

Available online at www.sciencedirect.com

Topology and its Applications 153 (2006) 1100-1102

Topology and its Applications

www.elsevier.com/locate/topol

Corrigendum

Corrigendum to: "Orbit spaces and unions of equivariant absolute neighborhood extensors" [Topology Appl. 146–147 (2005) 289–315]

Sergey Antonyan¹

Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México DF, Mexico

Received 29 January 2005; received in revised form 22 February 2005; accepted 23 February 2005

MSC: 54C55; 54C20; 54H15

Keywords: G-ANR; Equivariant homotopy; H-orbit space

In our article [3], on p. 313, the proof of Theorem 6.1 contains a gap. Namely, in that proof we concluded that the orbit space X/H is a G/H-ANR, by applying the equivariant version of the Hanner domination theorem [2, Theorem 7]. The error occurs at the place where we verify only the weaker condition that the two equivariant maps in question are β -close, β being an open cover, while the assumption of the equivariant Hanner domination theorem requires these two maps to be equivariantly β -homotopic.

Using the notation adopted in [3], this gap may be filled as follows.

Let X be a topological space and γ an open cover of X. Two continuous maps $f, \varphi: Y \to X$ are called γ -close, if for every $y \in Y$ there exists $\Gamma \in \gamma$ such that $\{f(y), \varphi(y)\} \subset \Gamma$.

DOI of original article: 10.1016/j.topol.2003.05.004.

E-mail address: antonyan@servidor.unam.mx (S. Antonyan).

¹ The author was supported in part by grant IN105803-3 from PAPIIT (UNAM).

^{0166-8641/}\$ – see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2005.02.009

A homotopy $F_t: Y \to X$, $t \in [0, 1]$, is said to be limited by γ , or simply, a γ -homotopy provided for any $y \in Y$, there exists $\Gamma \in \gamma$ such that $F_t(y) \in \Gamma$ for all $t \in [0, 1]$. If, in addition, *X* and *Y* are *G*-spaces then a γ -homotopy (F_t) is called equivariant or a *G*-homotopy, if F_t is a *G*-map for every $t \in [0, 1]$. In such a case F_0 and F_1 are called equivariantly γ -homotopic *G*-maps.

We shall say that a *G*-space *X* is equivariantly γ -dominated by a *G*-space *Y*, if there exist *G*-maps $f: X \to Y$ and $\varphi: Y \to X$ such that φf is equivariantly γ -homotopic to the identity map 1_X of *X*.

Theorem 6.1. Let G be a compact group, H a closed normal subgroup of G, and X a G-ANR (respectively, a G-AR). Then the H-orbit space X/H is a G/H-ANR (respectively, a G/H-AR). In particular, the G-orbit space X/G is an ANR (respectively, an AR).

Proof (*new*). We are going to apply the following equivariant Hanner domination theorem, established in [2, Theorem 7]: if for any open cover β of a metrizable *G*-space *M*, there exists a *G*-*ANE* that equivariantly β -dominates *M*, then *M* is a *G*-*ANR*.

Now let β be an open cover of the metrizable G/H-space X/H, and let $\alpha = p^{-1}(\beta) = \{p^{-1}(V) \mid V \in \beta\}$, where $p: X \to X/H$ is the *H*-orbit projection.

Since X is a *G*-ANR, by [1, Proposition 3], there exists an open refinement γ of α such that any two γ -close *G*-maps $f_0, f_1: Y \to X$ are equivariantly α -homotopic.

Then, by Theorem 4.6 of [3], there exist G-maps

 $f: X \to \mathcal{N}(\mathcal{U}) \quad \text{and} \quad \psi: \mathcal{N}(\mathcal{U}) \to X$

such that the composition ψf is γ -close to the identity map of X, where $\mathcal{N}(\mathcal{U})$ is the G-nerve of a G-normal cover \mathcal{U} of X. Consequently, ψf is equivariantly α -homotopic to the identity map of X. Let $F_t : X \to X$, $t \in [0, 1]$, be a G-homotopy limited by α such that $F_0 = \operatorname{Id}_X$ and $F_1 = \psi f$.

Passing to the *H*-orbit spaces, we get continuous G/H-equivariant maps

 $\tilde{f}: X/H \to \mathcal{N}(\mathcal{U})/H$ and $\tilde{\psi}: \mathcal{N}(\mathcal{U})/H \to X/H$,

and a G/H-homotopy $\widetilde{F}_t: X/H \to X/H$, $t \in [0, 1]$, such that $\widetilde{F}_0 = Id_{X/H}$ and $\widetilde{F}_1 = \widetilde{\psi} \widetilde{f}$.

Let us check that the induced G/H-homotopy (\widetilde{F}_t) is limited by the cover β . Indeed, let $p(x) \in X/H$ be arbitrary, where $x \in X$. Since (F_t) is limited by α , there exists an element $W \in \alpha$ such that $F_t(x) \in W$ for all $t \in [0, 1]$. By definition of α , there exists $V \in \beta$ such that $W = p^{-1}(V)$. Then $\widetilde{F}_t(p(x)) = p(F_t(x)) \in p(W) \subset V$ for all $t \in [0, 1]$, as required.

Thus, X/H is G/H-equivariantly β -dominated by $N(\mathcal{U})/H$. Since by Lemma 6.2, $N(\mathcal{U})/H$ is a G/H-ANE, it follows from the above mentioned equivariant Hanner domination theorem that X/H is a G/H-ANR.

If $X \in G$ -AR, then $X \in G$ -ANR and X is G-contractible. This implies easily that X/H is G/H-contractible. Since by the preceding case X/H is a G/H-ANR, we conclude that X/H is a G/H-AR. This completes the proof. \Box

References

- [1] S.A. Antonyan, S. Mardešić, Equivariant shape, Fund. Math. 127 (1987) 213–224.
- [2] S.A. Antonyan, Retraction properties of the orbit space, Mat. Sb. 137 (1988) 300–318 (in Russian); English translation: Math. USSR Sb. 65 (1990) 305–321.
- [3] S.A. Antonyan, Orbit spaces and unions of equivariant absolute neighborhood extensors, Topology Appl. 146–147 (2005) 289–315.

1102