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Abstract

We study bounds on averages of spectral functions corresponding to Sturm–Liouville op
on the half line for different boundary conditions. As a consequence constraints are obtained
imply existence of singular spectrum embedded in a.c. spectrum for sets of boundary con
with positive measure and potentials vanishing in an interval[0,N]. These constraints are related
estimates on the measure of sets where the spectral density is positive.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we study spectral properties of Sturm–Liouville operators on the hal
see (1), (2) below. We are particularly interested on the behavior of different parts
spectrum, when selfadjoint boundary conditions vary. These conditions depend on
parameterθ and it is known, that we cannot have a set of eigenvalues dense in an in
for all θ ∈ [0,π); see [1,7]. In a way the essential spectrum hinders the existence of
point spectra for manyθ ’s. On the other hand it is possible to have singular continu
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spectra for allθ ∈ [0,π). It is natural in this context to study how the existence of
spectrum affects the possibility of singular spectra and to look for a description o
set ofθ ’s where coexistence of different spectral types is possible. Some results
direction may be found in [2–4].

In [8] the author gave an explicit example of a potential which generates s.c. spe
embedded in a.c. spectrum for a set ofθ ’s of positive Lebesgue measure. The present n
was motivated by the attempt to give a more precise description of this set of bou
conditions. We were able to obtain conditions onα,β ∈ [0,π) and on the measure of th
support of the singular part, which guarantee the existence of a setB ⊂ (α,β) of positive
Lebesgue measure, such that forθ ∈ B there is mixed spectra in Remling’s example.
fact we shall prove more general results which involve the set where the spectral de
bounded.

Our main tools will be bounds from above and below of averages of spectral fun
of Sturm–Liouville operators for different boundary conditions. Particularly for the bo
from below, the condition that the potential vanishes in[0,N] will be needed. Besides th
results on embedded singular spectra, these bounds will allow us to give estimates
set where the spectral density is larger than some constant for operators with a p
vanishing in[0,N].

The paper is organized as follows. In Section 2 we introduce notation and prove tw
timates on the integral of the spectral function with respect to the boundary condition
important ingredient will be a result of [9] on bounds of spectral functions. In Section
prove our main results. These concern the set where the derivative of the spectral fu
is greater than some constant. Examples are given where we can have some contro
set of boundary conditions where coexistence is possible, particularly in the exam
Remling mentioned above.

2. Auxiliary results concerning the spectral function

We consider one dimensional Schrödinger equations

ly = −y ′′(x)+ v(x) y(x)=Ey(x), 0 � x <∞, (1)

and the associated selfadjoint operators

Hα = − d2

dx2
+ v(x) onL2(0,∞)

generated by the boundary condition

y(0)cosα − y ′(0)sinα = 0, α ∈ [0,π). (2)

Let u1(x, z) andu2(x, z) be solutions of

lu= zu (3)

which satisfy

u1(0, z)= sinα, u′
1(0, z)= cosα,

u2(0, z)= −cosα, u′
2(0, z)= sinα.
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For every nonrealz the exists a function

ϕα(x, z)= u2(x, z)+mα(z)u1(x, z)

which is solution of (3) and belongs toL2(0,∞). Note thatu1 satisfies the boundar
conditions (2). The functionmα(z) is called the Weylm function and has an integral re
resentation of the form

mα(z)= c+
∫
R

(
1

µ− z − µ

µ2 + 1

)
dρα(µ),

whereρα is a Lebesgue–Stieltjes measure uniquely determined bymα . The measureρα is
called the spectral function ofHα .

The spectral densitydρα/dλ is given almost everywhere by

dρα(λ)

dλ
= lim
E→0+

1

π
Immα(λ+ iE)=: 1

π
Immα(λ+ i0).

We may think of it as a local probability density for the energy of the system.
The proof of next lemma is similar to the one of [10, Theorem 1.12].

Lemma 1.
β∫
α

ρθ (A)dθ = 1

π

∫
A

arg

[
cosβ + sinβm0(E + i0)
cosα + sinαm0(E + i0)

]
dE.

Proof.

β∫
α

[∫
R

dρθ (E)

(E − z)2
]
dθ =

β∫
α

d

dz

[
mθ(z)

]
dθ = d

dz

β∫
α

[
m0(z)cosθ − sinθ

m0(z)sinθ + cosθ

]
dθ

= d

dz
log

(
cosβ + sinβm0(z)

) − d

dz
log

(
cosα + sinαm0(z)

)
.

(4)

The first equality above follows from the integral representation ofmα and the second
is a consequence of a well known relation betweenmθ andm0; see, for example, [4].

Now using the Herglotz integral representation of log, we get

log
(
cosθ + sinθm0(z)

) = c+
∫
R

[
1

x − z − x

x2 + 1

]
fθ (x) dx,

where

fθ (x)= 1

π
Im log

(
cosθ + sinθm0(x + i0))

= 1
arg

(
cosθ + sinθm0(x + i0)).
π
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d

dz
log

(
cosθ + sinθm0(z)

) =
∫
R

fθ (x)

(x − z)2 dx

and from (4) we obtain

β∫
α

[∫
R

dρθ (E)

(E − z)2
]
dθ =

∫
R

fβ(E)− fα(E)
(E − z)2 dE.

Since the functions(E − z)−2 have linear combinations which are dense in a space
enough to imply

β∫
α

dρθ (E) dθ = (
fβ(E)− fα(E)

)
dE

as an equality of measures, the statement of the lemma follows.✷
Observe that if we takeβ = α + π/2 we get

α+π/2∫
α

ρθ (A)dθ = 1

π

∫
A

arg
(
mα(E + i0))dE.

Let

ΛM := {
E/ Imm0(E + i0) >M}

. (5)

Recall thatΛ0 is a support of the absolutely continuous part of the spectral mea
see [6], for example.

The next result is about an upper bound that will be used later. For the examples
next section where we analyze singular spectrum it will be enough to assumeM = 0. In
this case the statement of the following lemma is just the well-known bound

β∫
α

ρθ (I ∩Λ0) dθ � |I ∩Λ0|,

where| · | denotes Lebesgue measure.

Lemma 2.

β∫
α

ρθ (I ∩ΛM)dθ � 2

π
arctan

(
1

2M
(cotα − cotβ)

)
|I ∩ΛM |,

whereI is an arbitrary interval.
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Proof. According to Lemma 1 we have

β∫
α

ρθ (A)dθ = 1

π

∫
A

arg

[
cosβ + sinβm0(E + i0)
cosα + sinαm0(E + i0)

]
dE (6)

for every Borel setA.
Let

w = T z= zsinβ + cosβ

zsinα + cosα
.

For eachM > 0,T maps the half-plane Imz >M onto the disk(
x − sinβ

sinα

)2

+
(
y − sin(β − α)

2M sin2α

)2

<

(
sin(β − α)
2M sin2α

)2

.

From here it follows that if Imz >M then

argw � 2 arctan

(
1

2M
(cotα − cotβ)

)
.

Therefore, if Imm0(E + i0) >M using (6) we get

β∫
α

ρθ (I ∩ΛM)= 1

π

∫
I∩ΛM

arg
(
T

(
m0(E + i0)))dE

� 2

π

∫
I∩ΛM

arctan

(
1

2M
(cotα − cotβ)

)
dE

= 2

π
arctan

(
1

2M
(cotα − cotβ)

)
|I ∩ΛM |. ✷

In [9] Remling proved the following result. The setMN below, denotes certain famil
of measures which has the following property: givenv on [0,N], for an arbitrary (locally
integrable) extension ofv to [0,∞) the spectral measure of the corresponding half-
problem belongs toMN .

Theorem 1 (Corollary 1.2 in [9]).Let λi, λj be both eigenvalues of(1) on an interval
[0,N] with boundary conditions(2) and similar conditions inN . Let ρ0 be the spectra
measure of this problem. Then

ρ0
([λi, λj ]) = max

ρ∈MN
ρ
([λi, λj ]), ρ0

(
(λi , λj )

) = min
ρ∈MN

ρ
(
(λi , λj )

)
.

The following lemma is an application of this theorem.

Lemma 3. Assumev(x)≡ 0 for x ∈ [0,N], whereN is an arbitrary positive real number
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πk
N

)2
,
(
π(k+2)
N

)2 )
, wherek ∈ N; then

β∫
α

ρθ (I1) dθ � 2π(k + 1)

N2

N
π(k+1) cotα∫
N

π(k+1) cotβ

dx

1+ x2 , α,β ∈ (0,π).

(b) Let I2 = [(
πk
N

)2
,
(
π(k+1)
N

)2 ]
, k ∈ N, N ∈ R

+; then

β∫
α

ρθ (I2) dθ � 2πk

N2

N
πk cotα∫
N
πk cotβ

dx

1+ x2 + 2π(k+ 1)

N2

N
π(k+1) cotα∫
N

π(k+1) cotβ

dx

1+ x2 ,

α,β ∈ (0,π).

Proof. (a) The function

ψα

(
x,
πk

N

)
= 1

2

[
sinα + N

iπk
cosα

]
e
iπk
N x + 1

2

[
sinα− N

iπk
cosα

]
e

−iπk
N x

satisfies

ψ(0)= sinα, ψ ′(0)= cosα

and

−ψ ′′
(
x,
πk

N

)
=

(
πk

N

)2

ψ

(
x,
πk

N

)

for x ∈ [0,N] with boundary conditions

ψ(N)cosα −ψ ′(N)sinα = 0,

ψ(0)cosα −ψ ′(0)sinα = 0.

We have moreover, the same eigenvalues(πk/N)2 for all α ∈ [0,π).
After some elementary calculations we get

N∫
0

∣∣∣∣ψα
(
x,
πk

N

)∣∣∣∣
2

dx =
∥∥∥∥ψα

(
x,
πk

N

)∥∥∥∥
2

L2(0,N)
= (sinα)2

2
N + 1

2
N

(
N cosα

πk

)2

.

Applying Theorem 1 we get

ρθ

((
πk

N

)2

,

(
π(k + 2)

N

)2 )
�

∥∥∥∥ψ
(
x,
π(k + 1)

N

)∥∥∥∥
−2

L2(0,N)

= ρ0

((
πk

)2

,

(
π(k + 2)

)2 )
.

N N
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β∫
α

ρθ (I) dθ �
β∫
α

dθ

N
2 (sinθ)2 + N

2

(
N cosθ
π(k+1)

)2 = 2π(k+ 1)

N2

N
π(k+1) cotα∫
N

π(k+1) cotβ

dx

1+ x2

and (a) is proved.
(b) Using again Theorem 1 we see that

β∫
α

dθ

[
(sinθ)2

2
N + 1

2
N

(
N cosθ

πk

)2 ]−1

+
β∫
α

dθ

[
(sinθ)2

2
N + 1

2
N

(
N cosθ

π(k+ 1)

)2 ]−1

�
β∫
α

ρθ

([(
πk

N

)2

,

(
π(k + 1)

N

)2 ])
dθ

and therefore (b) follows. ✷
The lemma above gives us the lower bound that we need for the next theorem.

3. Main results and examples

Using the upper and lower bounds of previous section we obtain the following

Theorem 1. Assumev(x)≡ 0 for x ∈ [0,N],N ∈ R
+, k ∈ N. If

2π(k+ 1)

N2

N
π(k+1) cotα∫
N

π(k+1) cotβ

dx

1+ x2 >
2|ΛM ∩ I |

π

1
M

cotα−cotβ
2∫

0

dx

1+ x2 ,

α,β ∈ (0,π), α < β , then

β∫
α

ρθ
(
I ∩ΛcM

)
dθ > 0,

where

I =
((
πk

N

)2

,

(
π(k+ 2)

N

)2 )
.
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Proof. The lower bound given by Lemma 3(a) together with the upper bound give
Lemma 2 and the hypotheses of the theorem give us

β∫
α

ρθ (I) dθ >

β∫
α

ρθ (I ∩ΛM)dθ

and since
β∫
α

ρθ (I) dθ =
β∫
α

ρθ
(
I ∩ΛcM

)
dθ +

β∫
α

ρθ (I ∩ΛM)dθ,

we obtain
β∫
α

ρθ
(
I ∩ΛcM

)
dθ > 0

and the theorem is proved.✷
Remark. In fact a bound from below for

∫ β
α ρθ (I ∩ΛcM)dθ can be given taking the differ

ence between the left and right members of the inequality stated in the theorem.

Examples. (a) Setk = 1,N = 2π andM = 0. According to Theorem 1, if

β − α > π |Λ0 ∩ I |,
whereI = (1/4,9/4), then

β∫
α

ρθ
(
I ∩Λc0

)
dθ > 0.

SinceΛc0 is the support for the singular part, we conclude that there existsB ⊂ (α,β),
|B|> 0, such that ifθ ∈B thenHθ has some singular spectrum inI .

(b) Analogously, if we setk = 2, N = 3π , M = 0 then a sufficient condition to hav
singular spectrum inI for boundary conditionsθ betweenα andβ is

2

3
(β − α) > π |Λ0 ∩ I |,

where in this caseI = [4/9,16/9].
(c) In [8] potentials of the form

v(x)=
∞∑
n=1

gnvn(x − an)

with gn > 0, vn ∈ L1[−Bn,Bn] are considered. The intervals[an − Bn,an + Bn] are as-
sumed disjoint and the barriersvn have the form

vn(x)= χ(−Bn,Bn)(x)w(x),
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w(x)=
∫
F

cos2kx dk

andF is a Cantor type set in an interval[a, b], with Lebesgue measure any positive num
less thanb− a.

LetLn = an −Bn − an−1 −Bn−1 with a0 = B0 = 0.
In [8] it is proven that under minor assumptions onF the following holds.

Theorem. Let gn = n−1/2, Bn = nβ with (2 − 4/γ )−1 < β < γ/8, whereγ > 6, and

assumenβ/2γLn−1/Ln
n→∞−→ 0. Then the half line Schrödinger operatorsHα with potential

v given as above satisfyσac(Hα)= σess(Hα)= [0,∞), σp(Hα)∩ (0,∞)= ∅ and for a set
of boundary conditionsα of positive measureσsc(Hα) ∩ (0,∞) �= ∅.

In proving this result it is shown that the absolutely continuous part of the spe
measuresρα corresponding toHα , give zero weight toF 2 = {k2: k ∈ F }.

In Remling’s theorem above, the potentialv(x) may be equal to zero in an interv
[0,N].

To apply Theorem 1 in this case we can takek = 1, N = 2π andM = 0 as in ex-
ample (a). Then the condition to have singular continuous spectrum for a set bou
conditions of positive measure, in(α,β) is

β − α > π |Λ0 ∩ I | = ∣∣(F 2)c ∩ I ∣∣,
whereI = (1/4,9/4). Observe that in this case we can control the measure ofF 2.

In the next two theorems the full strength of Lemma 2 is used.
The restrictionv(x) ≡ 0 on [0,N] implies some restrictions on the measure ofΛM if

M is large, more precisely we have

Theorem 2. LetΛM be as defined in(5) and assumev(x)≡ 0 for x ∈ [0,N]. Then

|ΛM ∩ I |M � 2π3

N3

(
k2 + (k + 1)2

)
,

whereI := [(
πk
N

)2
,
(
π(k+1)
N

)2 ]
, k ∈ N, N ∈ R

+.

Proof. We have the following chain of inequalities.
Forx ∈ [0,π/2),

�⊥−(x) := 4πk

N2

πk
N tanx∫
0

1

1+ t2 dt +
4π(k+ 1)

N2

π(k+1)
N tanx∫
0

1

1+ t2 dt

(i)
�

x∫
ρθ (I) dθ +

π∫
ρθ (I) dθ
0 π−x
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(ii)
�

x∫
0

ρθ (ΛM ∩ I) dθ +
π∫

π−x
ρθ (ΛM ∩ I) dθ

(iii )
�

[
1− 2

π
arctan

(
1

M
tan

(
π

2
− x

))]
|ΛM ∩ I |

=: �⊥−�⊥−(x).
The inequality (i) follows from Lemma 3(b), and (ii) is obvious. To prove (iii) obse

that as a consequence of Lemma 2 and the fact

π∫
0

ρθ (I ∩ΛM)dθ = |I ∩ΛM |,

we get the lower bound

x∫
0

ρθ (ΛM ∩ I) dθ +
π∫
β

ρθ (ΛM ∩ I) dθ

�
{

1− 2

π
arctan

(
1

2M
(cotx − cotβ)

)}
|ΛM ∩ I |.

This holds for an arbitrary intervalI . Choosingβ = π − x inequality (iii) follows.
Therefore

�⊥−(x)� �⊥−�⊥−(x), x ∈ [0,π/2). (7)

Since�⊥−(0)= �⊥−�⊥−(0)= 0, (7) implies that

�⊥−′(0)� �⊥−�⊥−′(0).

But

�⊥−�⊥−′(0)= 2|ΛM ∩ I |M
π

, �⊥−′(0)= 4π2

N3

(
k2 + (k + 1)2

)
,

and the theorem follows.✷
By the inverse spectral theorem of Gelfand–Levitan we known that spectral fun

of Sturm–Liouville operators may be arbitrary in a bounded interval. The theorem a
give us restrictions on the possible spectral density when the potential vanishes in[0,N].

In next theorem the conditionv(x)≡ 0 in [0,N] is not needed.

Theorem 3. Givenα,β ∈ (0,π) and1> k > 0, there exists∞>N(α,β, k) > 0 such that
R >N and

|ΛM ∩ (−R,R)|
R1/2 <

k(cotα − cotβ)

arctan
( 1 cotα−cotβ )

M 2
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imply
β∫
α

ρθ
(
(−R,R) ∩ΛcM

)
dθ > 0 for R >N.

Proof. It is known that

lim
R→∞

1

R1/2

R∫
−R

dρθ (x)= 2(1+ cot2 θ)

π
;

see [5, (A.9)].
Using Fatou’s lemma we obtain

β∫
α

2(1+ cot2 θ)

π
dθ � lim inf

R→∞
1

R1/2

β∫
α

ρθ
(
(−R,R))dθ.

Therefore there existsN(α,β, k) > 0 such that ifR >N then

kR1/2 2

π
(cotα − cotβ)�

β∫
α

ρθ
(
(−R,R)) dθ,

where 0< k < 1.
Using the upper bound given by Lemma 2 we can conclude that, if the hypothe

the theorem are satisfied, then
β∫
α

ρθ
(
(−R,R) ∩ΛM

)
dθ <

β∫
α

ρθ
(
(−R,R)) dθ

holds for everyR >N . Hence
β∫
α

ρθ
(
(−R,R) ∩ΛcM

)
dθ > 0. ✷

If we take the caseM = 0 and assume the potential is positivev(x)� 0 then the theorem
says that if∣∣Λ0 ∩ (0,R)∣∣< 2

π
R1/2(cotα − cotβ)k

is satisfied forR large, then there will be a setB ⊂ (α,β), |B|> 0, such that forθ ∈B the
corresponding Sturm–Liouville operator in the half line has singular spectrum in(−R,R).
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