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Chaotic synchronization of two locally coupled electrochemical oscillators is studied numerically.
Both bidirectional and unidirectional couplings are considered. For both these coupling scenarios,
varying the characteristics of the coupling terms (functional form and/or strength) reveals a wide
variety of synchronization phenomena. Standard diagnostic tests are performed to verify and clas-
sify the different types of synchronizations observed. © 2006 American Institute of Physics.
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Synchronization is a natural occurrence in an ensemble
of coupled oscillators. It plays a crucial role in the collec-
tive dynamics exhibited by large populations of such os-
cillators. The abundance of these ensembles/populations
in nature lends the synchronous phenomena a flavor of
omnipresence. Synchronization has diverse manifesta-
tions depending on the nature of the underlying couplings
and system configurations. Moreover, the concept of syn-
chronization, apart from being an interesting dynamical
problem, is fundamental for the understanding of numer-
ous physical, chemical, biological, and ecological systems.
The first documented experiments reporting synchroniza-
tion were performed by the famous dutch physicist
Huygens using pendulum clocks.

I. INTRODUCTION

Chaotic synchronization, although studied earlier by
Yamasha and Fuujisakal’2 and by Afraimovich, Verichev, and
Rabinovich,® was brought to the limelight by the works of
Pecora and Carroll.*> Chaotic synchronization, by definition,
appears a little counterintuitive since the sensitivity of the
chaotic trajectories to small variations in initial conditions
seems incompatible with the convergence effect that exem-
plifies the concept of synchronization. However, it has been
categorically  demonstrated, both theoretically and
experimentally,&11 that chaotic systems in the present of
suitable external perturbations and/or appropriate mutual in-
teractions are capable of exhibiting different kinds of syn-
chronization behavior. A number of recent books'>™* and a
comprehensive review article' furnish an up-to-date account
of the efforts invested and the advances achieved in the field
of synchronization.

Interest in the investigation of electrochemical oscilla-
tions has been enhanced due to the advances made in the
field of nonlinear dynamics. This is in part due to the wide
variety of nonlinear behavior that these systems exhibit,
making them an ideal playground for chaoticians. Further-
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more, they posses other favorable attributes such as (a) they
are easy and relatively cheap to assemble and (b) that the
experimental dynamics are fairly reproducible. Oscillations
have been observed and characterized in several electro-
chemical processes involving the electrodissolution of met-
als, including both anodic and cathodic reactions under po-
tentiostatic and galvanostatic conditions."*” Most of these
electrochemical systems exhibit behavior typical of nonlin-
ear deterministic systems. This includes spontaneous oscilla-
tions, period doubling, mixed mode dynamics, multistability,
and the existence of deterministic chaos.

The transport of chemical species is the most natural
way that coupling emerges between electrochemical oscilla-
tors. The overlap of potential fields is another one of the
frequent sources of coupling in these systems. The synchro-
nization of electrochemical oscillators has been studied ex-
tensively by the group of Hudson and collaborators at the
University of Virginia. Using experiments with two or more
electrochemical oscillators, coupled globally, they have veri-
fied the existence of different types of chaotic
synchronization.ZP23 Moreover, they have studied the collec-
tive behavior exhibited by a population of these
oscillators.”** In almost all their experiments involving cha-
otic synchronization, the global coupling between the elec-
trodes is in conjunction with a set of series and/or parallel
external resistors. In contrast, here we study, numerically, the
different types of synchronization phenomena observed
when two chaotic electrochemical oscillators are coupled lo-
cally. Both unidirectional and bidirectional coupling sce-
narios are considered. The paper is organized as follows: In
the following section, we present the numerical electro-
chemical model used to study the diverse synchronization
effects. In Sec. III, results involving distinct types of syn-
chronization for a bidirectional coupling are furnished. The
different domains of synchronization for a unidirectional
coupling scenario are characterized and classified in Sec. IV.
This includes an elegant strategy to augment the efficiency
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and consequently the utility of anticipation synchronization.
Finally, a brief recap of the obtained results is presented as
conclusions in Sec. V.

Il. NUMERICAL MODEL

We look for chaotic synchronization in a model for aque-
ous electrochemical corrosion®®?’ described by three dimen-
sionless coupled ordinary differential equations:

Y=p(1 - fou— 60) - qY, (1)

Oou=Y(1 = Oy — 0o) — [exp(~ Bbon) + 1o
+ 2S 60(1 - BOH - 00), (2)

0o = rfou — s00(1 = Bon — 6o). (3)

The variables 6y and gy represent the fraction of the
electrode surface covered by two different chemical species,
while Y represents the concentration of metal ions in the
electrolytic solution. The system parameters p, g, r, s, and 8
are determined by chemical reaction rates in the model. This
set of ordinary differential equations is integrated using a
fourth order Runge-Kutta algorithm. Previous numerical
studies have shown that, depending on the parameter values,
this model may exhibit simple periodic oscillations, bistabil-
ity, mixed mode behavior, and period doubling cascade lead-
ing up to chaotic dynamics.”” The model system exhibits
deterministic chaos for the parameter set {p, ¢, r, s, B} at
{2.0Xx107*, 1.0X 1073, 2.0 X 1073, 9.7 X 107, 5.0}. To study
the different types of chaotic synchronizations, two copies of
the model system are constructed. This set of ordinary dif-
ferential equations is subsequently coupled appropriately in
both the unidirectional and the bidirectional sense.

lll. CHAOTIC SYNCHRONIZATION
UNDER BIDIRECTIONAL COUPLING

In this section, we present three different synchroniza-
tion effects observed when two nonidentical (small param-
eter mismatch) electrochemical oscillators are subjected to
symmetric bidirectional coupling. The model equations, sub-
sequent to the incorporation of the coupling terms, have the
following form:

Y'?= 0" p(1 - 655~ 057) — ¥ T+ (Y =Y, (4)

05 = 0" Y21 - 655 — 657) — [exp(— BO5H) + 1651
+2505%(1 — 055 — 0591 + (655 — O52).» (5)

057 = rogh — s05°(1 - 055 — 657) + €(65' — 657). (6)

The indices (1, 2) in the superscripts of Eq. (4)-Eq. (6) cor-
respond to the two chaotic oscillators. The bidirectional cou-
pling terms are introduced in all three evolution equations.
Subsequently, the coupling constant € is monotonically var-
ied (increased) to explore the different domains of chaotic
synchronization. The parameter sets are chosen such that
each individual oscillator exhibits chaotic behavior. A param-
eter mismatch (w) between the two oscillators is intention-
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FIG. 1. This diagram shows the distribution of times (A7) between succes-
sive extrema as a function of the parameter mismatch w. The model param-
eters are {p, ¢, r, 5, B} at {2.0x 1074, 1.0X 1073, 2.0 X 1075, 9.7 X 1073, 5.0}.
The solid line that corresponds to the average value of the chaotic distribu-
tion, shows a definite variation for different values of w.

ally introduced. This parameter mismatch is indispensable
for the observation of bidirectional lag synchronization,zs’29
which involves a constant time lag (7) between the dynamics
of the two oscillators. However, our numerical results indi-
cate that the existence of a parameter mismatch is not a suf-
ficient condition for observing the elusive lag synchroniza-
tion. Figure 1 depicts the times between successive maximas
(AT) as a function of the parameter mismatch w for our
uncoupled (single oscillator; e=0) numerical system. The
solid line corresponds to the average AT of this distribution
for the underlying chaotic attractor. For this discernible
change in the average AT value, our model system could
exhibit lag synchronization, but only for some appropriate
values of the parameters. This led us to conclude that the
existence of parameter mismatch, is a necessary but not
a sufficient condition for the emergence of lag synchro-
nization.
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FIG. 2. Superimposed time series for the two chaotic oscillators with bidi-
rectional coupling. The model parameters are {p, ¢, r, s, B, w|, w,} at
{2.0x10™, 1.0X 1073, 2.0X 107, 9.7X 107, 5.0, 0.83, 0.88}, whereas the
coupling constant is €=5.0X 1077, For this extremely small value of the
coupling constant, the chaotic dynamics of the two systems evolve indepen-
dent of each other.
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FIG. 3. Trajectories, corresponding to the time series of Fig. 2, in the phase
space for the fqy variable of the two oscillators (system #1 and system #2).
The resultant attractor is structureless, indicating that the two oscillators are
in the domain of no synchronization.

For extremely weak coupling strengths, the two chaotic
attractors oscillate independently. Figure 2 shows the inde-
pendent chaotic evolution of the time series for the system
variable 05y. The lack of cross correlation between the two
chaotic times eries, a consequence of zero coupling, is more
evident if one generates the 6 versus 65 plot, as shown in
Fig. 3. The structureless attractor of Fig. 3 indicates that the
two oscillators are located in the domain of “no synchroni-
zation.”

As the coupling coefficient € is increased, the two cha-
otic oscillators exhibit phase synchronization as depicted by
the phase locking observed in the time series of Fig. 4. How-
ever, the amplitudes of the chaotic oscillations continue to
evolve independently. Therefore, although there is no corre-
lation in the amplitude domain, synchrony prevails in the
frequency domain. The corresponding attractor of the
coupled system, presented in Fig. 5 exhibiting phase
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FIG. 4. The superimposed time series for the two chaotic oscillators with
bidirectional coupling. The model parameters are {p, g, r, s, B, w;, w,} at
{2.0x107%, 1.0 1073, 2.0X 107, 9.7X 1073, 5.0, 0.83, 0.88}, whereas the
coupling constant is €=12.3 X 107>. For this value of the coupling constant,
the chaotic dynamics of the two systems are phase synchronized.
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FIG. 5. Trajectories, corresponding to the time series of Fig. 4, in the phase
space for the 6,y variable of the two oscillators (system #1 and system #2).
The resultant attractor is a closed curve, indicating that the two oscillators
are located in the domain of phase synchronization.

synchronization,30 reveals a closed curve typical for phase
locked dynamics.

Augmenting the coupling strength (€) further reveals the
emergence of lag synchronization in the system dynamics. It
needs to be emphasized that the bidirectional lag synchroni-
zation effect is hard to locate and needs not only a careful
and systematic scan of the parameter mismatch (w) but also
an attentive analysis of the time series. Figure 6 shows
the chaotic time series of the coupled system exhibiting bi-
directional lag synchronization. The constant time lag 7 ob-
served is an intrinsic property of the coupled system and can
be varied, but only slightly, with suitable fine tuning of the
system parameters (w, €, etc.). The OéH(t— 7) versus 0(1)H(t)
plot, presented in Fig. 7, shows that the resultant attractor
falls along the identity line consistent with the emergence of
bidirectional lag synchronization.
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FIG. 6. The superimposed time series for the two chaotic oscillators with
bidirectional coupling. The model parameters are {p, ¢, r, s, B, ®;, w,} at
{2.0x107, 1.0X 1073, 2.0 107, 9.7X 107, 5.0, 0.83, 0.88}, whereas the
coupling constant is e=5 X 10~*. For this value of the coupling constant, the
chaotic dynamics of the two systems exhibit lag synchronization.
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FIG. 7. Trajectories, corresponding to the time series of Fig. 6, in the phase
space for the oy variable of the two oscillators (system #1 and system #2).
The resultant attractor, with an appropriate delay coordinate, falls along the
line of identity, indicating that the two oscillators are in the domain of
lag-synchronization.

Finally, for extremely large amplitudes of coupling con-
stant, the chaotic oscillators, despite a small parameter mis-
match, enter the domain of complete synchronization. This is
evident, upon visual inspection of the superimposed chaotic
time series of Fig. 8. Furthermore, the fact that HéH(t) versus
By(1) attractor is sputtered along the line of identity (Fig. 9)
confirms the inception of complete amplitude synchroniza-
tion.

Apart from the qualitative visual evidence furnished by
the superimposed time series and the projections of the ap-
propriate attractors, a similarity function between the time
series for the two coupled oscillators is calculated. This simi-
larity function is a quantitative measure that has been used
extensively to identify and subsequently classify the different
domains of sync:hronization.zg’29 It is defined as
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FIG. 8. The superimposed time series for the two chaotic oscillators with
bidirectional coupling. The model parameters are {p, ¢, r, s, B, w;, w,} at
{2.0X 107, 1.0X 1073, 2.0X 107, 9.7X 1075, 5.0, 0.83, 0.88}, whereas the
coupling constant is €=0.5. For this value of the coupling constant, the
chaotic dynamics of the two systems exhibit complete amplitude
synchronization.
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FIG. 9. Trajectories, corresponding to the time series of Fig. 8, in the phase
space for the fqy variable of the two oscillators (system #1 and system #2).
The resultant attractor, is sputtered along the line of identity, indicating that
the two oscillators are in the domain of complete-synchronization.
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and computes a time averaged difference between the two
variables taken with the time shift 7. Figure 10 shows the
similarity functions calculated using the time series for dif-
ferent coupling strengths. The curves labeled 6, 7 correspond
to two instances when the two oscillators are located in the
domain of no coupling and consequently no synchronization.
For this scenario, the similarity function S(7) fluctuates
around an average numerical value of ~\2.8 Upon increas-
ing the coupling constant, phase synchronization emerges de-
picted by the two curves labeled 4, 5. Lag synchronization
follows and is illustrated by the similarity curves (labeled 2,
3) for which the numerical value of S(7)— 0 for the corre-
sponding lag time 7. Finally, the similarity function labeled 1

S(7) =(

Y —
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T

FIG. 10. Similarity functions S(7) calculated for the different domains of
synchronization observed upon monotonically varying the coupling constant
€. Curve 1, €=0.5—amplitude synchronization. Curve 2, e=12X 10~
— lag synchronization. Curve 3, e=8 X 10~ — lag synchronization. Curve 4,
€=13X 107 — phase synchronization. Curve 5, €=12.3 X 1073 — phase syn-
chronization. Curve 6, e=2X10~>—no synchronization. Curve 7, e=1
X 1073 —no synchronization.



037105-5 Chaotic synchronization electrochemistry

[ . 1 o, [ , 1 ., 1 ., [ " 1 3 1 1
0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001
£

FIG. 11. The minima of the similarity function S(7) plotted as a function of
the coupling parameter €. The model parameters for the two oscillators are
. g, 1, 5, B, 01, o} at {2.0X 107, 1.0X 1073, 2.0X 1073, 9.7X 1073, 5.0,
0.83, 0.88}. Also included are the approximate values for the transition
points between the distinct domains of synchronization.

exhibits a monotonically increasing curve starting at the ori-
gin, typical for oscillators exhibiting complete synchroniza-
tion. In Fig. 11, the minima (o) of the similarity function
S(7) is plotted with respect to the coupling constant e. It
roughly divides the parameter region (in €) into different
domains corresponding to the nonsynchronous, phase syn-
chronized, and lag synchronized states.

The results of this section indicate that for a suitable
parameter mismatch, two chaotic oscillators subjected to a
symmetric bidirectional coupling can exhibit different types
of synchronization as the coupling strength is monotonically
increased. This includes the transition from a state
of no synchronization— phase synchronization— lag
synchronization — complete ~ amplitude  synchronization.
These different domains of synchronization are identified us-
ing standard diagnostic methods. The robustness of these nu-
merical results is verified, augmenting the likelihood of de-
tecting a similar transition sequence in real experimental
situations.

IV. CHAOTIC SYNCHRONIZATION
UNDER UNIDIRECTIONAL COUPLING

In this section, we present numerical results indicating
the emergence of three different synchronization effects for
appropriate unidirectional coupling functions. In contrast to
the bidirectional scenario, coupling chaotic electrochemical
oscillators unidirectionally yields a Master (M)-Slave (S) re-
lationship between the two identical oscillators that can be
described by the following set of coupled differential equa-
tions:

YM=p(1 - o = 06) =¥, (®)

é{gH= yM(1 - on — o) — [exp(- BagH) + r]agH
#2501 = O — g, 9)

06 = ro =566 (1 = 0 = 65), (10)
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FIG. 12. The superimposed time series for the two oscillators with unidi-
rectional coupling. The model parameters are {p, g, r, s, 8} at {2.0X 1074,
1.0X 1073, 2.0X 107, 9.7 X 1073, 5.0}, whereas the coupling parameters are

€=0.05, 7,=0.0, 7,=0.0. For this case the chaotic dynamics of the two
systems exhibit complete amplitude synchronization.

Y8=p(1 - 0oy — ) — qY*, (11)

ég)H= Yi(1 - 0(%1—1_ 9(9)) —[exp(- Beg)H) + ”]eg)ﬁ
+2505(1 = Oop = 65)

+ E[agH(t_ ) = 6%1—1(’— )], (12)
00 = o — s 6p(1 = 6o — 6p)- (13)

The coupling term € O (t—7)— 63(t—75)] is intro-
duced in one of the Slave equations [Eq. (12)] and the dif-
ferent types of synchronizations are observed for an appro-
priate choice of time delays 7| and 7.

The first class of synchronization phenomena is ob-
served when both 7, and 7, are chosen to be zero. This im-
plies a coupling involving the present of the Master’s dy-
namics and the present of the Slave behavior. Consequently,
a transition scenario, starting from a domain of no
synchronization — phase synchronization — complete syn-
chronization is observed as the parameter €, corresponding to
the strength of the coupling constant, is switched ON and
subsequently increased. This transition sequence is generic
for the unidirectional coupling scenario and therefore has
been exhaustively studied in a wide variety of systems.g’lo’15
Having observed the entire transition sequence, we present
results from the final stage corresponding to the case of com-
plete synchronization. Figure 12 shows the completely syn-
chronized chaotic time series, whereas in Fig. 13, a projec-
tion of the attractor for the coupled system is presented. The
system and the coupling parameters are furnished in the re-
spective figure captions.

A. Lag synchronization
under unidirectional coupling

For the observation of this class of synchronization ef-
fect, information from the past of the Master’s dynamics is
introduced in the present of the Slave dynamics.15 This is
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FIG. 13. Trajectories, corresponding to the time series of Fig. 12, in the
phase space for the 6y variable of the two oscillators (system #1 and
system #2). The resultant attractor is sputtered along the line of identity,
indicating that the two oscillators are in the domain of complete
synchronization.

achieved by using an appropriate functional form for the
coupling term in Eq. (12). Assigning a nonzero value to 7,
and equating 7,=0, unidirectional lag synchronization phe-
nomenon can be induced for a range of coupling amplitudes.
Figure 14 shows the chaotic time series of the unidirection-
ally coupled oscillators exhibiting lag synchronization. An
appropriate projection of the attractor for the coupled system
as shown in Fig. 15 confirms this induction of unidirectional
lag synchronization. In contrast to its bidirectional counter-
part, which is extremely sensitive to the system and coupling
parameters and consequently hard to detect, the unidirec-
tional lag behavior is easy to locate since it is fairly robust.
Another salient difference between the two lags (bidirec-
tional and unidirectional) is that for the bidirectional sce-
nario, the time lag 7 between the two oscillators is intrinsic
to the system/coupling parameters and hard to manipulate

o6—r———r—1—T—7—T— 71— —1—T— 71—

05—

-

0.4

90H

0.3

e ————————

0.2

P P ST T ST S S
0.1
0 2000 4000 6000 8000 10000 12000 14000
Integration Steps

FIG. 14. The superimposed time series for the two oscillators with unidi-
rectional coupling. The model parameters are {p, g, r, s, 8} at {2.0X 107,
1.0X 1073, 2.0 X 107%, 9.7 X 1073, 5.0}, whereas the coupling parameters are
€=0.05, 7,=1250, 7,=0.0. For this case the chaotic dynamics of the two
systems exhibit lag synchronization.
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FIG. 15. Trajectories, corresponding to the time series of Fig. 14, in the
phase space for the 6,y variable of the two oscillators (system #1 and
system #2). The resultant attractor, with an appropriate delay coordinate,
falls along the line of identity, indicating that the two oscillators are in the
domain of lag synchronization.

(vary). In comparison, for the unidirectional case, the time
lag between the dynamics of the two oscillators is uniquely
determined by the value of 7, inserted in Eq. (11). Therefore,
contrary to the bidirectional lag, changing the time lag be-
tween the two oscillators is as trivial as modifying a coupling
parameter. Finally, in our simulations, the emergence of the
unidirectional lag phenomenon persists, even for large values
of 7.

B. Anticipation synchronization
under unidirectional coupling

This fascinating class of synchronization, when con-
ceived, allows the Slave oscillator to anticipate the chaotic
evolution of the Master oscillator. Anticipation synchroniza-
tion, when reported initiallySl_33 created quite a stir in the
field due to its possible applications and implications involv-
ing the prediction of chaotic behavior. To achieve anticipa-
tion synchronization, the coupling function introduced in Eq.
(12) needs to be chosen such that 7;=0 and 7,# 0. This
functional form of the coupling term ensures a coupling be-
tween the present of Master’s dynamics and the past of the
Slave’s dynamics. Successful synchronization is achieved
when the past of the Slave dynamics is in synchrony with the
present of the Master’s. Consequently, the present of the
Slave dynamics, a system observable, should be predicting/
anticipating the Master’s evolution.

Figure 16 shows the time series for the coupled system
exhibiting anticipation synchronization. As is evident, visu-
ally, the dashed time trace corresponding to the chaotic Slave
dynamics is ahead (anticipating) of the continuous time trace
belonging to the Master. However, due to the positive
Lyapunov exponent of the underlying chaotic dynamics,
there exists an upper limit on the anticipation time observed.
If coupling terms with still larger anticipation times are in-
serted, the model system is rendered numerically unstable.
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FIG. 16. The superimposed time series for the two oscillators with unidi-
rectional coupling. The model parameters are {p, ¢, r, s, B} at {2.0X 107,
1.0X 1073, 2.0 X 107%, 9.7 X 107>, 5.0}, whereas the coupling parameters are
€=0.02, 7,=0.0, 7,=64. For this case the chaotic dynamics of the two sys-
tems exhibit anticipation synchronization.

Unfortunately, for most chaotic systems, this maximum an-
ticipation time is too small to envisage any potential appli-
cations.

To entertain any possibility of applying anticipation syn-
chronization to relevant problems, one needs to circumvent
this glaring drawback involving small anticipation times. A
possible solution is to use a number of unidirectionally
coupled chaotic oscillators (instead of two) in a linear chain
configuration. Thereafter, by the definition of anticipation
synchronization, each successive oscillator anticipates the
evolution of the previous oscillator by a time 7,. This se-
quential augmentation of the anticipation times ensures that
the nth oscillator down the chain can anticipate the chaotic
dynamics of the first oscillator by a time of (n—1)7,. Figure
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FIG. 17. The superimposed time series for the oscillator #1 (Master; con-
tinuous) and the oscillator #26 (Slave; dashed) with unidirectional coupling.
The model parameters are {p, ¢. r, s, B} at {2.0X107*, 1.0x 1073, 2.0
X107, 9.7X 107%, 5.0}, whereas the coupling parameters are €=0.02, 7
=0.0, 7,=50. In this case, the chaotic dynamics of the two systems exhibit
enhanced anticipation synchronization by virtue of the linear chain configu-
ration. The Slave dynamics now anticipate the Master’s dynamics by a time
of 7,=25X50=1250.
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FIG. 18. Trajectories, corresponding to the time series of Fig. 17, in the
phase space for the 6,y variable of the two oscillators (system #1 and
system #26). The resultant attractor, with appropriate delay coordinate
(n=25), falls along the line of identity, indicating that the two oscillators are
in the domain of anticipation-synchronization.

17, depicts the numerical results when 26 chaotic electro-
chemical oscillators are placed in a linear chain configuration
and coupled accordingly, in a unidirectional fashion, to in-
duce the anticipation effect. The time series of the oscillator
#1 (solid line) and the oscillator #26 (dashed line) are super-
imposed. It clearly reveals the dramatic enhancement in an-
ticipation times achieved. Moreover, an appropriate projec-
tion of the attractor for the coupled system, presented in Fig.
18, is distributed along the identity line and confirms the
inception of anticipation synchronization. Therefore, a con-
struction of a linear chain of chaotic oscillators seems to
resolve the problem of small anticipation times.

V. CONCLUSIONS

We study the different types of synchronization phenom-
ena observed when two chaotic electrochemical oscillators
are subjected to bidirectional and unidirectional couplings.
For the bidirectional case, a continuous transition sequence
involving different classes of synchronization effects is ob-
served as the coupling parameter is monotonically increased.
For the induction of one of the elements of this transition
sequence, namely the bidirectional lag synchronization, it is
necessary to introduce an appropriate parameter mismatch
between the two coupled chaotic oscillators. The inception of
these different domains of synchronization is verified using
both qualitative and quantitative techniques. Subsequently,
distinct types of synchronization effects are studied for the
case of unidirectional coupling. Using different functional
forms of the coupling terms provokes contrasting synchroni-
zation phenomena. For one of these effects, namely anticipa-
tion synchronization, a serious drawback is encountered due
to the underlying chaotic nature of the coupled dynamics.
This drawback is subsequently overcome by substituting the
two oscillator setup by an n oscillator linear chain. This
present work is a composite of already reported synchroni-
zation phenomena in different model systems and new re-
sults. In particular, the results of Sec. IV A involving unidi-
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rectional lag synchronization and the enhancement of
anticipation times by virtue of sequential coupling
(Sec. IV B) are novel findings for locally coupled chaotic
oscillators.

Experimentally, a local bidirectional coupling can be
implemented in experiments by simultaneously acquiring the
two anodic currents and computing their mutual difference to
evaluate the two coupling terms. These coupling terms
would subsequently be used to perturb the two anodic volt-
ages (system parameters) in order to observe the distinct bi-
directional synchronization phenomena. This recipe gets
naturally simplified for the unidirectional case. It involves
measuring the anodic current from the master system and
computing its difference from the anodic current of the slave
system to obtain the appropriate coupling term. This cou-
pling term would subsequently be superimposed on the an-
odic voltage of the slave electrode to obtain the different
unidirectional synchronization phenomena. The possible ap-
plication of our simulations to experiments and the robust-
ness of the obtained results give credence to our belief that
these distinct transition sequences and synchronization ef-
fects could be conceived in real experimental situations.
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