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Abstract

Every semisimple Lie algebra defines a root system on the dual space of a Cartan subalgebra and a Cartan matrix, which
expresses the dual of the Killing form on a root base. Serre’s Theorem [J.-P. Serre, Complex Semisimple Lie Algebras (G.A. Jones,
Trans.), Springer-Verlag, New York, 1987] gives then a representation of the given Lie algebra in generators and relations in terms
of the Cartan matrix.

In this work, we generalize Serre’s Theorem to give an explicit representation in generators and relations for any simply laced
semisimple Lie algebra in terms of a positive quasi-Cartan matrix. Such a quasi-Cartan matrix expresses the dual of the Killing
form for a Z-base of roots. Here, by a Z-base of roots, we mean a set of linearly independent roots which generate all roots as
linear combinations with integral coefficients.
© 2007 Elsevier B.V. All rights reserved.

MSC: 17B20

1. Introduction and main result

A square matrix with integer coefficients A is called a quasi-Cartan matrix, see [1], if it is symmetrizable (that is,
there exists a diagonal matrix D with positive diagonal entries such that DA is symmetric) and A;; = 2 for all i. A
quasi-Cartan matrix is called a Cartan matrix, see [3], if it is positive definite, that is, all principal minors are positive,
and A;; < Oforalli # j.

A unit form is a quadratic form ¢ : ZV — Z, q(x) = ZIN:1 x? + >_i<j qijxixj, with integer coefficients
gij € Z. Any unit form q : ZN — 7 has an associated symmetric quasi-Cartan matrix A = A(g) given by

Ajj =q(ci +¢j) —q(ci) — q(cj), where ¢y, ..., ¢, is the canonical basis of 7ZN . To simplify notation, set g;; = ¢j;
for i > j. It will be convenient to switch sometimes to a more graphical language and associate with any unit form
q : ZN — 7 abigraph B(g) with vertices 1, ..., N and edges as follows. Two different vertices i and j are joined by

|gij| full edges if g;; < 0 and by g;; broken edges if g;; > 0. If A(g) is a Cartan matrix then B(g) is a graph (there are
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no broken edges) A, which by the Cartan—Killing classification is a disjoint union of Dynkin diagrams A,, (m > 1),
Dy, m > 4)and E,, (m = 6, 7, 8). In that case, we write ¢ = g and call A the Dynkin type of g (or of A).

Given a unit form g, set A = A(gq) and let g4(q) be the Lie algebra defined by the generators e¢;, e_;, h; (1 <i < N)
and the relations

Ri(q) [hi,h;]1=0foralli, j,

R2(q) [hi, ecj] = —€Ajjesj, foralli, jand ¢ € {1, -1},

R3(q) [esi,e—¢i] =eh; foralliand ¢ € {1, —1},

R4(g) (ad egi)l+n(esj) = 0, where n = max{0, —&6A;;},fore, 6 € {1, —1}and 1 <i, j < N.

Theorem 1.1 ([5]). If q is positive definite unit form such that its quasi-Cartan matrix is a Cartan matrix then g4(q)
is a semisimple (and finite dimensional) Lie algebra.

Notice that in general, when A is not necessarily a Cartan matrix, the relations R4(g) are a subset of the relations
Roo(q) [esyiys -+ €ei] = Oifq(Z'Fl gjci;) > lande; € {1, -1},

where we used multibrackets, defined inductively by
[XI,XZ, . 7xl] = [-xlv [x2a ‘e 9-xt]]'

Let goo(q) be the Lie algebra defined by the generators e;, e_;, h; (1 <i < N) and by the relations Ry (¢), R2(gq),
R3(¢) and Reo(g). We recall that any positive definite unit form has a unique associated Dynkin type A such that ¢
is equivalent to g 5, thatis ¢ = g o T for some Z-invertible integer matrix T'; see also the proof of Proposition 2.1.
The fact that two unit forms g and g’ are equivalent will be denoted by ¢ ~ ¢’.

Theorem 1.2 (/2]). If q is positive definite of Dynkin type A then goo(q) is isomorphic to g4(qa).

Notice that the set of relations Ry, (¢) is infinite and although it has been shown in [2, Proposition 6.6] that there
exists a finite subset S of Ru(g) which suffices to define goo(g), it remains unsatisfactory, because S is usually
very large and its definition depends heavily on a factorization of the matrix 7', for which ¢ = g o T, into certain
elementary transformations.

The main result of this paper is to give an explicit and finite set of relations for which the defined Lie algebra is
isomorphic to g4(g). This set includes Ri(q), R2(¢), R3(g) and R4(g) as above and additionally some relations
Rs5(q) depending on the set of chordless cycles in q: a chordless cycle is a tuple of indices (i1, ..., ;) such that
qi,i, 7 0if and only if a — b = £1 mod ¢. Clearly the chordless cycles in g correspond to the chordless cycles in
B(g) (in graph theory a cycle is a closed path (i1, . .., i;) and a chord is an edge {i,, i} for whicha —b £ +1 mod ¢).
The importance of chordless cycles for the classification of cluster algebras [1] of finite type should be mentioned at

this point.
Let
Rs5(q) leeyiys---»eei] = 0, where (i1, ..., i) is a chordless cycle in ¢ and &, € {1, -1}, & = —gj i, &1+1 for
I1<l<t-—1.

Example 1.3. Let g : YARSSYA q(x) = x12 + x% + x32 + xf — X1X2 + X1X3 4+ X1X4 — X2Xx3 + x3x4. The bigraph B(q)
of g looks as follows:

There are two subsets, namely {1, 2, 3} and {1, 3, 4}, each of which gives rise to six chordless cycles, which in turn
define two relations each. Therefore R5(g) consists of the following relations:

le1, e2,e3]1 =0, lez, e3,e-1] =0, les,e—1,e 2] =0,

[e1,e_3,e2] =0, [e2, e1,e_3] =0, [e3, e2,e1] =0,

[e_1,e_2,e3]1 =0, [e_2,e_3,e1] =0, [e_3,e1,e2] =0,
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le—1,e3,e2] =0, le—2,e-1,e3] =0, le-3,e-2,e-1] =0,
[e1,e—4,e3] =0, le4, e—3,e1]1 =0, [e3,e—1,e4] =0,
[e1, e—3,esa] =0, le4, e—1,e3] =0, [e3, e—4,e1]1 =0,
[e—1,e4,e-3] =0, [e—4,e3,e-1]1 =0, [e-3,e1,e-4] =0,
[e—1,e3,e—4] =0, [e—4,e1,e-3] =0, [e—3,e4,e—1]=0.

Let g5(g) be the Lie algebra defined by the generators e¢;, e_;, h; (1 <i < N) and by the relations R (¢), R2(q),
R3(g), R4(g) and R5(g). Observe that all these sets are finite and given in a very combinatorial way.
The following is the main result of this paper.

Theorem 1.4. Let g and q' be positive definite unit forms. Then

(i) ¢ ~ q" if and only if g5(q) =~ gs5(q"),
(1) g5(q) =~ ga(gA), where A is the Dynkin type of q.

Remark 1.5. By Theorem 1.2, it follows that g5(q) >~ goo(q) for any positive definite unit form q.

Remark 1.6. In order to prove Theorem 1.4 it is sufficient to show the implication ¢ ~ ¢’ = g5(q) = g5(g’) for any
two positive definite unit forms.

Proof. Indeed, the rest then follows easily: to see (ii), let ¢ = g . Then g5(q) =~ gs(gA), but gs(ga) = ga(ga), since
there is no chordless cycle for g o and consequently R5(g) is empty.

Now, suppose that gs(g) =~ gs(¢). If A is the Dynkin type of g and A’ is the Dynkin type of ¢’ then it follows
from (ii) that g4(gA) = g4(g /) and therefore A = A’; see [5]. Consequently ¢ ~ ga =ga ~¢q'. A

If g is a positive definite unit form then g(c; & ¢j) > 1 and hence |g;;| < 1. If a unit form g satisfies
(—4i,iy)(—Gizi3) - - - (—=qi,_,i,)(—qi,i;) = —1 for any chordless cycle (i1, ..., i;) in g, we say that g satisfies the cycle
condition. For instance, if g is a positive definite unit form then g satisfies the cycle condition.

Remark 1.7. If g is positive definite then the set of relations R5(q) is a subset of Roo(q).

Proof. Lety = (i1, ..., i;) be achordless cycle and €1, ..., & be defined as in Rs(g). Then e; = H;;ll(—qi,im )er =
qi,i,&: since ¢ satisfies the cycle condition and hence q(ZfZl gicy) =t + qii €18 + Z;;{ Gijir 1 E16141 =
L4 e+ Y Qi (G i )E =+ 1 — 1) =2. W

The article is structured as an iterated reduction to more and more special situations, where the main steps and the
implications are as follows

Theorem 1.4 < Proposition 2.8 < Lemma 3.2 <= Lemma 4.3.

We show each of the above implications in a separate section and use the last two sections to prove Lemma 4.3 itself.
2. Reduction to elementary transformations

Given a unit form g : ZV — 7Z, we define a linear transformation I, given by I,(c;) = c; for any i # r and
I.(c;) = —c,. We say that ¢’ is obtained from ¢ by a sign inversion if ¢’ = ¢ o I, for some r.

Letq : Z¥ — Z be a unit form. For any r # s and o € {1, —1} we define a linear transformation 7 by TS.¢c; = c¢;
forany i # r and TJ.c, = ¢, + oc;.

Note that if 0 := —g,; € {1, —1}, the form ¢’ = ¢ o TS is again a unit form and 77 is called a Gabrielov

transformation for q. Let ¢ and ¢’ be two unit forms. If ¢ = g o P where P is a permutation matrix or ¢’ = g o T, 7"
or ¢’ = g o I, then we write g ~¢ ¢’. Closing by transitivity, we get an equivalence relation ~¢ on the unit forms and
call two unit forms in the same equivalence class Gabrielov-equivalent, or just G-equivalent, for short.

Although the proof of the following result is well known to specialists it is rather hard to find an explicit reference
for it and therefore we include a proof of it.

Proposition 2.1. If g and q’ are positive definite unit forms then q ~ q’ if and only if q and q’ have the same Dynkin
type if and only if q ~G q -
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Proof. For any positive definite unit form ¢ there exists a Dynkin type A such that g ~G g; see for example [4,
Theorem 6.2]. This Dynkin type is uniquely determined by g: Define the graph G(g) to have as vertices the elements
of ¢~1(1) and edges {x, y} for every two vertices x, y for which ¢(x — y) € {0, 1}. Observe that G(g) ~ G(q') if
g and ¢’ are equivalent. Hence the components of G(g) correspond to the components of A and for each component
G of G(g), the number of vertices of G together with the number of indices i such that +¢; € G determine the
corresponding Dynkin diagram uniquely.

Hence, if A and A’ denote the Dynkin types of the positive definite unit forms ¢ and g’ respectively, we have
q~cqaandq’' ~Gqa.Henceq ~q' = A=A = qg~cqa=qa~6q =q~q. N

In order to prove Theorem 1.4 it is enough to show the following result.
Theorem 2.2. If q and q’ are positive definite unit forms then q ~¢ q' if and only if gs5(q) is isomorphic to gs(q’).

Remark 2.3. Again, we only have to show the implication g ~G ¢’ = g5(q) =~ g5(q’).

Proof. Indeed assume this is shown; then by Proposition 2.1 we get g ~ ¢’ = g~cq' = gs(q) =~ gs(¢’) and
hence by Remark 1.6, Theorem 1.4 holds. Therefore gs(¢) =~ g5(¢’) = g ~ ¢’ = ¢q ~¢g ¢/, the latter again by
Proposition 2.1. W

The following result is useful for reducing to special situations.

Lemma 2.4. Let g be a unit form, s # r, 0 = —qg and 1 < iy,...,iy < n.ThenqoTJ ol;jo---0l;, =
goljjo---0ol oT?

i, o TS, where o' = (—1)%0 and & is the number of indices a with 1 < a <t and i, € {r, s}.

Proof. This follows directly from the factthat 7. o [; = [; o T;® fori =r,sand T o I; = I; o T else. N
Remark 2.5. In order to show Theorem 2.2, it is enough to consider the two cases ¢ = g o I, and ¢’ = g o T;l if
qrs = -1

Proof. By the definition of G-equivalence, it is enough to consider the cases ¢’ = g o P where P is a permutation
matrix, ¢’ = g oI, and ¢’ = g o T,, " if g5 € {1, —1}. However, the first case, that is, ¢’ = g o P, is straightforward
andif g, = I'thengoT,;' =qol, o T,/ o I,,by Lemma2.4. W

Proposition 2.6. Let g be a positive unit form. If ¢ = q o I then the Lie algebras gs(q) and gs(q’) are isomorphic.

Proof. Denote by e;, e_;, h; and by e/, ¢’ ;, h} the generators of gs(g) and gs(q’) respectively. Let A = A(g) and
A’ = A(q'). Further we set

~ _ e, ifi #r ~ hi, ifi #r
e“_{egr, iti =, 9 hl_{—h,, ifi =r. @1

The verification that these elements satisfy the relations Rj(g’) to R4(g’) is easy (it was also stated in [2]) and we
leave it to the interested reader.
To verify Rs(q’) let y = (i1, ..., i;) be any chordless cycle for q’. Observe first that y is also a chordless cycle

forq. If r & {iy, ..., i} the verification is straightforward. If r € {iy, ..., i}, say r = i, then let 5; e {1, —1} and
inductively ¢; = —qi’”.[JrlefJrl for1 <l <t —1.Then
[ZS’lil’ - ch’z—lia*1 s Celiys g5;+1ia+l’ €] = lectiys v € iy g €—elia €cl lias1r eei,]
= [€eyiys -+ s Coq_tia_ys Cogins Coapriapts « - - » Cerif] = X,
where ¢, = —¢), and ¢; = 8} for all j # a. In order to see that x = 0, we will use R5(g). To do so we have to
ensure that & = —g;;;,,,&1+1, for 1 <1 <t — 1. This follows easily from qi/””1 = @i, forl # a,a — 1 and from

4iyi., = —dijiry in the case where I =aorl =a — 1.

The Lie subalgebra of gs(g) generated by e; and ﬁi for( =1,...,N,and ¢ € {1, —1}) is clearly gs(q). Therefore
we obtain a homomorphism of Lie algebras ¢ : gs(¢') — g5(¢) which maps e, to ¢ and A to h;. Similarly, we
obtain a homomorphism of Lie algebras v : g5(g) — gs5(q’). It is straightforward to check that ¢ and v are inverse

to each other. This finishes the proof. W
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Corollary 2.7. There is an automorphism @ of gs(gq) which sends ez to e_g; and h; to —h; forany 1 <i < N.

Proof. Denote by ¢, : gs(g) — gs(g) the isomorphism which maps e,; to ¢;; and h; to ;{i, where ¢;; and fz,- are
defined as in (2.1). Then the isomorphism @ = @] 0o ¢ 0 --- 0 @y maps e;; to e_g; and h; to —h; forany 1 <i < N,
whereas the effect on the unit form is the identity since g(—x) = g(x). W

The remainder of the article is divided into several steps in order to prove the following result, which by Remark 2.5
is enough to show Theorem 2.2 (and hence Theorem 1.4).

Proposition 2.8. Assume that q is a positive definite unit form, g,s = —1 and q' = q o T.:'. Then gs5(q) and g5(q’)
are isomorphic Lie algebras.

3. Reduction to special chordless cycles

In this section, we will reduce the proof of Proposition 2.8 to the verification that certain monomials are zero in
95(q)-

Assume that g is positive definite, g,y = —1 and ¢’ = g o Ts*,'l. Once again, denote the generators of gs(g) by e;,
e_;, h; and the generators of gs(¢’) by e, e’ ,, h’.

Then define the following elements in g5(q):

~ lecr, €es], ifi=r d hy +hg, ifi=r
{esi, ifi A, h’—{ 3.1

Cei = h;, ifi 7.

Lemma3.1. Let g, = —land ¢’ = g o T;{l. The elements €.; and h; satisfy the relations R1(q"), R2(q"), R3(q")
and R4(q").

Proof. It has been shown in [2] that these elements satisfy the relations Ri(g”), Ra(¢") and R3(¢") and it only
remains to show Ry(g’), that is we have to show that (ad E'g,-)”m,(%j) = 0 where m’ = max{0, —ESAEJ-}, for
any &,8 € {I, —1}andany i, j = 1,...,n. Fori = j the case ¢ = § is obvious and the case ¢ = —J easy: we have
m’ =2 and (ad ¢,;)(e_,;) = eh; by R3(q"). Therefore (ad &;;)?(¢_¢;) is a multiple of &;; by Ra(¢’) which implies
(ad 2;;)3(2_s;) = 0. For i # j we distinguish several cases.

Case i # r, j # r: Then ¢; = e, e5j = es; and A;.j = A;j, m" = max{0, —e8A;;} and therefore
(ad 2e;) ™ (%)) = (ad e5;) ' (es;) = 0 by Ra(q).

Casei = r,j # r,s: Then A;j = A,j + Ayj. Suppose first that m" = 0. Then either A;j =0or £8A;j > 0.
In the first case, we have A,; = —Ay; so either both are zero (and then [egr, e5;] = 0, [eg, e5;]] = 0 and
consequently (ad Egr)(agj) = 0 by R4(g)) or both are non-zero and then (j, r, s) is a chordless cycle in ¢ and
we get (ad 'e‘sr)Hm’(Zgj) = [[esr, ees], esj]1 = —lesj, [eer, €es1] = 0 by Rs(g). In the second case, where 58A/rj > 0,
we have e§A,; > 0 and e6Ay; > O since |A;;| < 1 foralli # j. Therefore, we have [e,,, e5;] = 0 = [egy, e5;] by
R4(q). Thus, using the Jacobi identity, we see that 0 = [[e,, ex], es;] = (ad Egr)”m/(agj).

Suppose now that m’ > 0; thenm’ = 1 and A}, = A,j + Ayj = —¢6 and either A;; = 0 or A,j = 0. In the case
where A;; = 0, we have

[ees, esi] =0, (3.2)

[eer, eer, €571 =0, (3.3)

[ecs, ees, €er] = 0. (3.4)

Using the general fact (valid in any Lie algebra g and for any x, y, z € g) that

[x,y]=0 = [x,y,z] =y, x,z], [x,z,y] =1[y,z,x], and

(3.5)
[[x, z], yI = [y, zl, x], [[z, x], y] = [[z, ¥1, x],

we get

[ees, [[eer, €es], eﬁj]] =0. (3.6)
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Using (3.5) repeatedly and the above equations as indicated, we can calculate

@d2e)* (@) = [leer. ees]. eer. ecsl. €3]]
D leer, exs], [eer €51, ecs]]
W ers. [[eer es;1. [eer ecs]]
D Leey. Leer, [leers €3], exs 1]
) Loy, [eer eer ees], es11]
3.6

=" [[leer, eesl. esj], [eer, €es]]

= —[leer, ecs), [[eer, exs], es;]]

= —(ad 2,)*(%s)).
Hence (ad Egr)2(25j) = 0. In the second case, where A,; = 0, notice that [[eg,, ess], [[esr, €cs], €511 =
[[ecs, eer], [lecs, eer], es5;]] and proceed similarly, interchanging the roles of r and s.
Casei = r, j = s: Observe that A/, = —A,; = 1| and therefore (ad ¢;,)2(€_¢5) = [Cer, [€er, €es], €—es] Ral@)
[Cer. le—sy. el eer] 2 [Zer, (—e)hyseor] 2 [Gr, €2 Arsear] = Araller. easl. eor] = —Ary(ad eer)(eey) = 0,

which is zero by R4(g) since 1 +max{0, —82Ars} = 2. On the other hand, we have (ad ¢;,)(ez5) = [[€sr, €ss5], €es] =
(ad ess)z(eer) = 0 again by R4(g).

Casei # r,s, j = r: If Aj = 0 = A, then it is straightforward to check that (ad ¢g;)(es;) = 0. Otherwise
we must have A;. # A;s (since |A;r| = |A; + Ajs| < 2) and therefore we have [eg;, es-] = 0 or [eg, ess] = 0
by Ra(g). Assume [e;;, es,] = O (the case where [e;;, ess] = 0 is completely similar). Then we obtain from (3.5)
that (ad eg)([esr, (ad e,)(ess)]) = [esr, (ad es:)? T (es)] for any a > 0 and therefore get (ad 2x;)' " (5,) =
(ad egi)l+”’/([e(g,, ess]) = [esr, (ad esi)H""/ (ess)], which is zero if m’ > max{0, —&8 A}, in particular if A;; = 0
or e8A;s > 0. So it remains to consider the case where ¢§A;; = —1 and m’ = 0, that is 88A§r > 0. Since
0< 83A;r = e8A;r + e8A;s = e8A; — 1 we must have ¢5§A;, = 1, but then (i, r, s) is a chordless cycle in g
and therefore (ad 2.;) ! (S5,) = [esi, esr, €ss] is zero by Rs(q).

Casei = s, j = r:Since A, = —A,s = 1, we get for ¢ = —§ that m" = 1 and calculate (ad Ces) (e gy) =
[ecss €cs, €—ess €—er] = legs, €—gr, €—ss, €c5], Where the last equation is due to (3.5). Hence (ad ?gs)z(?_gr) =

[ees, e—er, —€hs] = [ees, Arse—er] = 0 by Ry(g). For ¢ = 8, we have m’ = 0 and get (ad ¢g)(esr) =
—(ad eg5)?(eer) = 0 by Ry(g) since max{0, —e?A;,} =1. W

Lemma 3.2. With the above notation, for any chordless cycle y = (r,ii,ia,...,i;) in q’ with q;il = -1,
q;liz =-—1,..., ql{r—]it = —land q; , = 1, the following monomials are zero in gs(q):
ESo=1¢.2,, 2, ..., %,
Ef =i, ipyys e iy €, Gy 8,1 (I <u<1) a7
o AN N '
E;,u = [g—iuv Z—iu—l ey Z_il s Z_r, g,',, ey Zl'qul] (I1<u=<t.

We will prove Lemma 3.2 in the next section; however we show at once its importance, as it allows us to prove
Proposition 2.8:

Proof of Proposition 2.8. By Corollary 2.7 it follows from Lemma 3.2 that for ¢ € {1, —1}, we have

te .5 5% 1=
Ey’() = [egr, €eiqs €gins v v v s eai,] =0,
+e 1% .0 . s S5 >, —
Ey’u L [efb‘lua e*&lqul LA e*é‘l,a €er, eEll LI} e&lu,l] - 07
_’s M > > . > . > . —_—
EJ/,O L [e—8}’9 681;7 e&‘l,_l LI} e&‘ll] - O,

~

—& . Loy ~ ~ ~ _
E}/,u T [e—é'lua e—é‘lu,l LA e—é‘ll » €—¢r, eé‘l[’ s eé‘lu+1] - O'
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We now will show that the elements ¢,; and Ei defined in (3.1) also satisfy the relations Rs(g’). Therefore, we have

to show that for any chordless cycle y = (ji, ..., j;) in g’ the element
F;t == [;8]./'1 ’ ’élszjzv RERIENE) EE;J}] S 95(61)
is zero, where &, € {1, —1} and g = _Z;'/jmsl“ forl=t—-1,t—=2,...,1.

Now, if r does not belong to y then e, j, = e, j, for 1 < a <t and y is also a chordless cycle in g. Consequently
Fy' = 0by Rs(q).

Thus, it remains to consider the case where r belongs to y, say j, = r.If s # j,—1 (where jy := j;), we can assume

. e / _ / _ / — / J—
(using Lemma 2.4 and Proposition 2.6) that Drjus) = 1, Divirinssr = 1,..., 95, = 1,..., D njory = 1 and
then q}ailr = 1 since ¢’ satisfies the cycle condition. Then let y' = (r, jot1,-- -, jrs j1s-- -5 ja—1) and observe that

we can apply Lemma 3.2 and conclude that F;’ = E;iL ap1 = 0.

Ifs = j,—1 then q}uilr = 1 (since g5, = —1) and we can assume (again using Lemma 2.4 and Proposition 2.6) that
=-L4; i,="b.d;;,=-1....q; ,;  =—LThenlety' = (r, jat1.---. ji; ji, -, ja—1) and

observe that again we can apply Lemma 3.2 and conclude that F}f’ =E ;r,i’_ at1 = 0. This shows that the elements

€. and fz,' satisfy the relations Rs(g’) and therefore igy follows now from Lemma 3.1 that there exists a homomorphism
¢ : g5(¢") = g5(g) which maps e/, to ¢,; and h/ to h;.

Similarly, there exists a homomorphism ¥ : gs(¢) — gs(¢’) and it is easily verified that they are inverse to each
other; see [2] for details. W

I
qrja-H

4. Reduction to special monomials

In this section, we describe how chordless cycles can occur in ¢ = g o Ty which are not necessarily chordless
cycles in g. Therefore we switch to the more combinatorial language of bigraphs.

We introduce four types of bigraphs, where the first is just a chordless cycle cg X)) = (A, 1,...,n), where {A, n}is
the only broken edge:
A n A n
| 2 n—1 1 2 1
ch(h) g()
1 S ir i i
g,ll(k,u; i1,...,1), liseven,
)\’ j'..:::""—'—'::— .
1 S iy i3 R

g%()\, Wi, ...,0), 1> 0iseven.
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By definition, the edges of gg (1) are precisely those lying in the two chordless cycles (A, 1,2,...,n — 1) and
(A, n — 1, n) where {A, n — 1} is the only broken edge.

For any even / and any sequence of indices 1 < i; < ip < --- < i; < n we define two more bigraphs as follows.
The bigraph g}l (A, m, i1, ...,10;) is obtained by adding a vertex u to the chordless cycle cg (A), a full edge {X, u},
and adding for eachodda = 1,3,...,/ — 1 a broken edge {A, i,} and a full edge {u, i,} and adding for each even
a =12,4,...,1 afull edge {},i,} and a broken edge {u, i,}. The definition of g%()\, W, i1, ..., 1) is quite similar:
start with a chordless cycle (i, A, 1, ..., n) where {n, u} is the only broken edge and add more edges as follows: for
eachodda =1,3,...,/ — 1 abroken edge {%, i,} and a full edge {u, i, } and for eachevena = 2,4, ...,/ —2 afull
edge {A, i,} and a broken edge {u, i,}.

Recall that it only remains to prove Lemma 3.2 and that we therefore can restrict our attention to the case where
y € B(q’) is a chordless cycle with y = cg (r). A subbigraph I of a bigraph I’ is called induced if any edge {x, y}
(full or broken) of I" with vertices x, y of I is contained in I".

Lemma 4.1. Suppose that q is positive definite, q,s = —1 and ¢’ = g o Tr"gl. Furthermore let y = cg (r) be a
chordless cycle in B(q') and denote by I the induced subbigraph of B(q) given by the verticesr,s, 1, ..., n.
If s €y, then I’ =g2(r)andn =s.If sy, thenletiy,...,ij(withl <i| <iy <--- <i; <n) be the vertices

iq such that qs;, # 0. Then either | = 0and I' = g,11 (r,s;) orl > 0is even and the following hold:

@) Ifiy #1land i) # n, then I' = g,l,(r,s; i1, ..., 1)
(b) If iy # land i = n, then I = g2(r, s; i1, ..., if).
() If iy =landij #n, then ' = g(s, r;ia, ..., i, n).
(d) Ifiy =land iy =n, then T =gl (s, ryin, ... i1—1).

Proof. If s is also a vertex of y then, since g,, = 1, we must have s = n and then the induced subbigraph I" of B(q)
has the form I' = gg (r).

Now, assume that s does not liein . If [ = 0, thatis g5;, =0for1 <a <n,then I' = g,ll (r, s;) and we are done.
So, suppose now that [ > 0.

Since (s, r, 1,...,i1) is a chordless cycle in B(q’), we must have ‘1;11 = —1 by the cycle condition. Inductively
for 1 < a <[ we have that (s,i,_1,is—1 + 1,...,i,) is a chordless cycle in B(g") and we infer again by the cycle
condition that g5 ;, = (—1)%.

If iy = n then (r, i, s) is a chordless cycle in B(g") and since g5, = 1 = ‘1;,1‘1 we get that (—1)! = ‘lé,i, =1.

Therefore [ is even.

If iy # n then (r, s, i, ..., n) is a chordless cycle in B(g’). Again by the cycle condition, we get (—1)l =qsi =1
and infer again that / is even.

The rest of the verification is now straightforward using that g,; = g, — q,; forany i #r,s. W

The following simple result will help to reduce our calculations by half.

Lemma 4.2. If A = [Ay, Az, ..., Apy1] is a monomial which satisfies [A;, Aj] = 0 whenever |i — j| # 1 then
AT =[App1, Aps o, A2, All = (=1D)"[A1, Ag, Lo, Ayl 4.1
Proof. This is easily seen by induction and (3.5). W

Now, we formulate a result which only involves knowledge about B(g) and monomials in g5(q), but which will
imply the Lemma 3.2, as shown below.

Lemma 4.3. Suppose that q is positive definite and that I' is an induced subbigraph of B(q) which is of the form
gg()»), g,ll(k, Wi i1, ..., 1) (for some evenl) or g%()», Wi i1, ..., 1) (for some evenl > 0).
Then the following monomials are zero in g5(q) (where in the case where I' = gg (A) we assume that |1 = n):

Foulh, ) =ley, eu—1,...,e1,en, eu]a €ny.nny e—(u—H)L 4.2)

foru=0,1,...,n, where F,, o(A, n) = [[ey, ep,]’ €—ns€—(n—1)s---> e_1l.
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Proof of Lemma 3.2. Define the following monomials in g5(g):

Gl o) =llen, eul.en, ..., enl,

Gr—:_’u()"v M) = [efua e*(u+])a ceey €ony [e)u e/,l.]v €ly-vny eufl]v

" “3)
Gn’o()"v I’L) = [[e—)w e—u]s env en—ls ) el]v
G;;’M()"? I’L) = [e—u, e*(”*]% ceey €1, [e—)w e—/L]» €ny e eu—i—l]-
Suppose that y = cg (r) is a chordless cycle in B(g’) and denote by I" the induced subbigraph of B(g) given by the
vertices r, s, 1,...,n.If s € y, we have by Lemma 4.1 that I' = gg (r) and the monomials from (3.7) translate directly
into the monomials of (4.3) by Ef,’u = Gy, ,(r,n).
If s € y, we define iy, ..., i; asin Lemma 4.1. Assume first/ = 0. Then I" = g}l(r, s;) and E;‘j’v = Gfl’v(r, s). In
the case where [ > 0, by Lemma 4.1, [ is even and there are four cases to be considered: in the two cases (a) and (b)
we have Ef,’v = G;, ,(r, s) and in the remaining two cases (c) and (d) we have Ef/,v =G ,(s,1r) = —=G;, (1, 5).

So, in order to prove Lemma 3.2, it remains to show that the monomials G;’U (r, s) are zero. Since I is an induced
subbigraph of B(q) which is of the form gg(k), g,11()», Wy it, ..., i) or g%()\, u;ii, ..., 1), we can apply Lemma 4.3.

Thus G, (A, ) = P(Fyp (A, u)) = 0for1 < v < n and G;O()», w) = D(Fuo(k, n)) = 0, where @ is the
automorphism of Corollary 2.7. Observe that Gy, (A, u) is a monomial which satisfies the hypothesis of Lemma 4.2.
Hence for 1 < u < n, we get G:;u()\, w =x£9G, (4, w)<) = 0 and GZO(A, w) = £0(G, (A, 1)) =0.
Therefore the result. W

5. Preparatory results on monomials
In this section we shall provide some necessary tools for handling complicated monomials.
5.1. Monomials in the free magma

Let X = {ej,e—i, hj | 1 <i < N} and denote by M(X) the free magma on X; see [3]. The binary operation in the
magma is denoted by parentheses: (A, B). Forn > 2 and Ay, ..., A, € M(X), we define inductively

(Ala 7An) = (A]’ (A27 MR An))
Often, the elements that we consider are of the form A = (A, ..., A,) with Ay, ..., A, € X; we shall write then
Ai € A.

Let w : M(X) — g5(q) be the projection defined by w(A) = Aif A € X and w((Ay, A2)) = [7(A1), m(Ar)]. It
is easy to see that for Ay, ..., A,, B € M(X) we have

[7(B), 7(A))]=0, fori=1,....,n = [x(B),7n((Ay,...,A,)]=0. 5.1)
Now we define a new binary operation e : M(X) x M(X) - M(X) by
[, B), if A e X,

AeB= {(AI,AZ-BL if A= (A1, A2).
It is easy to see that this new operation is associative. As a consequence of (3.5), we have for ay,...,a; € X and
A= (ai,...,a;), B,C € M(X) that

Vi, lai,nm(B)]=0 = n(Ae(B,C)) =[n(B),n(Ae ()], (5.2)

Vi, [a;,n(C)]=0 = n(Ae(B,C)) =[n(AeB),n(C)]. (5.3)

Lemma 5.1. Letay,...,a; € X and A = (ay, ...,a;), B € M(X) be such that [a;, 1(B)] = 0 foralli < t. Then
(A e B)=[n(A), 7(B)].

Proof. For r = 1 this follows directly from the definitions. For > 1 we have w(A e B) = [a;, (A’ e B)], where
A" = (ay, ..., a;). By induction and (3.5), we get (A @ B) = [a1, 7 (A"), 7 (B)] = [7(B), w(A’), a;] and the result
follows now by antisymmetry. W
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Lemma 5.2. Letay, ..., a5, by, ..., b, € X be such that [a;,bj] =0and A = (ay, ...,a5), B=(b1,...,b),C €
M(X). Thenn(AeBeC)=n(BeAeC(C).

Proof. By definition we have 7(AeBeC) = [ay, ..., a5, by, ..., b, n(C)] = a1, ...,a5-1, b1, ..., by, a5, m1(C)] by
applying ¢ times (3.5) and then inductively [ay, ..., a5—1,b1, ..., b, a5, 1 (C)] = [b1, ..., bs, a1, ..., a5, w(C)] =
n(BeAeC(C). N

5.2. Full chains

A tuple of vertices (pi, ..., p,) of a bigraph I is a chain if there exists an edge between the vertices p; and p; if
only if |i — j| = 1. The chain is said to be full if all edges are full. If A = (py,..., pyp)isachainin I" and a is a
vertex not belonging to A then we say thati € A is linked to a if q,; # 0 and we denote by L, (A) the set of vertices
of A which are linked to a.

The following lemma shows how the monomial along a full chain can be broken down to subchains.

Lemma 5.3. Let g be a positive definite unit form and A = (1,...,u) be a full chain in B(q). Then for any
1 <iy <ip <---<i]=uwe have that
n(Dye---eDy) =[n(Dp),...,m(D1)],
where Dy, = (g, - -+ 5 €,y +1)) for 1 <m < landiy=0.
Proof. For/ =2 we have Dy = (e, ..., ec1) and Dy = (egiy, . .., €e(i;+1)) and [egj, 1 (D1)] = Oforall j > i1 +1,

and hence by Lemma 5.1, we get (D, @ D) = [ (D3), w(D1)]. The general case follows by induction. H

Lemma 5.4. Let g be a positive definite unit form, let A = (1, ..., u) be a full chain in B(q) and let a be a vertex
not belonging to A. Then there is an even number of vertices of A which are linked to a if and only if Z?:l qaj =0
and in that case

(a) leoas €cus -5 ec1] = 0and

(b) [6817 L) e8u9 eaa] = O:

foranye,o € {1, —1}

Proof. Since g is a positive definite unit form, we have —1 < g;; < 1. Let L,(A) = {iy, ..., i} with1 < i) < iz <
- < i; < u. Since q satisfies the cycle condition, we have gui; = —qqi,,, for 1 < s < [. Therefore we have that [ is
even if and only if 3 7%_; gaj = 0.
Now suppose that [ is even. Then it is possible to divide the full chain A into k subchains A, = (v, ..., wy,) for
1 <m <k,withvy =1, wy = u, vy < wy and wy,+1 = vy (1 < m < k) such that for each subchain 4,, either no
vertex is linked to a or L, (A,,) = {vy, wy,}. By Lemma 5.3, we have [esq, €cy, - - ., €s1] = [esa, T(Dk), ..., 7 (D1)],
where Dy, = (egw,,s - - -, €sy,,) for 1 <m < k.

By (5.1) it is enough to show that [ey4, m(Dy,)] = 0 for any 1 < m < k. This is clear if no vertex of the subchain
A,y is linked to a and follows otherwise by Rs(g). This shows (a).

Clearly, (b) is trivially true if [eg,, e54] = 0, so we shall assume that [e,,, e54] # 0. Then let j < u be maximal
with g, # 0. We have then Z;‘:J- gia = 0 and [esi, e5q] = 0 for j < i < u and [eg), ..., €, €q] satisfies the
hypothesis of Lemma 4.2 and consequently [eg;, ..., €cu, esa]l = £lesa, €cus - - -, €c1], which is zero by (a). W

5.3. Zero monomials associated with full chains with links

Lemma 5.5. Let g be a positive definite unit form, let A = (1, ..., u) be a full chain in B(q) and let a be a vertex
not belonging to A. Suppose that Z?:l gaj = 0 and that B € M(X) is such that |egj, m(B)] =0 for 1 < j < u.
Then w(Dg o (e5q, B)) = 0 holds for any o, ¢ € {1, —1} where D, = (eqy, ..., ec1) € M(X).

Proof. It follows from (5.3) that 7 (D, e (e54, B)) = [7(D; @ ¢54), T (B)]. Now (D, ® e54) = [ecu, - - -, €cl, €5al
which is zero if g,1 = 0. Otherwise let i > 1 be minimal with g,; # 0 (such an i exists since Z;=1 qqj = 0 and
qa1 # 0). Then we have [eg;, ..., e:1,e54] =0byRs5(g). N
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For the rest of this section we shall assume the following situation.

Hypothesis 5.6. Let ¢ be a positive definite unit form, A = (1,...,u) a full chain in B(g), k > 0 and let
1 <ii <ip < --- < i}y < u be fixed indices. Furthermore, if k = 0 let Dy = (ey,...,e1) and if k > O then
let

D1 = (ej;-1,.-.,€1)

Dy, = (eipy—1, ..., €i,_) (1 <m=Zk)

Diy1 = (e, ..., ).

Lemma 5.7. Assume Hypothesis 5.6. Then for A € M(X) and any m with3 <m <k + 1 we have
n(DpeDy_re---eDjeA)=na(Dy,_2e---eDjeD, eA), ifmisodd,
7Dy eDy_2e---eDreA)=a(Dy_2e---eDye Dy eA), if miseven.

Proof. Let D =D, >e---eDjif misodd (D = D,, > e---e D if miseven). Then we have [e;, e;] = O for any
e; € D, and any e; € D. Therefore by Lemma 5.2 we get the result. W

Hypothesis 5.8. Let B, C € M(X) be such that

lej,7(C)] =0, foralle; € Dy,
lej,7(Dp—10C)]| =0, forallej € Dy, moddwithl <m <k +1,
lej,n(Dy—1eB)]=0, foralle; € Dy, mevenwithl <m <k+ 1.

Lemma 5.9. Assume Hypotheses 5.6 and 5.8. Then for any m with 1 < m < k + 1, and each ej € Dy, we have

m(ejeDy_ 10D, 30---0D3e D eB)=0 ifmiseven,
m(ej®Dy_10Dy 30---0Ds0D0C) =0, if misodd.

Proof. Suppose that m is even (the case where m is odd is completely similar) and let E = 7(ej @ D;y—1 ® Dy_3 @
---eD3;eDjeB).Set D' = (¢j, D)y,—1) and observe that forany x € D’ andany y € A = Dj,_3 e --- e D; we have
[x, y] = 0. Hence by Lemma 5.2, we have E = (D’ e A @« B) = (A o D' @ B). The result follows now from the
fact that 7 (D’ e B) = lej, m(Dy—1 @ B)] = 0 by Hypothesis 5.8. W

Lemma 5.10. Again, assume Hypotheses 5.6 and 5.8.

(1) For any even m, we have that w(Dy,11 e ---e Dy e D e (B, C)) is equal to [t (Dy,+1 ®---eDjieB), w(Dy e
Dy_o2e---0Dre(C)]

(ii) For any odd m, we have that t1(Dy4+1e---eDreD1e(B, C)) is equal to [w (D, @ Dyy_2e---eDjeB), w(Dyq1e
Dy_1e---eDre(C)].

Proof. The proof is by induction on m. Let E,, = (D11 0---® D> e Dy o (B, C)).

If m = 1then Ey = (D e Dy o (B,C)) = [ej,—1,..., e, (D e (B, C))] and by Hypothesis 5.8 we have
[ej, m(C)] = O forall e; € D;. Therefore we can apply (5.3) and get that 7 (D; e (B, C)) = [7(D; e B), C]. Again
by Hypothesis 5.8, we have [e;, (D1 e B)] = 0 for any e¢; € D, and therefore get E; = w(D> o (D1 @ B,C)) =
[7(D e B), m(D; e C)] by (5.2).

Assume now that m > 1 and that m is even (the odd case is very similar). Then we have E,, =
[€ipi1—1s--+s€ip, T(Dy@--- e Dye(B,C))]and get by induction

En=lei, 1,56, T(Dy—10---0DjeB), 7(Dyye---0Dre()].
Since by Lemma 5.9, we have [e;, m(D;, @ --- e Dy # C)] = O forall e; € Dy, 11, we get by (5.3) that
En =[t(Dnt10Dy—10---0DjeB), w(Dyye---0Dre(C)],

which is what we had to show. W
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Hypothesis 5.11. If k is odd then 7 (Dy4; @ C) = 0 and if k is even then w(Dy4; @ B) = 0.

The following technical result is an important tool in our proof of Lemma 4.3.

Lemma 5.12. Assume Hypotheses 5.6, 5.8 and 5.11. Then
7 (Di+1e---0Dje(B,C)) =0.

Proof. Let E = n(Dyy1e---eDje(B,C)). If k = 1 then, by Lemma 5.10, we have that £ = [7(DeB), t(D>eC)]
and the result follows directly from Hypothesis 5.11.
If k£ > 1 (say k is even; the odd case is similar) then it follows from Lemma 5.10 that

E=[7T(Dk+10Dk_1.~~OD1.B),]T(DkODk_20~--OD20C)].

Using Lemma 5.7 we get 7(Dyy1 ®---e Dy @ B) = n(Dy_1 e--- e D e Di;1 e B) and the result follows from
m(Dk+10¢B)=0. N

6. Proof of Lemma 4.3

Recall that g is a positive definite unit form which contains gg A), g,11 (A, u) or gﬁ (A, w). In particular (1, ..., n) is
a full chain in B(g) and we denote by 1 < i| < i < --- < i; < n the vertices of (1, ..., n) which are linked to u.

The proof of Lemma 4.3 is quite different for gg (1) to that for the two cases g}l (A, ) and gﬁ (A, ), which can be
considered simultaneously and are rather more difficult, so we start with them.

6.1. Strategy for g,ll (A, n) and g% x, )

Again denote by I' the induced subbigraph of B(g) given by the vertices A, u,1,...,n. We have I' =
g}l(k, Wi, ..., 0p) = g1 or I' = gﬁ(k, Wi, ..., i) = g2 and want to show that F = F, ,(A, u), as defined
in Lemma 4.3, is zero in g5(g) for 0 < u < n.

In the proof the following cases are distinguished.

I I'=g' g?and iy <u < ix, for some even k < .

1I: F:gl,g2 and iy <u < ixy4 for some odd k <1 — 1.
II: ' =g'andi; <u < n.

IV: ' =g’andij_| <u <ij=n.
V:I=gl' g?and 1 <u < ij.

VI. ' =g, g> and u = n.

VILT =g', g? and u = 0.

The last case is the easiest: since there are an even number of vertices of A = (1,2, ..., n) linked to A and u, we
have [e_y, €4, €4—1, ..., €1] = 0 by Lemma 5.4 for « = A, p and therefore F = F,, o = 0.

The remaining cases are more difficult. However, since in each case the procedure is quite similar, we follow a
common scheme of argument in three steps as follows.
First step: In each case certain definitions are given and a couple of equalities are proved:

I: Define By = (e—j y,---»e—@+1)) and C; = (e_4,...,e_(j,,+1)). Furthermore, let B = (e, By) and
C = (eu, C1). We show that (i) [e,,, m(C1 @ B1)] = 0, (ii) [ex, m(C1)] = 0 and (iii) [e,, m(B)] = 0.
II: Define By = (e—pn,...,e— (i, +1) and C1 = (e—j,y,...,e—u+1)) and, furthermore, B = (e;, B1) and

C = (eyu, C1). We show that (i) [e;,, m(By ¢ C1)] =0, (ii) [e,, 7(B1)] = 0 and (iii) [ex, 7 (C)] = 0.

III: Define k =1, By = (e—y, ..., e_w+1)), B = (ey, B1) and C = e;. Then show that (i) [e,,, w(B1)] = 0.

IV: Definek =1 —1,B =e3,C1 = (e—y, ..., e—u+1)) and C = (e, C1). Show that (i) [e;, w(C1)] = 0.

V: Define k =0, By = (e, ...,e_w+1)) and C; = (e_y, ..., e_¢,+1)) and then B = (e, By), C = (ey, Cy).
Then show that (i) [e,, 7 (C1 @ B1)] = 0, (ii) [e;, 7 (C1)] = 0 and (ii) [e,, w(B)] = 0.

VI: Defineu =n, k =1, B = ¢;, C = ¢, and there will be nothing to prove in this step.
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Second step: In all the cases prove that
F=xn(De(B,())

where D = Dy @ Dy e ---e Dy with D; € M(X) as in Hypothesis 5.6.
Third step: Show that in all the cases the Hypotheses 5.8 and 5.11 are satisfied. By Lemma 5.12 we get then F' = 0,
which is what we had to prove.

6.2. Proof of the first step

We start with case 1. To show (i), let A = (u + 1, ..., n). The vertices of the full chain A which are linked to p
are ix41, . .., i;, and hence L, (A) has even cardinality and [e,,, 7 (C; e B1)] = 0, by Lemma 5.4.

To see property (ii), let A = (ix11 + 1, ..., n). Then, if I' = g!, we have that L, (A) = {ix42, ..., i, n} has even
cardinality and if I' = g%, then L, (A) = {ix+2, ..., 1;—1} also has even cardinality. In any case, (ii) follows from
Lemma 5.4.

For (iii), observe that [ej,e;j] = 0 and [ey,ej] = O (foru +1 < j < ixy1) and therefore [e;, m(A)] =
lex, m(A)] = 0 where A = (e—j,—1,...,€—@+1)). Hence we have [e,, 7 (B)] = ley, e, e—i,,,m(A)] =

lew, T(A), e—ip s en]l = [ (A), ey, ey, €x], which is zero since [ey, e, |, ex] = 0 by Rs(g).

To see property (i) in case IT, let A = (u+1,...,n). If I’ = g', we have L; (A) = {ix41,...,i;, n}and if ' = g2,
we have L (A) = {if+1,.--,i;—1}. In any case L, (A) has even cardinality, and by Lemma 5.4 we get (i).

For (ii), observe that for A = (ix41+1, ..., n) the set L, (A) = {ix42, ..., i;} has even cardinality, since & is odd,
and (ii) follows again by Lemma 5.4. Property (iii) in case II follows like in case .

The property (i) in case III (respectively in case IV) is trivial since there is no vertex of A = (u + 1, .. ., n) linked
to u (respectively to A).

In case V,let A = (u + 1, ..., n) and observe that L, (A) = {i1, ..., i} has even cardinality. Hence (i) holds
by Lemma 5.4. Similarly, if A = (i; + 1,...,n) then, in case I' = gl, we have L, (A) = {is,...,i;,n} and in
case I' = gz, we have Ly (A) = {is, ..., i;—1}. In both cases L, (A) has even cardinality and once again we can use
Lemma 5.4 to deduce (ii). Property (iii) in case V follows like property (iii) in case I. H

6.3. Proof of the second step

Let D = Dy41 e --- e Dy e Dy, where the D; are as in Hypothesis 5.6.

Cases I and V: By definition, we have F = [e,, ..., e, G] where G = [[ey, e,], 7 (C1 o By)]. By (3.5) and
antisymmetry we deduce from property (i) that G = —[e, e), 7 (Cy @ By)]. And now, it follows from Lemma 5.3 that
G = —[ey, ex, m(Cy), m(By1)]. Again by (3.5), we deduce from property (ii) that G = —[e,, 7 (C1), e, w(B1)] =
—[en, m(Cy1), m(B)]. Hence, we obtain from property (iii) and (3.5) that G = [7(B), e,, n(C1)] = [7(B), n(C)].
Finally, substitute G in F to get F = [ey, ..., e1, m(B), n(C)] = £n(D ¢ (B, C)).

The proof in case Il is identical, after interchanging B with C; and B with C.

In case IIl, we have by definition F' = [ey, ..., e1, G], where G = [[ey, e, ], m(B1)]. Now, by antisymmetry,
property (i) and (3.5), we have G = —[7n(B1), ex,eu] = —ley, e, n(B1)] = —[7(C),n(B)] = [x(B), 7 (C)].
Therefore F = £ (D o (B, C)).

The proof in case IV is almost identical to that in case III after interchanging C| with By and C with B.

Case Vlis trivial since F = 7(D o (C,B)) = —n(D e (B,C)). N

6.4. Proof of the third step

Case L. For each e; € Dy (thatis 1 < j < i), we have [e;, 7(C1)] = 0 and [e}, e, ] = O since g, = 0. Therefore
[ej, m(C)] = 0. For any odd m with 1 < m < k, we have for e; € D,,, that [ej, 7 (C1)] = 0 and [e}, ¢;,] = O since
qju > 0and conclude that [e;, 7 (C)] = 0.1If j > i,,_1 then [e;, m(Dy,—1)] = 0 and therefore [e;, 7 (D;,—10C)] = 0.
If j =iy thenlet D" = D,,_; e e, and we obtain [¢;, 7(D,,—1 « C)] = [ej, m (D" @ C1)] = [m(ej ® D), 7 (C1)]
by (5.3). By Lemma 5.4(b), we get the second assertion of Hypothesis 5.8.

For any evenm with 1 < m < k, we have for e; € Dy, that [e;, m(B)] = O since [e}, e;] = O and [¢;, w(B1)] = 0.
Like in the case when m is odd, we conclude that [e, 7 (D;;,—1 ® B)] = 0. This shows that Hypothesis 5.8 holds. To
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see Hypothesis 5.11, we use that (u, ..., ik, A, ix+1, ..., 4 + 1) is a chordless cycle and therefore 7 (Dyy1 @ B) = 0
by Rs(g).

Case II. The argument is completely similar to that for case I.

Case III. For ¢; € Dy, we have [e;, n(C)] = O since gj, = 0. If m is odd and e¢; € D, then again
[ej, 7(C)] = O since g;, > O and for j > i, 1, we get directly [ej, m(Dy,—1 @ C)] = 0, whereas if j = iy
then [e;, |, m(D;y—1 @ C)] = 0 follows from Rs(g) since (ip—1,im—1 — 1,...,im—2, 1) is a chordless cycle in g.
Similarly one can argue for even m. Hypothesis 5.11 follows again by R5(¢q) since (u,...,i;, A, n,...,u+1)isa

chordless cycle.
The case IV again follows similarly to III after interchanging C; with By and C with B.

Case V. Here we have D = Dy = [ey, ..., e] and therefore for each ¢; € Dy, we get [e;, e, ] = 0 since g, = 0.
Consequently [e;, 7 (C)] = 0 and there is nothing left to prove for Hypotheses 5.8 and 5.11 follows by Rs(g) since
(eu,...,e1,€e.,e_i,...,e_u+1)) is achordless cycle in g.

Case VI. We have k = [ and Dy = (ey, ..., e;), which reduces to Dy41 = e, in the case where I' = gz.
Hypothesis 5.8 follows very similarly to in case I. Hypothesis 5.11 follows, in the case where I' = g2 from [e,, ¢;,] = 0
and in the case where [’ = gl from R5(g) since (n, ..., i;, A) is a chordless cycleing. MW

6.5. Zero monomials in the bigraphs g2 )

Recall that here we have I' = gg (A) and that we have to show that the monomials

Fuu(h,n) =ley,...,e1,lex,enl, e—pn, ..., e_@usnl
for 0 < u < n are zero in g5(q).

We start with the case where 0 < u < n: Then we have F, ,(A,n) = [e,,...,e1,G], where G =
[les, enl, e—n, ..., e_w+1)] and since Lemma 4.2 can be applied, we get G = £[[e;, el e—p, ..., e_@uin]™ =
Ele—@u+1), - .-, €—n, ey, e5]. Make the replacement [e_,, e, e,] = [exr, e—,, e,] = [ex, hy] = e, in the former
expression to get G = [e_(y+1), - . . , €—(n—1), €x] Which is zero because [e_(,—1), e,] = 0 by R4(g).

It remains to consider the case where u = n. Then we first observe that G = [e;;, €,—1, €n, €n—2, €n—_3, ..., €1, €]
equals zero in gs5(g). Indeed, G = [ey,[en—1,e€nl, €n—2,€n-3,...,¢€1,e:] since [e,—1,€4—2,...,€1,€5] =
0 by Rs(g). Therefore, G = [[en—1,enl, en,n—2,€n—3,...,€1,€,] since [e,,en—1,,] = 0 by
R4(q). Finally, we have G = —[[es,en—1],¢€n,€n—2,€n—3,...,€1,€,] by antisymmetry and then G =
—len, en—1,en,en—2,€n—3,...,€1,ex] = —G since [ey, e,, €,—2, €,-3, ..., e1,e,] = 0 by Ra(q). That is, we have
G = —G and therefore G = 0.

Now, F, (A, n) = [eq,...,e1,lex,en]ll = —len, ..., e1,en, e,] by antisymmetry and since [e;, e,] = 0 (for
i <n—1),wegetfinally F, ,(A,n) = —[ey, en—1,€n,€n—2,€p—-3,...,€1,e,]=G=0. N
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