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Abstract

We study some properties of surfaces in 4-space all whose points are umbilic with respect to some normal
field. In particular, we show that this condition is equivalent to the orthogonality of the (globally defined) fields of
asymptotic directions. We also analyze necessary and sufficient conditions for the hypersphericity of surfaces in
4-spaced 2002 Elsevier Science B.V. All rights reserved.

MSC:53A05; 58C25

Keywords:Asymptotic directiony-principal curvature foliation; Umbilicity; Sphericity

1. Introduction

Itis possible to define asymptotic directions over the points of the surfaces in 4-space (called conjugate
directions by J. Little [5]). These directions determine fields that do not need to be globally defined on
the surfaces. It was shown in [6], by means of techniques relying on the analysis of the singularities of
height functions on the surface, that each field of asymptotic directions is associated to some normal fielc
of binormal directions on the surface and that a necessary and sufficient condition for existence of two
globally defined fields of this type on a surfakein R* is the local convexity oV (in the sense that it
has a locally support hyperplane at each one of its points). It was also proven that the critical points of
these fields are the inflection points Mf.
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We say that a surface iR* is hypersphericalprovided it is contained in a hypersphere. Clearly,
any hyperspherical surface is locally convex. We saw in [7] that stereographic projection transforms
curvature lines of surfaces R® into asymptotic lines of their images 8% considered as submanifolds
of R4. Consequently, if the surface is hyperspherical, then the two fields of asymptotic directions must
be orthogonal all over the surface, except at the inflection points. It was then conjectured that this
orthogonality condition on the asymptotic lines is also sufficient to guarantee the hypersphericity of
surfaces irR*.

The main feature of this paper consists in finding some geometrical conditions which are equivalent
to the orthogonality of asymptotic lines, and proving that these together with a further requirement imply
the hypersphericity of the surface.

Given a surface in R* and a globally defined normal fieldon M, there is a shape operat§y on
M intrinsically attached to the second fundamental folm, associated t@ on M. The eigenvectors
of S, determine the-curvature lines of and its eigenvalues theprincipal curvatures. We say that a
point x € M is v-umbilic provided the twa-principal curvatures).; anda, coincide atx. The typical
structure of the curvature lines for a generic normal fieldn M was analized in [11]. The-umbilic
points were characterized as the critical points of the corresponding principal direction fields.

A surface is said to be-umbilic if all its points are umbilic for the field. In this case we have a
curvature function. associated to the field defined over the whol@/. A surfaceM is totally umbilic
if it is v-umbilic for any normal field over M. It is well known (see [12] for instance) that a surfade
in 4-space is totally umbilic with the same principal curvature for any normal direction if and only if it is
a 2-sphere. On the other hand, the geometric properties of the surfaces that are umbilic for some norme
field have been studied by B.Y. Chen [1,2]. In this work, we relate the property of having globally defined
orthogonal asymptotic lines with theumbilicity for some normal field, obtaining the following result:

Theorem 3.4(a, b). A surfaceM immersed irR* has two globally defined orthogonal fields of asymptotic
directions if and only if it isv-umbilic for some globally defined normal fieldon M.

Moreover, we show that surfaces with this property have univocally defined principal curvature lines,
which coincide with the asymptotic lines, independently of the choice of the normal field (different
fromv) on M.

On the other hand, we prove thatuumbilicity of M is also equivalent to the vanishing of the normal
curvature ofM, or in other words, to the requirement that the normal bundl@zabe totally flat. It
follows from this that

Theorem 3.4(b,d). M is v-umbilic for some globally defined normal fieldf and only if M is totally
made of semi-umbilic points.

It is interesting to observe that the semi-umbilic points can be characterized as singularities of corank
2 for distance squared functions taken from some focal centers of the surface (see [10] for an introductior
to the geometrical interpretation of the singularities of distance squared functions on submanifolds and
[8] for the particular case of surfaces in 4-space). It follows that the surfaces all whose points are semi-
umbilic have a “degenerate” family of distance squared functions (in the sense that it is not stable). In
other words, these surfaces have non generic contacts with their focal hypersphere at each point, in th
sense that they are “stronger” than the usual ones at most points. In the case of a surface contained in
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hypersphere, this contact is completely degenerate. In fact, the distance squared function from the cente
of the hypersphere is constant and thus has a non finitely determined singularity at every point. We alsc
point out that the singularities of corank 2 for the distance squared functions on surfaces in 3-space are
precisely the umbilic points of these surfaces. Therefore, the surfaces in 3-space that are totally made c
corank 2 singularities for distance squared functions are either pieces of a 2-sphere or a plane.

Once we have put the things in terms ofumbilicity we can apply the theory developed by
Chen in order to obtain results on hypersphericity. In particular, we can use the following statement
[1, Corollary 3.1, p. 473], a proof of which, in the case of surfaces in 4-space, is included here for the
sake of completeness:

Theorem 4.3. The surfaceM is hyperspherical if and only if it is-umbilic for some unit normal field
over M whose associated principal curvatukdés a nonzero constant.

We observe that in the case of a surface with isolated inflection points this amounts to say that the
surfaceM is hyperspherical if and only if it is-umbilic for some normal parallel field over M.
Finally, we conclude

Corollary 4.7. The surfaceM is hyperspherical if and only if its asymptotic lines are globally defined
and orthogonal and its binormal curvaturés; };—; » satisfy the following relation

ki k2

— 4+ — 4+ 2cosx | E = constant
ko k1

whereq is the angle between the two binormals at each point Andpresents the coefficient of the first

fundamental form oM in isothermic coordinates.

We would like to point out, finally, that the stereographic projection provides a bridge between the
study of the properties of asymptotic lines and inflection points of surfacB4 and that of curvature
lines and umbilic points of those R3. In this sense, any new results concerning the first represent a
generalization of similar problems relative to the later ones.

2. Curvaturelines associated to a normal vector field

Let M be a smooth oriented surface immersedRthwith the Riemannian metric induced by the
standard Riemannian metric Bf'. For eachp € M consider the decompositidh,R* = 7,M & N, M,
where N, M is the orthogonal complement @}, M in R*. Let V be the Riemannian connection Rf.
Given local vector field(, Y on M, let X, Y be some local extensions&f. The tangent component of
the Riemannian connection B is the Riemannian connection df: VyY = (5;7)7

Let X(M) and N (M) be the space of the smooth vector fields tangen¥tand the space of the
smooth vector fields normal t#, respectively. Consider the second fundamental map,

o0 X(M) x X(M) - NM, a(X,Y)=VgY —VxY.

This map is well defined, symmetric and bilinear.
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Let p e M andv € N,M, v # 0, define the function
H,:T,M xT,M — R, H,(X,Y)=(a(X,Y),v).

Then this function is as well symmetric and bilinear. The second fundamental fowh aff p is the
associated quadratic form,

I, :T,M —R, 11,(X)=H,(X,X).
Recall the shape operator
S, TyM — T,M, S,(X)=—(Vgb)',

where v is a local extension tdR* of the normal vector fieldr at p and T means the tangent
component. This operator is bilinear, self-adjoint and for &y e 7T,M satisfies the following
equation: (S,(X),Y) = H,(X,Y). So, the second fundamental form can be expressel li¥X) =
(S,(X), X). Thus for eactp € M, there exists an orthonormal basis of eigenvectors,af 7, M, for
which the restriction of the second fundamental form to the unitary vedigils;, takes its maximal
and minimal values. The corresponding eigenvalkgsk, are themaximaland minimal v-principal
curvatures respectively. The poinp is av-umbilic if the v-principal curvatures coincide. Léf, be the
set ofv-umbilics inM. For anyp € M\U, there are twa-principal directions defined by the eigenvectors
of S,, these fields of directions are smooth and integrable, then they define two families of orthogonal
curves, its integrals, which are called theprincipal lines of curvature one maximal and the other
one minimal. The two orthogonal foliations with tiheumbilics as its singularities form theprincipal
configurationof M. We say that the surfac® is v-umbilical if each point of M is v-umbilic. The
differential equation ob-lines of curvature is

Sy(X(p)) =r(p)X(p). 1)

Suppose thaty, U ¢ M is an open neighborhood with local coordinatasv). Let E, F, G be
the coefficients of the first fundamental form in this coordinate chart. The coefficients of the second
fundamental form are

ey =11,(3,) = —((dy, Au), V),
fv = —<Ol(au, av)’ V) = —<Ol(av, 814)’ V),
g =11,(3y) = —(a(dy, 9y), v),

whered, = ;- ando, = .
Eg. (1) has the following expression in this coordinate chart [11].

(f,E — e, F)du® + (g,E — e,G)dudv + (g, F — f,G)dv?*=0.
Assume that this coordinate chart is isothernfic= G > 0, F = 0. Then this equation has the form

fodu?®+ (g, —e,)dudv — f,dv>=0. (2)

Lemma 2.1. Assume that there existe N'M such thatM is v-umbilical. The principal configuration of
any normal vector field linear independent of, is univocally determined.
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Proof. For any p € M consider a local isothermic chart as above. Defite= ¢, A ¢, AV €
N'M, the cross product iR* of the vector fieldsg,, ¢,, v. At each pointp € M the frame
{0 (), du(p), v(p), v(p)} is an orthogonal basis dpr“, so for any normal vector fielg, there are
smooth functions:, b: U — R such that) = av + bv. The coefficients of the second fundamental form
can be expressed by

ey =—(buu,n) = —<¢W, av + va> =ae, + be,..
Analogously, f, = af, + bf,. andg, = ag, + bg,.. Therefore the equation oflines of curvature in
these coordinates is

a(fodu®+ (g, — e,)dudv — f,dv®) + b(f,o du® + (g,. —e,1)dudv — f,. dv?) =0,
sinceM is v-umbilic f, =0 andg, = f, so

b(fordu®+ (g,+ —e,1)dudv — f,.dv®) =0, b(p)#0,
which implies that the principal configurationspfndv* coincide. O

Remark 2.2. It can be seen in [1] that iM is a spherical surface iR?, then M is p-umbilical with
constant normal curvature.

Lemma 2.3. Assume thaM c R* is a smooth oriented surface immersedthandy is a vector field in
NM, then

(&) The coordinate lines of the parametrizationMfcoincide with the;-lines of curvature if and only if
F=0andf,=0.
(b) In this system of coordinates the principal curvatures have the following expression

e g'?
ky =2, kp =22,
T E TG

Proof. (a) If the coordinate lines coincide with thelines of curvature, they most be orthogonal, so
F = 0 and the differential equation of thelines of curvature is:

f,E du?+ (g,E — e,G)dudv — f,G dv®=0.

Sinceo, verifies this equation, theyi, E = 0 thus f, vanishes. The converse follows from the form of
the equation ofj-lines of curvature:

(8nE — ,G)dudv =0,

which is obviously satisfied by the coordinate vector figlgsd, .
(b) Let X = ¢, X* + ¢, X?, so write in coordinates the expression of the shape operator

-
Sy(X) = —(nu X'+ nuX?) = (an1du + a219,) X" + (126 + azop) X>.

On the other hand, since the tangent componen} ef V,,n is —S,(9,) we can compute the coefficients

of the second fundamental form with respecytimn these terms, so

€y = —(Puu> 1) = (bu, Nu) = ar1E + ax F,
fn = —(Quv> 1) = (Pu, My) = a11F + a1 G, (3)
8y = — (Do, 1) = (Do, Ny) = a12F + a22G.
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Solving this system foa;; with the conditionsF = 0= f, we obtain:

€y 8y
an=—, =, app=a;=0. O
E G

3. Binormal fields and asymptotic directions

Let M be a surface embedded pyn R*. Givenp € M, consider the unit circle iff, M parametrized
by the angled < [0, 27]. Denote byy, the curve obtained by intersecting with the hyperplane at
p composed by the direct sum of the normal plangV/ and the straight line in the tangent direction
represented by. Such curve is calledormal section of (M) in the directiond. The curvature vector
n(@) of yy in p liesin N, M. Varying 6 from O to 2r, this vector describes an ellipse), M, called the
curvature ellipseof M at p. The points inM are classified inttyperbolic, paraboliaor elliptic provided
they lie outside, on or inside the curvature ellipse. When this ellipse degenerates to a segment the poin
is said to be aemi-umbilic centerln the particular case that it is a radial segmenpa$ known as an
inflection pointof the surface. This inflection point is of real type whebelongs to the curvature ellipse,
and of imaginary type when it doesn’t. A directiérin 7, , ¢ (M) for which 3—3 andn (@) are parallel is
said to be amsymptotic direction

Consider an orthonormal frameé(q, X5, X3, X4} on M and take the dual 1-formguv1, wo, wa, wa},
given byw; = (d¢, X;). Let {wij}ﬁjzl be the corresponding connection forms (see [3] or [12]). These
forms have the following expression in terms of the dual 1-forms [5, p. 263]:

w13 = ex, w1+ fx;wa,
W23 = fx, W1+ &xzW2, )
w14 = ex, w1+ fx, w2,
Was= fx, W1+ &x,W2.

Thenormal curvature N, of M is obtained from the following formula relative to the curvature form of
the normal bundle oM: dwszs = —Nw; A wy. The functionN is a multiple of the area element an.
In fact, it can be seen [5, p. 266] that

1 .
En IN(p)| = Area of curvature ellipse at.

There is an invariant functiomd on M defined as follows: Writee = uX1 + vX, and consider
(de, X3) A (de, X3). Nowde =udX, + du X, +vdXo + dv X,. Therefore,{de, X3) = uwy3 + vwss
and(de, X4) = uwi4 + vwy4. And taking into account that,s, w,3, w14 andwy4 can be put in terms of
the basigw;, w,} of the dual of7,, M, we obtain

(de, X3) A {de, X4) = 8(u, v)wi A wo.

Then the functiomA is given by A(u, v) = dets (u, v).

It can be shown thati(p) is > 0, = 0 or < 0 according to the poinp is elliptic, parabolic or
hyperbolic. The inflection points are also special points at which the fungtiganishes.

Given a normal vector toV at p, n, the height function onM associated to; is defined by
h,(p) = (¢(p),n). It is easy to see that, has a singularity at the point. In the case that this is a
degenerate singularity (hon Morse), we shall say thadefines a binormal direction fai at p. It can be
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seen [7, Lemma 4] that is an asymptotic direction at if and only if 6 lies in the kernel of the Hessian
of some height functiork, at p. In this case we say thatis an asymptotic direction associated to the
binormal directiory; at p.

We observe a field of binormal directions need not be defined over the whole surface in general.
Nevertheless it was shown in [6] that according to the point is hyperbolic, parabolic or elliptic we may
find exactly two, one or none binormal directions respectively. A surfdds said to bdocally convex
if and only if admits a locally support hyperplane at each one of its points. It was also proven in [6] that
a generic surfac@/ is locally convex if and only if it is composed of hyperbolic and inflection points
of imaginary type. In this case, we have two globally defined asymptotic fields whose singularities are
the inflection points off. The generic structure of these fields, as well as some global properties of the
inflection points has been studied in [4].

Let n be a normal field o/. Then the Hessian matrix of the height functiopat each point is given

by
(i 2
fo &)’

wheree, = —(puu, 1), f = —(Duwv, 1), & = —{(Pvv, n). We thus observe that the Hessian matrix:gf
coincides with the Jacobian matrix of the shape opergfor

Therefore, ifb; is one of the binormal fields oM, we have that one of the principal directionsbpis
always given by the corresponding asymptotic direction at each point. The associated principal curvature
is, clearly, identically zero. The other orig, shall be called theinormal curvatureassociated té;.

Lemma 3.1. Suppose thafp;}, i =1, 2, are the two binormal vector fields oWl and the corresponding
asymptotic lines are mutually orthogonal. Then

(a) The asymptotic lines are the curvature lines for both binormal fields.

(b) M is v-umbilic for v = kobq1 + k1bo.

(c) Given any normal vector fielg linear independent te, the n-lines of curvature coincide with the
asymptotic lines oM.

Proof. (a) Considem; any of the binormal vector fields and lete 7, M be a vector which defines an
asymptotic direction. Therefore is in the kernel of the hessian of the height function. Since this
hessian coincides with the shape operaigrat p, the vectoru is an eigenvector of,, corresponding

to the null eigenvalue. The other eigenvector must be orthogonal to this one, but by hypothesis this is
the other asymptotic direction at a nbprumbilic (i.e., inflection) point. Therefore the asymptotic lines
associated to the binorma)] are the curvature lines of this field.

(b) It follows from (a) that the equation of lines of curvature with respecbit@nd b, coincide.
Therefore there is a real valued functiomlefined ond for which the following equations holdf,, =
rfv, andgy, — ey, =r(gp, — €p,), SO 0= fi, — rfp, = |b1 — rba| f, and O= gy, — rgs, — (en, — ren,) =
|b1 — rby|(g, — e,), which implies p is v-umbilic. Now, observe that sindg and b, are binormal we
can assume thai, = g,, = 0 and thusg,, = —re;,. Thereforer = gbl . ThereforeM is umbilical for

the field b, + g"l bz And thus it is also umbilical for the field = e”z bl + £1p,. But it follows from
Lemma 2.3 thaD = koby + k1bo.
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(c) Letn be any normal field o/ linearly independent to. Then, sinceM is v-umbilic, Lemma 2.1
tells us that the;-lines of curvature coincide with thi -lines of curvaturej = 1, 2. According to (a)
these are the asymptotic linesdf. O

Lemma 3.2. With the hypothesis of Lemn®l the curvature associated to the fieldis given by
Ay = kikoE.

Proof. By working with the isothermic coordinates determined by the asymptotic directions we have

ey €pep, + &pihy
Ay =2 =BT ST
E E

Now we can assume thag, = O for b, is a binormal. Thus

gblehz gblehz
= = =kqep,.
E G 1682

Butk, = 52 and the result follows. O

Ay

Remark 3.3. Given any normal field on M let v = v/||v||. It follows from Eq. (2) thatM is v umbilic
if and only if M is v umbilic. Therefore in what follows we shall assume that the vector fiédunitary.

Theorem 3.4. Let M be a surface immersed R*. The following are equivalent conditions a#i:

(a) M has two everywhere defined orthogonal fields of asymptotic lines.
(b) M is v-umbilic, for some globally defined normal fialcbn M.

(c) The normal curvature o#/ vanishes on every point.

(d) All the points ofM are semi-umbilic.

Proof. That (a) implies (b) follows from part (b) in Lemma 3.1. Let us prove that (b) implies (c). Suppose
thus thatM is v-umbilic, for some normal fielst. Consider local coordinates and the orthonormal frame,
{(X1(p), X2(p), v(p), v*+(p)}, corresponding to the one in the proof of Lemma 2.1. Now, it can be seen
that [5, p. 266]

IN| = ‘(ev — &) fir —(epe _gui-)fv‘~

But thev-umbilicity of M tells us that, — g, =0 and f, = 0. ThereforeN(p) =0,Vp € M.

That (c) and (d) are equivalent follows from the fact, mentioned above, Ahais proportional to
the area of the curvature ellipse. For we have that the curvature ellipse degenerates to a segment («
eventually to a point) if and only if its area vanishes.

It only remains to show that (c) implies (a). But this follows from the following formula (see [5, p. 268]
or [13]),

A
tarf (6, — 6) = 7

wheref; andd, represent the angles in the tangent plane, corresponding to the asymptotic directions at &
point p in M. O
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4. v-umbilicity and hyper sphericity

Lemma 4.1. Suppose thaM is v-umbilic anda is thev curvature function onM, wherev is a unitary
normal field onM. In the same frame as in Theor&m we have

(8) w34 =0implies thath is constant
(b) if A constant then for each poipte M we have eithenrwzs(p) = 0 or wia(p) = wos(p) =0;
(c) if A is a nonzero constant tham, = 0.

Proof. In the considered frame we have thaf= v and X, = v*. SinceM is X3 umbilic we can write
Vx X3 =AX, for any vectorX tangent toM. Then the connection forms satisfy

wiz(X) = (Vx X3, X;) =AM(X, X;) =Aw;, j=12 (5)
By taking now the exterior derivative of this equation we get

diAwj+rdw;=dwjz, j=12 (6)
On the other hand, we have fpr= 1 [3]

dwiz= w12 A W23+ W14 A Wa3.
By substituting in Eq. (6) we obtain

drl A w1+ Adwy = A(wip A wy) + wig A Was.
But dw; = w12 A wo, therefore

dl A wp=wia A Wa3
Analogous arguments fgr= 2 lead to the expression

dl A Wy = Wog A Wa3. (7)

Thereforedi = 0 if and only if eitherwss = —w43 =0, or the 1 formsw,4 andw,4 are collinear. This
proves (a). Now by writinguv14 andw,4 we have from Eq. (4)

wis=ex,w1+ fx,w2,
w24= fx, W1+ gx,W2. (8)

Now sincev is globally defined inM, by Theorem 3.4 we can take the isothermic coordinates
determined by the asymptotic direction fields, thus we have fthatanishes and

Wi4=€x,W1,
W24 = 8x,W2.
Then, if w14 andw,4 are collinear they must vanish. From which follows (b).
Suppose now that is a nonzero constant and thag, = 0. Then there is some open subggin M
such thatwi4, wo4 are collinear ortU, this happens if and only ify;4 = wo4 = 0 on U. But in this case

we have thal is X4-umbilic with vanishing associated curvature, iX,,is a binormal ove/ and all
the points inU are inflection points of/. On the other hand is X3-umbilic with associated curvature
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A # 0. So we have

w13 = Awi,
Wo3= )LwZ.
Then using the structure equations and the factdhat, = 0 anddw,4 = 0, we see thaivz, = S,w, and

wz4 = Bowo, for somegy, B,. But w; andw, are independent swz4 =0 onU. Consequentlyws; =0
alloverM. O

Let_?L be the projection oW in the normal bundle oM, we say that a vector field is parallel along
M if VX =0 for any vectory tangent taM.

Proposition 4.2. If M is v-umbilic for some unitary normal field and has isolated inflection points,
then thev-curvature is constant if and only ifis parallel.

Proof. We observe that is parallel if and only ifwss = 0. The result follows easily by looking at the
proof of the above lemma. O

Theorem 4.3. Let M be a surface immersed Rf* such that it isv-umbilic for some unitary normal fielol
with constant associated curvatuke Then ifA £ 0 M is hyperspherical, and if =0 M is hyperplanar.

Proof. Suppose that # 0 then we know from Lemma 4.1 that;, = 0 on M and hence is a parallel
field alongM. Sincev is umbilic, for any vectoX tangent toM, we have

Vxv = Vyv + gﬁv =AX+ gﬁv.
But V+v =0 and hence
6){\) =1X.

Now, the covariant derivation of the radial vector figlds the identity, i.e.Vxp = X, for any vector
X tangent taR#, and thus the following equation holds:

Vx(v —ip) =0,

for any X tangent toM. Thereforev — Ap is parallel alongM. This means that — Ap is a constant
vector Xo, SO

v(p) — A(p) = Xo,
_ Xo—v(p)
=—
for all p € M. This means that/ belongs to a hypersphere with cen@rand radius: .

Assume now thak. = 0 and consider the fram{eX,-};‘:1 as above. Theay, = fx, = gx, =0, and
hencew;s = w3 = 0. Then from Lemma 4.1 either 4 = wp4 = 0 in which casex, = fx, = gx, =0
and we have tha¥ is totally umbilic with vanishing curvature and therefore a plane.

Or there existd/ open set on whichvszs = 0 which tells us that/X3; = 0 so X3 is constant and
thereforeU lies in a 3-space perpendicular Xa.

We can then conclude thatif= 0 the surfacel must lie in a hyperplane. O
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Remark 4.4. We observe that in the above theorem the hypothesi€ implies that all the points o/
are inflection points so we can state the following:

Corollary 4.5. If M is a surface inR* whose inflection points are isolated and itisimbilic for some
unitary normal fieldv with constant curvature theM is hyperspherical.

Remark 4.6. The existence of two globally defined orthogonal asymptotic fields implies automatically
that the inflection points o#/ are isolated.

Corollary 4.7. Suppose thatM is a surface with isolated inflection points iR*. Then M is
hyperspherical if and only if its asymptotic lines are globally defined and orthogonal and its binormal
curvaturestk; };—1 » satisfy the following relation

ki k
— + — +2cosx | E = constant
ko Kk

whereq is the angle between the two binormals at each point.

Proof. As we have seen previously the fiald= k,b, + k15, has curvature., = k1k, E. Now, the unit
field v/||v] is constant but this is equivalent to the above requirement.

Remark 4.8. A submanifoldM is said to besoparametricprovided its normal bundle is flat and the
principal curvatures along any parallel normal fieldwfre constant. It has been shownin [9, p. 123] that
an isoparametria-manifold of R"** is compact if and only if it is contained in a standard hypersphere.
We can then conclude from the above results that:

(@) Any isoparametric surfack in R* is v-umbilic for some globally defined normal fieldon M.
Moreover,M is locally convex and has everywhere defined orthogonal asymptotic lines.

(b) If M is a compact isoparametric surfaceRfA then there is some globally defined parallel normal
field v on M, such thatV is v-umbilic.
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