras ψ : g5(q)→ g5(q ′). It is straightforward to check that ϕ and ψ are inverse
to each other. This finishes the proof. �
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Corollary 2.7. There is an automorphism Φ of g5(q) which sends eεi to e−εi and hi to −hi for any 1 ≤ i ≤ N.

Proof. Denote by ϕr : g5(q) → g5(q) the isomorphism which maps eεi to ẽεi and hi to h̃i , where ẽεi and h̃i are
defined as in (2.1). Then the isomorphism Φ = ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕN maps eεi to e−εi and hi to −hi for any 1 ≤ i ≤ N ,
whereas the effect on the unit form is the identity since q(−x) = q(x). �

The remainder of the article is divided into several steps in order to prove the following result, which by Remark 2.5
is enough to show Theorem 2.2 (and hence Theorem 1.4).

Proposition 2.8. Assume that q is a positive definite unit form, qrs = −1 and q ′ = q ◦ T+1
sr . Then g5(q) and g5(q ′)

are isomorphic Lie algebras.

3. Reduction to special chordless cycles

In this section, we will reduce the proof of Proposition 2.8 to the verification that certain monomials are zero in
g5(q).

Assume that q is positive definite, qrs = −1 and q ′ = q ◦ T+1
sr . Once again, denote the generators of g5(q) by ei ,

e−i , hi and the generators of g5(q ′) by e′i , e′
−i , h′i .

Then define the following elements in g5(q):

ẽεi =
{
[eεr , eεs], if i = r
eεi , if i 6= r, h̃i =

{
hr + hs, if i = r
hi , if i 6= r. (3.1)

Lemma 3.1. Let qsr = −1 and q ′ = q ◦ T+1
sr . The elements ẽεi and h̃i satisfy the relations R1(q ′), R2(q ′), R3(q ′)

and R4(q ′).

Proof. It has been shown in [2] that these elements satisfy the relations R1(q ′), R2(q ′) and R3(q ′) and it only
remains to show R4(q ′), that is we have to show that (ad ẽεi )1+m′( ẽδ j ) = 0 where m′ = max{0,−εδA′i j }, for
any ε, δ ∈ {1,−1} and any i, j = 1, . . . , n. For i = j the case ε = δ is obvious and the case ε = −δ easy: we have
m′ = 2 and (ad ẽεi )( ẽ−εi ) = εh̃i by R3(q ′). Therefore (ad ẽεi )2( ẽ−εi ) is a multiple of ẽεi by R2(q ′) which implies
(ad ẽεi )3( ẽ−εi ) = 0. For i 6= j we distinguish several cases.
Case i 6= r , j 6= r : Then ẽεi = eεi , ẽδ j = eδ j and A′i j = Ai j , m′ = max{0,−εδAi j } and therefore

(ad ẽεi )1+m′( ẽδ j ) = (ad eεi )1+m′(eδ j ) = 0 by R4(q).
Case i = r, j 6= r, s: Then A′r j = Ar j + As j . Suppose first that m′ = 0. Then either A′r j = 0 or εδA′r j > 0.
In the first case, we have Ar j = −As j so either both are zero (and then [eεr , eδ j ] = 0, [eεs, eδ j ] = 0 and
consequently (ad ẽεr )( ẽδ j ) = 0 by R4(q)) or both are non-zero and then ( j, r, s) is a chordless cycle in q and
we get (ad ẽεr )1+m′( ẽδ j ) = [[eεr , eεs], eδ j ] = −[eδ j , [eεr , eεs]] = 0 by R5(q). In the second case, where εδA′r j > 0,
we have εδAr j ≥ 0 and εδAs j ≥ 0 since |Ai j | ≤ 1 for all i 6= j . Therefore, we have [eεr , eδ j ] = 0 = [eεs, eδ j ] by
R4(q). Thus, using the Jacobi identity, we see that 0 = [[eεr , eεs], eδ j ] = (ad ẽεr )1+m′( ẽδ j ).

Suppose now that m′ > 0; then m′ = 1 and A′r j = Ar j + As j = −εδ and either As j = 0 or Ar j = 0. In the case
where As j = 0, we have

[eεs, eδ j ] = 0, (3.2)
[eεr , eεr , eδ j ] = 0, (3.3)
[eεs, eεs, eεr ] = 0. (3.4)

Using the general fact (valid in any Lie algebra g and for any x, y, z ∈ g) that

[x, y] = 0 ⇒ [x, y, z] = [y, x, z], [x, z, y] = [y, z, x], and
[[x, z], y] = [[y, z], x], [[z, x], y] = [[z, y], x],

(3.5)

we get

[eεs, [[eεr , eεs], eδ j ]] = 0. (3.6)
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Using (3.5) repeatedly and the above equations as indicated, we can calculate

(ad ẽεr )2( ẽδ j ) = [[eεr , eεs], [[eεr , eεs], eδ j ]]

(3.2)
= [[eεr , eεs], [[eεr , eδ j ], eεs]]

(3.4)
= [eεs, [[eεr , eδ j ], [eεr , eεs]]]

(3.3)
= [eεs, [eεr , [[eεr , eδ j ], eεs]]]

(3.2)
= [eεs, [eεr , [[eεr , eεs], eδ j ]]]

(3.6)
= [[[eεr , eεs], eδ j ], [eεr , eεs]]

= −[[eεr , eεs], [[eεr , eεs], eδ j ]]

= −(ad ẽεr )2( ẽδ j ).

Hence (ad ẽεr )2( ẽδ j ) = 0. In the second case, where Ar j = 0, notice that [[eεr , eεs], [[eεr , eεs], eδ j ]] =

[[eεs, eεr ], [[eεs, eεr ], eδ j ]] and proceed similarly, interchanging the roles of r and s.

Case i = r , j = s: Observe that A′rs = −Ars = 1 and therefore (ad ẽεr )2( ẽ−εs) = [̃eεr , [eεr , eεs], e−εs]
R4(q)
=

[̃eεr , [e−εs, eεs], eεr ]
R3(q)
= [̃eεr , (−ε)hs, eεr ]

R2(q)
= [̃eεr , ε2 Arseεr ] = Ars[[eεr , eεs], eεr ] = −Ars(ad eεr )2(eεs) = 0,

which is zero by R4(q) since 1+max{0,−ε2 Ars} = 2. On the other hand, we have (ad ẽεr )( ẽεs) = [[eεr , eεs], eεs] =
(ad eεs)2(eεr ) = 0 again by R4(q).
Case i 6= r, s, j = r : If Air = 0 = Ais then it is straightforward to check that (ad ẽεi )( ẽδr ) = 0. Otherwise
we must have Air 6= Ais (since |A′ir | = |Air + Ais | < 2) and therefore we have [eεi , eδr ] = 0 or [eεi , eδs] = 0
by R4(q). Assume [eεi , eδr ] = 0 (the case where [eεi , eδs] = 0 is completely similar). Then we obtain from (3.5)
that (ad eεi )([eδr , (ad eεi )a(eδs)]) = [eδr , (ad eεi )a+1(eδs)] for any a ≥ 0 and therefore get (ad ẽεi )1+m′( ẽδr ) =
(ad eεi )1+m′([eδr , eδs]) = [eδr , (ad eεi )1+m′(eδs)], which is zero if m′ ≥ max{0,−εδAis}, in particular if Ais = 0
or εδAis > 0. So it remains to consider the case where εδAis = −1 and m′ = 0, that is εδA′ir ≥ 0. Since
0 ≤ εδA′ir = εδAir + εδAis = εδAir − 1 we must have εδAir = 1, but then (i, r, s) is a chordless cycle in q
and therefore (ad ẽεi )1+m′( ẽδr ) = [eεi , eδr , eδs] is zero by R5(q).
Case i = s, j = r : Since A′rs = −Ars = 1, we get for ε = −δ that m′ = 1 and calculate (ad ẽεs)2( ẽ−εr ) =
[eεs, eεs, e−εs, e−εr ] = [eεs, e−εr , e−εs, eεs], where the last equation is due to (3.5). Hence (ad ẽεs)2( ẽ−εr ) =
[eεs, e−εr ,−εhs] = [eεs, Arse−εr ] = 0 by R4(q). For ε = δ, we have m′ = 0 and get (ad ẽεs)( ẽεr ) =
−(ad eεs)2(eεr ) = 0 by R4(q) since max{0,−ε2 Asr } = 1. �

Lemma 3.2. With the above notation, for any chordless cycle γ = (r, i1, i2, . . . , it ) in q ′ with q ′ri1
= −1,

q ′i1i2
= −1, . . . , q ′it−1it

= −1 and q ′it r = 1, the following monomials are zero in g5(q):

E+γ,0 := [̃er , ẽi1 , ẽi2 , . . . , ẽit ]

E+γ,u := [̃e−iu , ẽ−iu+1 , . . . , ẽ−it , ẽr , ẽi1 , . . . , ẽiu−1 ] (1 ≤ u ≤ t)

E−γ,0 := [̃e−r , ẽit , ẽit−1 , . . . , ẽi1 ]

E−γ,u := [̃e−iu , ẽ−iu−1 , . . . , ẽ−i1 , ẽ−r , ẽit , . . . , ẽiu+1 ] (1 ≤ u ≤ t).

(3.7)

We will prove Lemma 3.2 in the next section; however we show at once its importance, as it allows us to prove
Proposition 2.8:

Proof of Proposition 2.8. By Corollary 2.7 it follows from Lemma 3.2 that for ε ∈ {1,−1}, we have

E+,εγ,0 := [̃eεr , ẽεi1 , ẽεi2 , . . . , ẽεit ] = 0,

E+,εγ,u := [̃e−εiu , ẽ−εiu+1 , . . . , ẽ−εit , ẽεr , ẽεi1 , . . . , ẽεiu−1 ] = 0,

E−,εγ,0 := [̃e−εr , ẽεit , ẽεit−1 , . . . , ẽεi1 ] = 0,

E−,εγ,u := [̃e−εiu , ẽ−εiu−1 , . . . , ẽ−εi1 , ẽ−εr , ẽεit , . . . , ẽεiu+1 ] = 0.
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We now will show that the elements ẽεi and h̃i defined in (3.1) also satisfy the relations R5(q ′). Therefore, we have
to show that for any chordless cycle γ = ( j1, . . . , jt ) in q ′ the element

Fεt
γ = [̃eε1 j1 , ẽε2 j2 , . . . , ẽεt jt ] ∈ g5(q)

is zero, where εt ∈ {1,−1} and εl = −q ′jl jl+1
εl+1 for l = t − 1, t − 2, . . . , 1.

Now, if r does not belong to γ then ẽεa ja = eεa ja for 1 ≤ a ≤ t and γ is also a chordless cycle in q. Consequently
Fεt
γ = 0 by R5(q).

Thus, it remains to consider the case where r belongs to γ , say ja = r . If s 6= ja−1 (where j0 := jt ), we can assume
(using Lemma 2.4 and Proposition 2.6) that q ′r ja+1

= −1, q ′ja+1 ja+2
= −1, . . ., q ′jt j1

= −1, . . . , q ′ja−2 ja−1
= −1 and

then q ′ja−1r = 1 since q ′ satisfies the cycle condition. Then let γ ′ = (r, ja+1, . . . , jt , j1, . . . , ja−1) and observe that

we can apply Lemma 3.2 and conclude that Fεt
γ = E+,εt

γ ′,t−a+1 = 0.
If s = ja−1 then q ′ja−1r = 1 (since qsr = −1) and we can assume (again using Lemma 2.4 and Proposition 2.6) that

q ′r ja+1
= −1, q ′ja+1 ja+2

= −1, . . . , q ′jt j1
= −1, . . . , q ′ja−2 ja−1

= −1. Then let γ ′ = (r, ja+1, . . . , jt , j1, . . . , ja−1) and

observe that again we can apply Lemma 3.2 and conclude that Fεt
γ = E+,εt

γ ′,t−a+1 = 0. This shows that the elements
ẽεi and h̃i satisfy the relations R5(q ′) and therefore it follows now from Lemma 3.1 that there exists a homomorphism
ϕ : g5(q ′)→ g5(q) which maps e′εi to ẽεi and h′i to h̃i .

Similarly, there exists a homomorphism ψ : g5(q) → g5(q ′) and it is easily verified that they are inverse to each
other; see [2] for details. �

4. Reduction to special monomials

In this section, we describe how chordless cycles can occur in q ′ = q ◦ Tsr which are not necessarily chordless
cycles in q . Therefore we switch to the more combinatorial language of bigraphs.

We introduce four types of bigraphs, where the first is just a chordless cycle c0
n(λ) = (λ, 1, . . . , n), where {λ, n} is

the only broken edge:

λ n

1 2 · · · n − 1

λ n

1 2 · · · n − 1
c0

n(λ) g0
n(λ)

µ

iiiiiiiiiiiiii

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

λ

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS n

...

1 · · · i1 · · · i2 · · · i3 · · · il
g1

n(λ, µ; i1, . . . , il), l is even,

µ

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

iiiiiiiiiiiiii

λ

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS il = n

...

1 · · · i1 · · · i2 · · · i3 · · · il−1

g2
n(λ, µ; i1, . . . , il), l > 0 is even.
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By definition, the edges of g0
n(λ) are precisely those lying in the two chordless cycles (λ, 1, 2, . . . , n − 1) and

(λ, n − 1, n) where {λ, n − 1} is the only broken edge.
For any even l and any sequence of indices 1 < i1 < i2 < · · · < il ≤ n we define two more bigraphs as follows.

The bigraph g1
n(λ, µ, i1, . . . , il) is obtained by adding a vertex µ to the chordless cycle c0

n(λ), a full edge {λ,µ},
and adding for each odd a = 1, 3, . . . , l − 1 a broken edge {λ, ia} and a full edge {µ, ia} and adding for each even
a = 2, 4, . . . , l a full edge {λ, ia} and a broken edge {µ, ia}. The definition of g2

n(λ, µ, i1, . . . , il) is quite similar:
start with a chordless cycle (µ, λ, 1, . . . , n) where {n, µ} is the only broken edge and add more edges as follows: for
each odd a = 1, 3, . . . , l − 1 a broken edge {λ, ia} and a full edge {µ, ia} and for each even a = 2, 4, . . . , l − 2 a full
edge {λ, ia} and a broken edge {µ, ia}.

Recall that it only remains to prove Lemma 3.2 and that we therefore can restrict our attention to the case where
γ ⊆ B(q ′) is a chordless cycle with γ = c0

n(r). A subbigraph Γ ′ of a bigraph Γ is called induced if any edge {x, y}
(full or broken) of Γ with vertices x, y of Γ ′ is contained in Γ ′.

Lemma 4.1. Suppose that q is positive definite, qrs = −1 and q ′ = q ◦ T+1
rs . Furthermore let γ = c0

n(r) be a
chordless cycle in B(q ′) and denote by Γ the induced subbigraph of B(q) given by the vertices r, s, 1, . . . , n.

If s ∈ γ , then Γ = g0
n(r) and n = s. If s 6∈ γ , then let i1, . . . , il (with 1 ≤ i1 < i2 < · · · < il ≤ n) be the vertices

ia such that qsia 6= 0. Then either l = 0 and Γ = g1
n(r, s; ) or l > 0 is even and the following hold:

(a) If i1 6= 1 and il 6= n, then Γ = g1
n(r, s; i1, . . . , il).

(b) If i1 6= 1 and il = n, then Γ = g2
n(r, s; i1, . . . , il).

(c) If i1 = 1 and il 6= n, then Γ = g2
n(s, r; i2, . . . , il , n).

(d) If i1 = 1 and il = n, then Γ = g1
n(s, r; i2, . . . , il−1).

Proof. If s is also a vertex of γ then, since q ′rs = 1, we must have s = n and then the induced subbigraph Γ of B(q)
has the form Γ = g0

n(r).
Now, assume that s does not lie in γ . If l = 0, that is qsia = 0 for 1 ≤ a ≤ n, then Γ = g1

n(r, s; ) and we are done.
So, suppose now that l > 0.

Since (s, r, 1, . . . , i1) is a chordless cycle in B(q ′), we must have q ′si1
= −1 by the cycle condition. Inductively

for 1 < a ≤ l we have that (s, ia−1, ia−1 + 1, . . . , ia) is a chordless cycle in B(q ′) and we infer again by the cycle
condition that qs,ia = (−1)a .

If il = n then (r, il , s) is a chordless cycle in B(q ′) and since q ′s,r = 1 = q ′r,il we get that (−1)l = q ′s,il = 1.
Therefore l is even.

If il 6= n then (r, s, il , . . . , n) is a chordless cycle in B(q ′). Again by the cycle condition, we get (−1)l = qsil = 1
and infer again that l is even.

The rest of the verification is now straightforward using that qri = q ′ri − q ′si for any i 6= r, s. �

The following simple result will help to reduce our calculations by half.

Lemma 4.2. If A = [A1, A2, . . . , An+1] is a monomial which satisfies [Ai , A j ] = 0 whenever |i − j | 6= 1 then

A← := [An+1, An, . . . , A2, A1] = (−1)n[A1, A2, . . . , An+1]. (4.1)

Proof. This is easily seen by induction and (3.5). �

Now, we formulate a result which only involves knowledge about B(q) and monomials in g5(q), but which will
imply the Lemma 3.2, as shown below.

Lemma 4.3. Suppose that q is positive definite and that Γ is an induced subbigraph of B(q) which is of the form
g0

n(λ), g1
n(λ, µ; i1, . . . , il) (for some even l) or g2

n(λ, µ; i1, . . . , il) (for some even l > 0).
Then the following monomials are zero in g5(q) (where in the case where Γ = g0

n(λ) we assume that µ = n):

Fn,u(λ, µ) := [eu, eu−1, . . . , e1, [eλ, eµ], e−n, . . . , e−(u+1)], (4.2)

for u = 0, 1, . . . , n, where Fn,0(λ, µ) = [[eλ, eµ], e−n, e−(n−1), . . . , e−1].
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Proof of Lemma 3.2. Define the following monomials in g5(q):

G+n,0(λ, µ) := [[eλ, eµ], e1, . . . , en],

G+n,u(λ, µ) := [e−u, e−(u+1), . . . , e−n, [eλ, eµ], e1, . . . , eu−1],

G−n,0(λ, µ) := [[e−λ, e−µ], en, en−1, . . . , e1],

G−n,u(λ, µ) := [e−u, e−(u−1), . . . , e−1, [e−λ, e−µ], en, . . . , eu+1].

(4.3)

Suppose that γ = c0
n(r) is a chordless cycle in B(q ′) and denote by Γ the induced subbigraph of B(q) given by the

vertices r, s, 1, . . . , n. If s ∈ γ , we have by Lemma 4.1 that Γ = g0
n(r) and the monomials from (3.7) translate directly

into the monomials of (4.3) by Eεγ,v = Gε
n,v(r, n).

If s 6∈ γ , we define i1, . . . , il as in Lemma 4.1. Assume first l = 0. Then Γ = g1
n(r, s; ) and Eεγ,v = Gε

n,v(r, s). In
the case where l > 0, by Lemma 4.1, l is even and there are four cases to be considered: in the two cases (a) and (b)
we have Eεγ,v = Gε

n,v(r, s) and in the remaining two cases (c) and (d) we have Eεγ,v = Gε
n,v(s, r) = −Gε

n,v(r, s).
So, in order to prove Lemma 3.2, it remains to show that the monomials Gε

n,v(r, s) are zero. Since Γ is an induced
subbigraph of B(q) which is of the form g0

n(λ), g1
n(λ, µ; i1, . . . , il) or g2

n(λ, µ; i1, . . . , il), we can apply Lemma 4.3.
Thus G−n,v(λ, µ) = Φ(Fn,v(λ, µ)) = 0 for 1 ≤ v ≤ n and G−n,0(λ, µ) = Φ(Fn,0(λ, µ)) = 0, where Φ is the

automorphism of Corollary 2.7. Observe that Gε
n,v(λ, µ) is a monomial which satisfies the hypothesis of Lemma 4.2.

Hence for 1 ≤ u ≤ n, we get G+n,u(λ, µ) = ±Φ(G−n,u−1(λ, µ)
←) = 0 and G+n,0(λ, µ) = ±Φ(G−n,n(λ, µ)

←) = 0.
Therefore the result. �

5. Preparatory results on monomials

In this section we shall provide some necessary tools for handling complicated monomials.

5.1. Monomials in the free magma

Let X = {ei , e−i , hi | 1 ≤ i ≤ N } and denote byM(X) the free magma on X ; see [3]. The binary operation in the
magma is denoted by parentheses: (A, B). For n > 2 and A1, . . . , An ∈M(X), we define inductively

(A1, . . . , An) := (A1, (A2, . . . , An)).

Often, the elements that we consider are of the form A = (A1, . . . , An) with A1, . . . , An ∈ X ; we shall write then
Ai ∈ A.

Let π :M(X)→ g5(q) be the projection defined by π(A) = A if A ∈ X and π((A1, A2)) = [π(A1), π(A2)]. It
is easy to see that for A1, . . . , An, B ∈M(X) we have

[π(B), π(Ai )] = 0, for i = 1, . . . , n ⇒ [π(B), π((A1, . . . , An))] = 0. (5.1)

Now we define a new binary operation • :M(X)×M(X)→M(X) by

A • B =
{
(A, B), if A ∈ X;
(A1, A2 • B), if A = (A1, A2).

It is easy to see that this new operation is associative. As a consequence of (3.5), we have for a1, . . . , at ∈ X and
A = (a1, . . . , at ), B, C ∈M(X) that

∀i, [ai , π(B)] = 0 ⇒ π(A • (B,C)) = [π(B), π(A • C)], (5.2)
∀i, [ai , π(C)] = 0 ⇒ π(A • (B,C)) = [π(A • B), π(C)]. (5.3)

Lemma 5.1. Let a1, . . . , at ∈ X and A = (a1, . . . , at ), B ∈M(X) be such that [ai , π(B)] = 0 for all i < t . Then
π(A • B) = [π(A), π(B)].

Proof. For t = 1 this follows directly from the definitions. For t > 1 we have π(A • B) = [a1, π(A′ • B)], where
A′ = (a2, . . . , at ). By induction and (3.5), we get π(A • B) = [a1, π(A′), π(B)] = [π(B), π(A′), a1] and the result
follows now by antisymmetry. �
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Lemma 5.2. Let a1, . . . , as, b1, . . . , bt ∈ X be such that [ai , b j ] = 0 and A = (a1, . . . , as), B = (b1, . . . , bt ),C ∈
M(X). Then π(A • B • C) = π(B • A • C).

Proof. By definition we have π(A•B•C) = [a1, . . . , as, b1, . . . , bt , π(C)] = [a1, . . . , as−1, b1, . . . , bt , as, π(C)] by
applying t times (3.5) and then inductively [a1, . . . , as−1, b1, . . . , bt , as, π(C)] = [b1, . . . , bt , a1, . . . , as, π(C)] =
π(B • A • C). �

5.2. Full chains

A tuple of vertices (p1, . . . , pn) of a bigraph Γ is a chain if there exists an edge between the vertices pi and p j if
only if |i − j | = 1. The chain is said to be full if all edges are full. If ∆ = (p1, . . . , pn) is a chain in Γ and a is a
vertex not belonging to ∆ then we say that i ∈ ∆ is linked to a if qai 6= 0 and we denote by La(∆) the set of vertices
of ∆ which are linked to a.

The following lemma shows how the monomial along a full chain can be broken down to subchains.

Lemma 5.3. Let q be a positive definite unit form and ∆ = (1, . . . , u) be a full chain in B(q). Then for any
1 < i1 < i2 < · · · < il = u we have that

π(Dl • · · · • D1) = [π(Dl), . . . , π(D1)],

where Dm = (eεim , . . . , eε(im−1+1)) for 1 ≤ m ≤ l and i0 = 0.

Proof. For l = 2 we have D1 = (eεi1 , . . . , eε1) and D2 = (eεi2 , . . . , eε(i1+1)) and [eε j , π(D1)] = 0 for all j > i1+1,
and hence by Lemma 5.1, we get π(D2 • D1) = [π(D2), π(D1)]. The general case follows by induction. �

Lemma 5.4. Let q be a positive definite unit form, let ∆ = (1, . . . , u) be a full chain in B(q) and let a be a vertex
not belonging to ∆. Then there is an even number of vertices of ∆ which are linked to a if and only if

∑u
j=1 qaj = 0

and in that case

(a) [eσa, eεu, . . . , eε1] = 0 and
(b) [eε1, . . . , eεu, eσa] = 0,

for any ε, σ ∈ {1,−1}.

Proof. Since q is a positive definite unit form, we have −1 ≤ qi j ≤ 1. Let La(∆) = {i1, . . . , il} with 1 ≤ i1 < i2 <

· · · < il ≤ u. Since q satisfies the cycle condition, we have qais = −qais+1 for 1 ≤ s < l. Therefore we have that l is
even if and only if

∑u
j=1 qaj = 0.

Now suppose that l is even. Then it is possible to divide the full chain ∆ into k subchains ∆m = (vm, . . . , wm) for
1 ≤ m ≤ k, with v1 = 1,wk = u, vm < wm andwm+1 = vm+1 (1 ≤ m < k) such that for each subchain ∆m either no
vertex is linked to a or La(∆m) = {vm, wm}. By Lemma 5.3, we have [eσa, eεu, . . . , eε1] = [eσa, π(Dk), . . . , π(D1)],
where Dm = (eεwm , . . . , eεvm ) for 1 ≤ m ≤ k.

By (5.1) it is enough to show that [eσa, π(Dm)] = 0 for any 1 ≤ m ≤ k. This is clear if no vertex of the subchain
∆m is linked to a and follows otherwise by R5(q). This shows (a).

Clearly, (b) is trivially true if [eεu, eσa] = 0, so we shall assume that [eεu, eσa] 6= 0. Then let j < u be maximal
with q ja 6= 0. We have then

∑u
i= j qia = 0 and [eεi , eσa] = 0 for j ≤ i < u and [eε j , . . . , eεu, eσa] satisfies the

hypothesis of Lemma 4.2 and consequently [eε j , . . . , eεu, eσa] = ±[eσa, eεu, . . . , eε1], which is zero by (a). �

5.3. Zero monomials associated with full chains with links

Lemma 5.5. Let q be a positive definite unit form, let ∆ = (1, . . . , u) be a full chain in B(q) and let a be a vertex
not belonging to ∆. Suppose that

∑u
j=1 qaj = 0 and that B ∈M(X) is such that [eε j , π(B)] = 0 for 1 ≤ j ≤ u.

Then π(Dε • (eσa, B)) = 0 holds for any σ, ε ∈ {1,−1} where Dε = (eεu, . . . , eε1) ∈M(X).

Proof. It follows from (5.3) that π(Dε • (eσa, B)) = [π(Dε • eσa), π(B)]. Now π(Dε • eσa) = [eεu, . . . , eε1, eσa]

which is zero if qa1 = 0. Otherwise let i > 1 be minimal with qai 6= 0 (such an i exists since
∑n

j=1 qaj = 0 and
qa1 6= 0). Then we have [eεi , . . . , eε1, eσa] = 0 by R5(q). �
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For the rest of this section we shall assume the following situation.

Hypothesis 5.6. Let q be a positive definite unit form, ∆ = (1, . . . , u) a full chain in B(q), k ≥ 0 and let
1 < i1 < i2 < · · · < ik ≤ u be fixed indices. Furthermore, if k = 0 let D1 = (eu, . . . , e1) and if k > 0 then
let

D1 = (ei1−1, . . . , e1)

Dm = (eim−1, . . . , eim−1) (1 < m ≤ k)

Dk+1 = (eu, . . . , eik ).

Lemma 5.7. Assume Hypothesis 5.6. Then for A ∈M(X) and any m with 3 ≤ m ≤ k + 1 we have

π(Dm • Dm−2 • · · · • D1 • A) = π(Dm−2 • · · · • D1 • Dm • A), if m is odd,

π(Dm • Dm−2 • · · · • D2 • A) = π(Dm−2 • · · · • D2 • Dm • A), if m is even.

Proof. Let D = Dm−2 • · · · • D1 if m is odd (D = Dm−2 • · · · • D2 if m is even). Then we have [ei , e j ] = 0 for any
ei ∈ Dm and any e j ∈ D. Therefore by Lemma 5.2 we get the result. �

Hypothesis 5.8. Let B,C ∈M(X) be such that

[e j , π(C)] = 0, for all e j ∈ D1,

[e j , π(Dm−1 • C)] = 0, for all e j ∈ Dm,m odd with 1 < m ≤ k + 1,
[e j , π(Dm−1 • B)] = 0, for all e j ∈ Dm,m even with 1 < m ≤ k + 1.

Lemma 5.9. Assume Hypotheses 5.6 and 5.8. Then for any m with 1 < m ≤ k + 1, and each e j ∈ Dm we have

π(e j • Dm−1 • Dm−3 • · · · • D3 • D1 • B) = 0 if m is even,

π(e j • Dm−1 • Dm−3 • · · · • D4 • D2 • C) = 0, if m is odd.

Proof. Suppose that m is even (the case where m is odd is completely similar) and let E = π(e j • Dm−1 • Dm−3 •

· · · • D3 • D1 • B). Set D′ = (e j , Dm−1) and observe that for any x ∈ D′ and any y ∈ A = Dm−3 • · · · • D1 we have
[x, y] = 0. Hence by Lemma 5.2, we have E = π(D′ • A • B) = π(A • D′ • B). The result follows now from the
fact that π(D′ • B) = [e j , π(Dm−1 • B)] = 0 by Hypothesis 5.8. �

Lemma 5.10. Again, assume Hypotheses 5.6 and 5.8.

(i) For any even m, we have that π(Dm+1 • · · · • D2 • D1 • (B,C)) is equal to [π(Dm+1 • · · · • D1 • B), π(Dm •

Dm−2 • · · · • D2 • C)].
(ii) For any odd m, we have that π(Dm+1•· · ·•D2•D1•(B,C)) is equal to [π(Dm •Dm−2•· · ·•D1•B), π(Dm+1•

Dm−1 • · · · • D2 • C)].

Proof. The proof is by induction on m. Let Em = π(Dm+1 • · · · • D2 • D1 • (B,C)).
If m = 1 then E1 = π(D2 • D1 • (B,C)) = [ei2−1, . . . , ei1 , π(D1 • (B,C))] and by Hypothesis 5.8 we have

[e j , π(C)] = 0 for all e j ∈ D1. Therefore we can apply (5.3) and get that π(D1 • (B,C)) = [π(D1 • B),C]. Again
by Hypothesis 5.8, we have [ei , π(D1 • B)] = 0 for any ei ∈ D2, and therefore get E1 = π(D2 • (D1 • B,C)) =
[π(D1 • B), π(D2 • C)] by (5.2).

Assume now that m > 1 and that m is even (the odd case is very similar). Then we have Em =

[eim+1−1, . . . , eim , π(Dm • · · · • D1 • (B,C))] and get by induction

Em = [eim+1−1, . . . , eim , π(Dm−1 • · · · • D1 • B), π(Dm • · · · • D2 • C)].

Since by Lemma 5.9, we have [e j , π(Dm • · · · • D2 • C)] = 0 for all e j ∈ Dm+1, we get by (5.3) that

Em = [π(Dm+1 • Dm−1 • · · · • D1 • B), π(Dm • · · · • D2 • C)],

which is what we had to show. �
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Hypothesis 5.11. If k is odd then π(Dk+1 • C) = 0 and if k is even then π(Dk+1 • B) = 0.

The following technical result is an important tool in our proof of Lemma 4.3.

Lemma 5.12. Assume Hypotheses 5.6, 5.8 and 5.11. Then

π(Dk+1 • · · · • D1 • (B,C)) = 0.

Proof. Let E = π(Dk+1•· · ·•D1•(B,C)). If k = 1 then, by Lemma 5.10, we have that E = [π(D1•B), π(D2•C)]
and the result follows directly from Hypothesis 5.11.

If k > 1 (say k is even; the odd case is similar) then it follows from Lemma 5.10 that

E = [π(Dk+1 • Dk−1 • · · · • D1 • B), π(Dk • Dk−2 • · · · • D2 • C)].

Using Lemma 5.7 we get π(Dk+1 • · · · • D1 • B) = π(Dk−1 • · · · • D1 • Dk+1 • B) and the result follows from
π(Dk+1 • B) = 0. �

6. Proof of Lemma 4.3

Recall that q is a positive definite unit form which contains g0
n(λ), g1

n(λ, µ) or g2
n(λ, µ). In particular (1, . . . , n) is

a full chain in B(q) and we denote by 1 < i1 < i2 < · · · < il ≤ n the vertices of (1, . . . , n) which are linked to µ.
The proof of Lemma 4.3 is quite different for g0

n(λ) to that for the two cases g1
n(λ, µ) and g2

n(λ, µ), which can be
considered simultaneously and are rather more difficult, so we start with them.

6.1. Strategy for g1
n(λ, µ) and g2

n(λ, µ)

Again denote by Γ the induced subbigraph of B(q) given by the vertices λ,µ, 1, . . . , n. We have Γ =

g1
n(λ, µ, i1, . . . , il) =: g1 or Γ = g2

n(λ, µ, i1, . . . , il) =: g2 and want to show that F = Fn,u(λ, µ), as defined
in Lemma 4.3, is zero in g5(q) for 0 ≤ u ≤ n.

In the proof the following cases are distinguished.

I: Γ = g1, g2 and ik ≤ u < ik+1 for some even k < l.
II: Γ = g1, g2 and ik ≤ u < ik+1 for some odd k < l − 1.

III: Γ = g1 and il ≤ u < n.
IV: Γ = g2 and il−1 ≤ u < il = n.
V: Γ = g1, g2 and 1 ≤ u < i1.

VI: Γ = g1, g2 and u = n.
VII:Γ = g1, g2 and u = 0.

The last case is the easiest: since there are an even number of vertices of ∆ = (1, 2, . . . , n) linked to λ and µ, we
have [e−α, en, en−1, . . . , e1] = 0 by Lemma 5.4 for α = λ,µ and therefore F = Fn,0 = 0.

The remaining cases are more difficult. However, since in each case the procedure is quite similar, we follow a
common scheme of argument in three steps as follows.
First step: In each case certain definitions are given and a couple of equalities are proved:

I: Define B1 = (e−ik+1 , . . . , e−(u+1)) and C1 = (e−n, . . . , e−(ik+1+1)). Furthermore, let B = (eλ, B1) and
C = (eµ,C1). We show that (i) [eµ, π(C1 • B1)] = 0, (ii) [eλ, π(C1)] = 0 and (iii) [eµ, π(B)] = 0.

II: Define B1 = (e−n, . . . , e−(ik+1+1)) and C1 = (e−ik+1 , . . . , e−(u+1)) and, furthermore, B = (eλ, B1) and
C = (eµ,C1). We show that (i) [eλ, π(B1 • C1)] = 0, (ii) [eµ, π(B1)] = 0 and (iii) [eλ, π(C)] = 0.

III: Define k = l, B1 = (e−n, . . . , e−(u+1)), B = (eµ, B1) and C = eλ. Then show that (i) [eµ, π(B1)] = 0.
IV: Define k = l − 1, B = eλ, C1 = (e−n, . . . , e−(u+1)) and C = (eµ,C1). Show that (i) [eλ, π(C1)] = 0.
V: Define k = 0, B1 = (e−i1 , . . . , e−(u+1)) and C1 = (e−n, . . . , e−(i1+1)) and then B = (eλ, B1), C = (eµ,C1).

Then show that (i) [eµ, π(C1 • B1)] = 0, (ii) [eλ, π(C1)] = 0 and (iii) [eµ, π(B)] = 0.
VI: Define u = n, k = l, B = eλ, C = eµ and there will be nothing to prove in this step.



372 M. Barot, D. Rivera / Journal of Pure and Applied Algebra 211 (2007) 360–373

Second step: In all the cases prove that

F = ±π(D • (B,C))

where D = Dk+1 • Dk • · · · • D1 with Di ∈M(X) as in Hypothesis 5.6.
Third step: Show that in all the cases the Hypotheses 5.8 and 5.11 are satisfied. By Lemma 5.12 we get then F = 0,
which is what we had to prove.

6.2. Proof of the first step

We start with case I. To show (i), let ∆ = (u + 1, . . . , n). The vertices of the full chain ∆ which are linked to µ
are ik+1, . . . , il , and hence Lµ(∆) has even cardinality and [eµ, π(C1 • B1)] = 0, by Lemma 5.4.

To see property (ii), let ∆ = (ik+1 + 1, . . . , n). Then, if Γ = g1, we have that Lλ(∆) = {ik+2, . . . , il , n} has even
cardinality and if Γ = g2, then Lλ(∆) = {ik+2, . . . , il−1} also has even cardinality. In any case, (ii) follows from
Lemma 5.4.

For (iii), observe that [eλ, e j ] = 0 and [eµ, e j ] = 0 (for u + 1 ≤ j < ik+1) and therefore [eλ, π(A)] =
[eµ, π(A)] = 0 where A = (e−ik+1−1, . . . , e−(u+1)). Hence we have [eµ, π(B)] = [eµ, eλ, e−ik+1 , π(A)] =
[eµ, π(A), e−ik+1 , eλ] = [π(A), eµ, e−ik+1 , eλ], which is zero since [eµ, e−ik+1 , eλ] = 0 by R5(q).

To see property (i) in case II, let ∆ = (u+1, . . . , n). If Γ = g1, we have Lλ(∆) = {ik+1, . . . , il , n} and if Γ = g2,
we have Lλ(∆) = {ik+1, . . . , il−1}. In any case Lλ(∆) has even cardinality, and by Lemma 5.4 we get (i).

For (ii), observe that for ∆ = (ik+1+1, . . . , n) the set Lµ(∆) = {ik+2, . . . , il} has even cardinality, since k is odd,
and (ii) follows again by Lemma 5.4. Property (iii) in case II follows like in case I.

The property (i) in case III (respectively in case IV) is trivial since there is no vertex of ∆ = (u + 1, . . . , n) linked
to µ (respectively to λ).

In case V, let ∆ = (u + 1, . . . , n) and observe that Lµ(∆) = {i1, . . . , il} has even cardinality. Hence (i) holds
by Lemma 5.4. Similarly, if ∆ = (i1 + 1, . . . , n) then, in case Γ = g1, we have Lλ(∆) = {i2, . . . , il , n} and in
case Γ = g2, we have Lλ(∆) = {i2, . . . , il−1}. In both cases Lλ(∆) has even cardinality and once again we can use
Lemma 5.4 to deduce (ii). Property (iii) in case V follows like property (iii) in case I. �

6.3. Proof of the second step

Let D = Dk+1 • · · · • D2 • D1, where the Di are as in Hypothesis 5.6.
Cases I and V: By definition, we have F = [eu, . . . , e1,G] where G = [[eλ, eµ], π(C1 • B1)]. By (3.5) and
antisymmetry we deduce from property (i) that G = −[eµ, eλ, π(C1 • B1)]. And now, it follows from Lemma 5.3 that
G = −[eµ, eλ, π(C1), π(B1)]. Again by (3.5), we deduce from property (ii) that G = −[eµ, π(C1), eλ, π(B1)] =

−[eµ, π(C1), π(B)]. Hence, we obtain from property (iii) and (3.5) that G = [π(B), eµ, π(C1)] = [π(B), π(C)].
Finally, substitute G in F to get F = [eu, . . . , e1, π(B), π(C)] = ±π(D • (B,C)).

The proof in case II is identical, after interchanging B1 with C1 and B with C .
In case III, we have by definition F = [eu, . . . , e1,G], where G = [[eλ, eµ], π(B1)]. Now, by antisymmetry,

property (i) and (3.5), we have G = −[π(B1), eλ, eµ] = −[eµ, eλ, π(B1)] = −[π(C), π(B)] = [π(B), π(C)].
Therefore F = ±π(D • (B,C)).

The proof in case IV is almost identical to that in case III after interchanging C1 with B1 and C with B.
Case VI is trivial since F = π(D • (C, B)) = −π(D • (B,C)). �

6.4. Proof of the third step

Case I. For each e j ∈ D1 (that is 1 ≤ j < i1), we have [e j , π(C1)] = 0 and [e j , eµ] = 0 since q jµ = 0. Therefore
[e j , π(C)] = 0. For any odd m with 1 < m < k, we have for e j ∈ Dm , that [e j , π(C1)] = 0 and [e j , eµ] = 0 since
q jµ ≥ 0 and conclude that [e j , π(C)] = 0. If j > im−1 then [e j , π(Dm−1)] = 0 and therefore [e j , π(Dm−1•C)] = 0.
If j = im−1 then let D′ = Dm−1 • eµ and we obtain [e j , π(Dm−1 • C)] = [e j , π(D′ • C1)] = [π(e j • D′), π(C1)]

by (5.3). By Lemma 5.4(b), we get the second assertion of Hypothesis 5.8.
For any even m with 1 < m ≤ k, we have for e j ∈ Dm that [e j , π(B)] = 0 since [e j , eλ] = 0 and [e j , π(B1)] = 0.

Like in the case when m is odd, we conclude that [e j , π(Dm−1 • B)] = 0. This shows that Hypothesis 5.8 holds. To



M. Barot, D. Rivera / Journal of Pure and Applied Algebra 211 (2007) 360–373 373

see Hypothesis 5.11, we use that (u, . . . , ik, λ, ik+1, . . . , u + 1) is a chordless cycle and therefore π(Dk+1 • B) = 0
by R5(q).
Case II. The argument is completely similar to that for case I.
Case III. For e j ∈ D1, we have [e j , π(C)] = 0 since q jµ = 0. If m is odd and e j ∈ Dm , then again
[e j , π(C)] = 0 since q jµ ≥ 0 and for j > im−1, we get directly [e j , π(Dm−1 • C)] = 0, whereas if j = im−1
then [eim−1 , π(Dm−1 • C)] = 0 follows from R5(q) since (im−1, im−1 − 1, . . . , im−2, µ) is a chordless cycle in q.
Similarly one can argue for even m. Hypothesis 5.11 follows again by R5(q) since (u, . . . , il , λ, n, . . . , u + 1) is a
chordless cycle.

The case IV again follows similarly to III after interchanging C1 with B1 and C with B.
Case V. Here we have D = D1 = [eu, . . . , e1] and therefore for each e j ∈ D1, we get [e j , eµ] = 0 since q jµ = 0.
Consequently [e j , π(C)] = 0 and there is nothing left to prove for Hypotheses 5.8 and 5.11 follows by R5(q) since
(eu, . . . , e1, eλ, e−i1 , . . . , e−(u+1)) is a chordless cycle in q.
Case VI. We have k = l and Dk+1 = (en, . . . , eil ), which reduces to Dk+1 = en in the case where Γ = g2.
Hypothesis 5.8 follows very similarly to in case I. Hypothesis 5.11 follows, in the case where Γ = g2 from [en, eλ] = 0
and in the case where Γ = g1 from R5(q) since (n, . . . , il , λ) is a chordless cycle in q. �

6.5. Zero monomials in the bigraphs g0
n(λ)

Recall that here we have Γ = g0
n(λ) and that we have to show that the monomials

Fn,u(λ, n) = [eu, . . . , e1, [eλ, en], e−n, . . . , e−(u+1)]

for 0 ≤ u ≤ n are zero in g5(q).
We start with the case where 0 ≤ u < n: Then we have Fn,u(λ, n) = [eu, . . . , e1,G], where G =

[[eλ, en], e−n, . . . , e−(u+1)] and since Lemma 4.2 can be applied, we get G = ±[[eλ, en], e−n, . . . , e−(u+1)]
←
=

±[e−(u+1), . . . , e−n, eλ, en]. Make the replacement [e−n, eλ, en] = [eλ, e−n, en] = [eλ, hn] = eλ in the former
expression to get G = [e−(u+1), . . . , e−(n−1), eλ] which is zero because [e−(n−1), eλ] = 0 by R4(q).

It remains to consider the case where u = n. Then we first observe that G = [en, en−1, en, en−2, en−3, . . . , e1, eλ]
equals zero in g5(q). Indeed, G = [en, [en−1, en], en−2, en−3, . . . , e1, eλ] since [en−1, en−2, . . . , e1, eλ] =
0 by R5(q). Therefore, G = [[en−1, en], en, en−2, en−3, . . . , e1, eλ] since [en, en−1, en] = 0 by
R4(q). Finally, we have G = −[[en, en−1], en, en−2, en−3, . . . , e1, eλ] by antisymmetry and then G =

−[en, en−1, en, en−2, en−3, . . . , e1, eλ] = −G since [en, en, en−2, en−3, . . . , e1, eλ] = 0 by R4(q). That is, we have
G = −G and therefore G = 0.

Now, Fn,n(λ, n) = [en, . . . , e1, [eλ, en]] = −[en, . . . , e1, en, eλ] by antisymmetry and since [ei , en] = 0 (for
i < n − 1), we get finally Fn,n(λ, n) = −[en, en−1, en, en−2, en−3, . . . , e1, eλ] = G = 0. �
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