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Abstract

We study bounds on averages of spectral functions corresponding to Sturm—Liouville operators
on the half line for different boundary conditions. As a consequence constraints are obtained which
imply existence of singular spectrum embedded in a.c. spectrum for sets of boundary conditions
with positive measure and potentials vanishing in an intgfaV]. These constraints are related to
estimates on the measure of sets where the spectral density is positive.
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1. Introduction

In this paper we study spectral properties of Sturm—Liouville operators on the half line,
see (1), (2) below. We are particularly interested on the behavior of different parts of the
spectrum, when selfadjoint boundary conditions vary. These conditions depend on a real
parametep and it is known, that we cannot have a set of eigenvalues dense in an interval
forall 0 € [0, ); see [1,7]. In a way the essential spectrum hinders the existence of dense
point spectra for many’s. On the other hand it is possible to have singular continuous
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spectra for alb € [0, ). It is natural in this context to study how the existence of a.c.
spectrum affects the possibility of singular spectra and to look for a description of the
set of’s where coexistence of different spectral types is possible. Some results in this
direction may be found in [2—4].

In [8] the author gave an explicit example of a potential which generates s.c. spectrum
embedded in a.c. spectrum for a set&fof positive Lebesgue measure. The present note
was motivated by the attempt to give a more precise description of this set of boundary
conditions. We were able to obtain conditionsars < [0, 7) and on the measure of the
support of the singular part, which guarantee the existence of B setw, 8) of positive
Lebesgue measure, such that floe B there is mixed spectra in Remling’s example. In
fact we shall prove more general results which involve the set where the spectral density is
bounded.

Our main tools will be bounds from above and below of averages of spectral functions
of Sturm—Liouville operators for different boundary conditions. Particularly for the bound
from below, the condition that the potential vanishefdnV] will be needed. Besides the
results on embedded singular spectra, these bounds will allow us to give estimates on the
set where the spectral density is larger than some constant for operators with a potential
vanishing in[0, N].

The paper is organized as follows. In Section 2 we introduce notation and prove two es-
timates on the integral of the spectral function with respect to the boundary condition. One
important ingredient will be a result of [9] on bounds of spectral functions. In Section 3 we
prove our main results. These concern the set where the derivative of the spectral function
is greater than some constant. Examples are given where we can have some control on the
set of boundary conditions where coexistence is possible, particularly in the example of
Remling mentioned above.

2. Auxiliary results concerning the spectral function

We consider one dimensional Schrédinger equations
ly=—y"(x)+v(x)y(x)=Ey(x), 0<x<o0, (1)

and the associated selfadjoint operators

2

d
Hy =——— +v(x) o0onL2(0,00)
dx

generated by the boundary condition
y(0)cose — y'(0)sina =0, «el[0,m). (2)
Letu1(x, z) andua(x, z) be solutions of
lu=zu 3)
which satisfy
u1(0, z) = sing, u/l(O, 7) = COS«,
u2(0, z) = — cosy, uy(0, z) = sina.
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For every nonreal the exists a function

o (x,2) =u2(x,2) + mg(2ui(x, z)

which is solution of (3) and belongs tb2(0, o). Note thatu; satisfies the boundary
conditions (2). The functiom(z) is called the Weyln function and has an integral rep-
resentation of the form

()—+/<1—“>d()
my(z) =c¢ P M2+1 Pa (L),
R

wherep,, is a Lebesgue-Stieltjes measure uniquely determined,byl he measure,, is
called the spectral function df,,.
The spectral densityo, /d A is given almost everywhere by

dpg (M . 1 1
Pal )= Iim —Immy(A+iE)=:—Immy(A+i0).
dx E—0+ T T

We may think of it as a local probability density for the energy of the system.
The proof of next lemma is similar to the one of [10, Theorem 1.12].

Lemma 1.
B
1 cosp + sinBmo(E +i0)
A)do=— | ar dE.
/'09( ) 71/ g[COSa+Sinamo(E+i0)j|
a A
Proof.
. dpg(E . d d f cosh ing
/ po(E) | 0 _ /_ mo(2)]d mo(z) oY —sind |
(E (E —2)2 dz dz mo(z) Sind + cosd
d d
=7 log(cosp + sinBmo(z)) — Fe log(cosa + sinamo(z)).

4)
The first equality above follows from the integral representatiomgfand the second
is a consequence of a well known relation betwegrandmg; see, for example, [4].
Now using the Herglotz integral representation of log, we get
1
-z x2+1

log(cost + sindmo(z)) = c + /[ }fe (x)dx,
X
R

where
1
fo(x) = = Imlog(cosh + sinfmo(x + i0))
b

1 .
= —arg(cosy + sindmo(x +i0)).
b
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Therefore
fo(x)

(x —2)?

d .
R log(cost + sindmo(z)) = / X
R

and from (4) we obtain

B
[[ [ Voo [ Ot
J (E—2)? J (E—2)?

o

Since the function$E — z)~2 have linear combinations which are dense in a space big
enough to imply

B
/ dpo(E)d0 = (fp(E) — fa(E))dE

o

as an equality of measures, the statement of the lemma follows.

Observe that if we takg = « + /2 we get

o+m/2 1
po(A)do = ;/arg(ma(E +i0))dE.
o A
Let
Ay ={E/Immo(E +i0) > M}. (5)

Recall thatAg is a support of the absolutely continuous part of the spectral measure;
see [6], for example.

The next result is about an upper bound that will be used later. For the examples in the
next section where we analyze singular spectrum it will be enough to askum®. In
this case the statement of the following lemma is just the well-known bound

B
/pe(on>de<|on|,

o

where| - | denotes Lebesgue measure.

Lemma 2.

2 1
/pg(] NAy)do < —arctar(—(cota — cot,B))|I N Apyl,
T 2M

o

wherel is an arbitrary interval.



522 R. del Rio, O. Tchebotareva / J. Math. Anal. Appl. 288 (2003) 518-529

Proof. Accordingto Lemma 1 we have

B . .
/pg(A)dg = %/arg[cosﬁ +sinBmo(E +IO)}dE (©6)
A

cosw + Sinamo(E +i0)

o

for every Borel setd.
Let

T, — zsing + cosp

w=Tz=— .
zSINa + COosx

For eachM > 0, T maps the half-plane Im> M onto the disk

< B silﬁ)z_i_( ~ sin(,B—a)>2< (sin(ﬁ—a))z
* sina Y 2M sirfa 2M sirfa )

From here it follows that if Il > M then

1
argw < 2arctay — (cota — cot .
qu r(ZM( o ﬁ))

Therefore, if Ilmo(E +i0) > M using (6) we get

1
/pg(IﬂAM)Z; / arg(T (mo(E +i0)))dE

a INAy
< E / arctar(i(cota — cotﬁ)) dE
T 2M
INAy
= E arctar(i(cota — cot,B)) [I N Ayl O
T 2M

In [9] Remling proved the following result. The s&fy below, denotes certain family
of measures which has the following property: givean [0, N], for an arbitrary (locally
integrable) extension of to [0, o) the spectral measure of the corresponding half-line
problem belongs ta/y.

Theorem 1 (Corollary 1.2 in [9]).Let 4;, A; be both eigenvalues dft) on an interval

[0, N] with boundary condition§2) and similar conditions inV. Let pg be the spectral
measure of this problem. Then

AiyAi]) = max p([ri, 2i]), AisAj))= min p((Ai, Aj)).
PO([ ]]) e )O([ ]]) PO(( ])) peMy P(( ]))
The following lemma is an application of this theorem.

Lemma 3. Assume(x) = 0 for x € [0, N], whereN is an arbitrary positive real number.
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(@) Letly = ((Z£)? (Z4+2)%) wherek ¢ N; then

8 X . i) Cote
7k + 1) dx
1)db > ——— —,
/Pe( 1) N2 / 112

o N
TGt COB

a, B € (0,m).

(b) Letly = [(Z£)%, (Z440)2] k e N, N € R*; then

N N
=% Cote TOFD cota

B
2rk d 2 (k+1 d
[mar<Z5 [ 15502 [

N 1+ x2 N2 14 x2’
o & cotp i cot

7 (k+1)
a, B € (0,m).

Proof. (a) The function

v, T~ Hsing + 2 cose |+ + L sin N cosy e
X, — )|== o+ — e — oO— — e
“\''N 2 ik 2 ik

satisfies

¥ (0) = sine, Y’ (0) = cosx

/ wk\ (7k 2 wk
A (W) —<W> ‘”(W)

for x € [0, N] with boundary conditions

and

Y (N)cosa — ' (N) sine =0,
¥ (0) cos — ¥/ (0) sina = 0.

We have moreover, the same eigenvalugs/N)?2 for all « € [0, 7).
After some elementary calculations we get

N 2 2 L0 2
/1// xn_k dx = |y, xn_k =(sma)N+}N N cosux
\UN NN ) om 2 2 k)
5 )
Applying Theorem 1 we get
Tk\? [nk+2)\? rk+1)\ |2
w((F)-(552) )= (=52

S 45)
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Therefore
B B (D ot
do 2n(k+1) dx
0> | = 3
o 7 (k+1) cotp

ﬂ(k+l)

and (a) is proved.
(b) Using again Theorem 1 we see that

B
/d [(sme)2 +}N(Ncose)2}_l
2 wk
B : 2 29-1
+/d9 (sing) N+}N< Ncos@)
2 2 nk+1)

o

[l (252 )

and therefore (b) follows. O

The lemma above gives us the lower bound that we need for the next theorem.

3. Main resultsand examples
Using the upper and lower bounds of previous section we obtain the following

Theorem 1. Assume(x) =0forx € [0, N], N e Rt, ke N. If

n(k+1) cota % cota—cots
2r(k+1) / dx 2|AMml| /
- - - ’
N? 1+x2 1+x2
cotp 0

=D
a,Be€(0,m),a < B, then

B

/pg(mAj‘W)d@ >0,

o

where

() (52
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Proof. The lower bound given by Lemma 3(a) together with the upper bound given by
Lemma 2 and the hypotheses of the theorem give us

B B
/pe(l)d9>/p9(lﬂAM)d9
o o

and since

B B B
/pg(l)dezfpg(lmAfw)d9+/p9(mAM)d9,
o o
we obtain

B
/pg(mAj‘w)d@>0
o

and the theorem is proved O

o

Remark. In fact a bound from below fofo'[S pe (I N AS,)d6 can be given taking the differ-
ence between the left and right members of the inequality stated in the theorem.

Examples. (a) Setk =1, N =27 andM = 0. According to Theorem 1, if
B—a>m|lAoNI|,
wherel = (1/4,9/4), then
B
/pg(] N A§)do > 0.
o

Since Aj is the support for the singular part, we conclude that there egists(a, ),
|B| > 0, such that if € B then Hy has some singular spectrumiin

(b) Analogously, if we sek =2, N = 37, M = 0 then a sufficient condition to have
singular spectrum i for boundary condition8 betweenr andg is

2
:—g(ﬂ —a)>m|AgN 1|,
where in this casé = [4/9, 16/9].

(c) In [8] potentials of the form

v(x) = Zgnvn (x —ayn)

n=1

with g, > 0, v, € L1[—B,, B,] are considered. The intervdls, — B, a,, + B,] are as-
sumed disjoint and the barrierg have the form

vp(x) = X(*Bn,Bn)(x)w(x)’
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where

w(x) = / cosZx dk
F

andF is a Cantor type set in an intenal, ], with Lebesgue measure any positive number
less tharb — a.

LetL, =a, — B, — a,—1 — B,—1 with ag = Bg = 0.
In [8] it is proven that under minor assumptions Brihe following holds.

Theorem. Let g, = n=Y/2, B, = nf with (2 —4/y)1 < 8 < y/8, wherey > 6, and
assume#/2Y L, _1 /L, =5 0. Then the half line Schrodinger operatdis with potential
v given as above satistia(Hy) = oesd Ho) = [0, 00), op(Hy) N (0, 00) = ¥ and for a set
of boundary conditiona of positive measuresc(Hy) N (0, 00) # @.

In proving this result it is shown that the absolutely continuous part of the spectral
measureg, corresponding td,, give zero weight ta"2 = {k%: k € F}.

In Remling’s theorem above, the potentiglk) may be equal to zero in an interval
[0, N].

To apply Theorem 1 in this case we can take- 1, N =27 and M =0 as in ex-
ample (a). Then the condition to have singular continuous spectrum for a set boundary
conditions of positive measure, (o, 8) is

’

B—a>mlAoNI|=|(FA)° NI

wherel = (1/4, 9/4). Observe that in this case we can control the measuf of

In the next two theorems the full strength of Lemma 2 is used.

The restrictionv(x) = 0 on [0, N] implies some restrictions on the measure/gf if
M is large, more precisely we have
Theorem 2. Let Ay, be as defined i(6) and assume(x) = 0for x € [0, N]. Then

273
Ay NIIM < F(kz + (k+1)?),

wherel := [(%£)?, (Z&£D)?] k e N, N e R

Proof. We have the following chain of inequalities.
Forx € [0,7/2),

Zk tany TEHD tany
o ATk / 1, Akt / L
X)i=—
N2 1412 N2 1+12
0 0
X g

>/mmw+/wmw

0 T—X
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X s
(i)fpe(AMnndw f po(An O 1) d6
0 T—X
(g) [l— E arctar(i tan(z — x))}MM NI
T M 2
=: E(x).

The inequality (i) follows from Lemma 3(b), and (ii) is obvious. To prove (iii) observe
that as a consequence of Lemma 2 and the fact

T

/pQ(ImAM)dGZ 1IN Awml,
0

we get the lower bound

X T

/pg(AMﬂI)d9+/p9(AMﬂI)d9
0 B

2 1
> 11— — arctar] —(cotx — cot Ay NI
{ - r(ZM( X ﬁ))}l mnNI|

This holds for an arbitrary intervdl. Choosing8 = = — x inequality (iii) follows.
Therefore

T(x)>E®x), xel0,7/2). (7)
SinceE(0) = FE(0) =0, (7) implies that
T'(0) > E/(0).
But

) = 21Apu NIIM
4

452 2 2
: I/(O):—N3 (k" + (k + 1)%),
and the theorem follows. O

By the inverse spectral theorem of Gelfand—Levitan we known that spectral functions
of Sturm-Liouville operators may be arbitrary in a bounded interval. The theorem above
give us restrictions on the possible spectral density when the potential vanigbed’in

In next theorem the conditiom(x) =0 in [0, N] is not needed.

Theorem 3. Givena, 8 € (0, ) and1 > k > 0, there existao > N(«, B8, k) > 0 such that
R > N and

|[Ay N (=R, R)| k(cota — cotp)
<
1/2 1 cota—cotp
RY arctar{5; =5—+)
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B
/pg((—R, R)NA$)do >0 forR>N.
o

Proof. Itis known that
R

. 1 2(1+cot?9)

I — =7~

Rinoo Rl/Z/de(x) - ;
—R

see [5, (A.9)].
Using Fatou’s lemma we obtain
B

2(1+ cot ) o1
/7d9<|lmlnfmfpg((—R, R))do.

b4 R—o0
o o

Therefore there exist¥ («, 8, k) > 0 such that ifR > N then
B
le/zé(cota —cotp) < /pe (=R, R)) db,
o
where O< k < 1.

Using the upper bound given by Lemma 2 we can conclude that, if the hypotheses of
the theorem are satisfied, then

B B
/pg((—R,R)ﬂAM)dG</p9((—R, R))d6

o

holds for everyR > N. Hence
B

/pg((—R,R)ﬂAﬁ,,)d@ > 0. O

o

If we take the cas®/ = 0 and assume the potential is positife) > 0 then the theorem
says that if

2
| 40N (0, R)| < =RY?(cota — cotp)k
T

is satisfied forR large, then there will be a sé& C («, B), |B| > 0, such that fop € B the
corresponding Sturm—Liouville operator in the half line has singular spectrdmi) R).
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