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Abstract

We study some properties of surfaces in 4-space all whose points are umbilic with respect to some normal
field. In particular, we show that this condition is equivalent to the orthogonality of the (globally defined) fields of
asymptotic directions. We also analyze necessary and sufficient conditions for the hypersphericity of surfaces in
4-space. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is possible to define asymptotic directions over the points of the surfaces in 4-space (called conjugate
directions by J. Little [5]). These directions determine fields that do not need to be globally defined on
the surfaces. It was shown in [6], by means of techniques relying on the analysis of the singularities of
height functions on the surface, that each field of asymptotic directions is associated to some normal field
of binormal directions on the surface and that a necessary and sufficient condition for existence of two
globally defined fields of this type on a surfaceM in R

4 is the local convexity ofM (in the sense that it
has a locally support hyperplane at each one of its points). It was also proven that the critical points of
these fields are the inflection points ofM .
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We say that a surface inR4 is hypersphericalprovided it is contained in a hypersphere. Clearly,
any hyperspherical surface is locally convex. We saw in [7] that stereographic projection transforms
curvature lines of surfaces inR3 into asymptotic lines of their images inS3 considered as submanifolds
of R

4. Consequently, if the surface is hyperspherical, then the two fields of asymptotic directions must
be orthogonal all over the surface, except at the inflection points. It was then conjectured that this
orthogonality condition on the asymptotic lines is also sufficient to guarantee the hypersphericity of
surfaces inR4.

The main feature of this paper consists in finding some geometrical conditions which are equivalent
to the orthogonality of asymptotic lines, and proving that these together with a further requirement imply
the hypersphericity of the surface.

Given a surfaceM in R
4 and a globally defined normal fieldν onM , there is a shape operatorSν on

M intrinsically attached to the second fundamental form,II ν , associated toν on M . The eigenvectors
of Sν determine theν-curvature lines ofM and its eigenvalues theν-principal curvatures. We say that a
point x ∈ M is ν-umbilic provided the twoν-principal curvatures,λ1 andλ2 coincide atx. The typical
structure of the curvature lines for a generic normal fieldν on M was analized in [11]. Theν-umbilic
points were characterized as the critical points of the corresponding principal direction fields.

A surface is said to beν-umbilic if all its points are umbilic for the fieldν. In this case we have a
curvature functionλ associated to the fieldν defined over the wholeM . A surfaceM is totally umbilic
if it is ν-umbilic for any normal fieldν overM . It is well known (see [12] for instance) that a surfaceM

in 4-space is totally umbilic with the same principal curvature for any normal direction if and only if it is
a 2-sphere. On the other hand, the geometric properties of the surfaces that are umbilic for some normal
field have been studied by B.Y. Chen [1,2]. In this work, we relate the property of having globally defined
orthogonal asymptotic lines with theν-umbilicity for some normal field, obtaining the following result:

Theorem 3.4(a, b). A surfaceM immersed inR4 has two globally defined orthogonal fields of asymptotic
directions if and only if it isν-umbilic for some globally defined normal fieldν onM .

Moreover, we show that surfaces with this property have univocally defined principal curvature lines,
which coincide with the asymptotic lines, independently of the choice of the normal field (different
from ν) onM .

On the other hand, we prove thatν-umbilicity of M is also equivalent to the vanishing of the normal
curvature ofM , or in other words, to the requirement that the normal bundle ofM be totally flat. It
follows from this that

Theorem 3.4(b, d). M is ν-umbilic for some globally defined normal fieldν if and only ifM is totally
made of semi-umbilic points.

It is interesting to observe that the semi-umbilic points can be characterized as singularities of corank
2 for distance squared functions taken from some focal centers of the surface (see [10] for an introduction
to the geometrical interpretation of the singularities of distance squared functions on submanifolds and
[8] for the particular case of surfaces in 4-space). It follows that the surfaces all whose points are semi-
umbilic have a “degenerate” family of distance squared functions (in the sense that it is not stable). In
other words, these surfaces have non generic contacts with their focal hypersphere at each point, in the
sense that they are “stronger” than the usual ones at most points. In the case of a surface contained in a
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hypersphere, this contact is completely degenerate. In fact, the distance squared function from the center
of the hypersphere is constant and thus has a non finitely determined singularity at every point. We also
point out that the singularities of corank 2 for the distance squared functions on surfaces in 3-space are
precisely the umbilic points of these surfaces. Therefore, the surfaces in 3-space that are totally made of
corank 2 singularities for distance squared functions are either pieces of a 2-sphere or a plane.

Once we have put the things in terms ofν-umbilicity we can apply the theory developed by
Chen in order to obtain results on hypersphericity. In particular, we can use the following statement
[1, Corollary 3.1, p. 473], a proof of which, in the case of surfaces in 4-space, is included here for the
sake of completeness:

Theorem 4.3. The surfaceM is hyperspherical if and only if it isν-umbilic for some unit normal fieldν
overM whose associated principal curvatureλ is a nonzero constant.

We observe that in the case of a surface with isolated inflection points this amounts to say that the
surfaceM is hyperspherical if and only if it isν-umbilic for some normal parallel fieldν overM .

Finally, we conclude

Corollary 4.7. The surfaceM is hyperspherical if and only if its asymptotic lines are globally defined
and orthogonal and its binormal curvatures{ki}i=1,2 satisfy the following relation

(
k1

k2
+ k2

k1
+ 2cosα

)
E = constant,

whereα is the angle between the two binormals at each point andE represents the coefficient of the first
fundamental form ofM in isothermic coordinates.

We would like to point out, finally, that the stereographic projection provides a bridge between the
study of the properties of asymptotic lines and inflection points of surfaces inR

4 and that of curvature
lines and umbilic points of those inR3. In this sense, any new results concerning the first represent a
generalization of similar problems relative to the later ones.

2. Curvature lines associated to a normal vector field

Let M be a smooth oriented surface immersed inR
4 with the Riemannian metric induced by the

standard Riemannian metric ofR
4. For eachp ∈ M consider the decompositionTpR

4 = TpM ⊕NpM ,
whereNpM is the orthogonal complement ofTpM in R

4. Let �∇ be the Riemannian connection ofR
4.

Given local vector fieldsX, Y onM , let �X, �Y be some local extensions toR4. The tangent component of
the Riemannian connection inR4 is the Riemannian connection ofM: ∇XY = (�∇�X�Y )
.

Let X (M) andN (M) be the space of the smooth vector fields tangent toM and the space of the
smooth vector fields normal toM , respectively. Consider the second fundamental map,

α :X (M)×X (M)→ NM, α(X,Y )= �∇�X�Y − ∇XY.

This map is well defined, symmetric and bilinear.
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Let p ∈ M andν ∈NpM , ν �= 0, define the function

Hν :TpM × TpM → R, Hν(X,Y )= 〈α(X,Y ), ν〉.
Then this function is as well symmetric and bilinear. The second fundamental form ofM at p is the
associated quadratic form,

II ν :TpM → R, II ν(X)=Hν(X,X).

Recall the shape operator

Sν :TpM → TpM, Sν(X)= −(�∇�Xν̄)

,

where ν̄ is a local extension toR4 of the normal vector fieldν at p and 
 means the tangent
component. This operator is bilinear, self-adjoint and for anyX,Y ∈ TpM satisfies the following
equation:〈Sν(X),Y 〉 = Hν(X,Y ). So, the second fundamental form can be expressed byII ν(X) =
〈Sν(X),X〉. Thus for eachp ∈ M , there exists an orthonormal basis of eigenvectors ofSν ∈ TpM , for
which the restriction of the second fundamental form to the unitary vectors,II ν |S1, takes its maximal
and minimal values. The corresponding eigenvaluesk1, k2 are themaximaland minimal ν-principal
curvatures, respectively. The pointp is aν-umbilic if the ν-principal curvatures coincide. LetUν be the
set ofν-umbilics inM . For anyp ∈M\Uν there are twoν-principal directions defined by the eigenvectors
of Sν , these fields of directions are smooth and integrable, then they define two families of orthogonal
curves, its integrals, which are called theν-principal lines of curvature, one maximal and the other
one minimal. The two orthogonal foliations with theν-umbilics as its singularities form theν-principal
configurationof M . We say that the surfaceM is ν-umbilical if each point ofM is ν-umbilic. The
differential equation ofν-lines of curvature is

(1)Sν
(
X(p)

) = λ(p)X(p).

Suppose thatφ, U ⊂ M is an open neighborhood with local coordinates(u, v). Let E, F , G be
the coefficients of the first fundamental form in this coordinate chart. The coefficients of the second
fundamental form are

eν = II ν(∂u)= −〈α(∂u, ∂u), ν〉,
fν = −〈α(∂u, ∂v), ν〉 = −〈α(∂v, ∂u), ν〉,
gν = II ν(∂v)= −〈α(∂v, ∂v), ν〉,

where∂u = ∂
∂u

and∂v = ∂
∂v
.

Eq. (1) has the following expression in this coordinate chart [11].

(fνE − eνF ) du
2 + (gνE − eνG)dudv + (gνF − fνG)dv2 = 0.

Assume that this coordinate chart is isothermic:E =G> 0,F = 0. Then this equation has the form

(2)fν du
2 + (gν − eν) dudv − fν dv

2 = 0.

Lemma 2.1. Assume that there existν ∈NM such thatM is ν-umbilical. The principal configuration of
any normal vector fieldη linear independent ofν, is univocally determined.
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Proof. For any p ∈ M consider a local isothermic chart as above. Defineν⊥ = φu ∧ φv ∧ ν ∈
NM , the cross product inR4 of the vector fieldsφu, φv, ν. At each pointp ∈ M the frame
{φu(p),φv(p), ν(p), ν⊥(p)} is an orthogonal basis ofTpR

4, so for any normal vector fieldη, there are
smooth functionsa, b :U → R such thatη = aν + bν⊥. The coefficients of the second fundamental form
can be expressed by

eη = −〈φuu, η〉 = −〈
φuu, aν + bν⊥〉 = aeν + beν⊥ .

Analogously,fη = afν + bfν⊥ andgη = agν + bgν⊥ . Therefore the equation ofν-lines of curvature in
these coordinates is

a
(
fν du

2 + (gν − eν) dudv − fν dv
2
) + b

(
fν⊥ du2 + (gν⊥ − eν⊥) dudv − fν⊥ dv2

) = 0,

sinceM is ν-umbilic fν = 0 andgν = fν so

b
(
fν⊥ du2 + (gν⊥ − eν⊥) dudv − fν⊥ dv2

) = 0, b(p) �= 0,

which implies that the principal configurations ofη andν⊥ coincide. ✷
Remark 2.2. It can be seen in [1] that ifM is a spherical surface inR4, thenM is ρ-umbilical with
constant normal curvature.

Lemma 2.3. Assume thatM ⊂ R
4 is a smooth oriented surface immersed inR

4 andη is a vector field in
NM , then:

(a) The coordinate lines of the parametrization ofM coincide with theη-lines of curvature if and only if
F = 0 andfη = 0.

(b) In this system of coordinates the principal curvatures have the following expression:

k1 = eη

E
, k2 = gη

G
.

Proof. (a) If the coordinate lines coincide with theη-lines of curvature, they most be orthogonal, so
F = 0 and the differential equation of theη-lines of curvature is:

fηE du2 + (gηE − eηG)dudv − fηGdv2 = 0.

Since∂u verifies this equation, thenfηE = 0 thusfη vanishes. The converse follows from the form of
the equation ofη-lines of curvature:

(gηE − eηG)dudv = 0,

which is obviously satisfied by the coordinate vector fields∂u, ∂v.
(b) LetX = φuX

1 + φvX
2, so write in coordinates the expression of the shape operator

Sη(X)= −(
ηuX

1 + ηvX
2)
 = (a11φu + a21φv)X

1 + (a12φu + a22φv)X
2.

On the other hand, since the tangent component ofηu = �∇∂uη is −Sη(∂u) we can compute the coefficients
of the second fundamental form with respect toη in these terms, so

(3)
eη = −〈φuu, η〉 = 〈φu, ηu〉 = a11E + a21F,

fη = −〈φuv, η〉 = 〈φu, ηv〉 = a11F + a21G,

gη = −〈φvv, η〉 = 〈φv, ηv〉 = a12F + a22G.
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Solving this system foraij with the conditionsF = 0= fη we obtain:

a11 = eη

E
,

gη

G
, a12 = a21 = 0. ✷

3. Binormal fields and asymptotic directions

LetM be a surface embedded byφ in R
4. Givenp ∈ M , consider the unit circle inTpM parametrized

by the angleθ ∈ [0,2π ]. Denote byγθ the curve obtained by intersectingM with the hyperplane at
p composed by the direct sum of the normal planeNpM and the straight line in the tangent direction
represented byθ . Such curve is callednormal section ofφ(M) in the directionθ . The curvature vector
η(θ) of γθ in p lies inNpM . Varyingθ from 0 to 2π , this vector describes an ellipse inNpM , called the
curvature ellipseof M atp. The points inM are classified intohyperbolic, parabolicor elliptic provided
they lie outside, on or inside the curvature ellipse. When this ellipse degenerates to a segment the point
is said to be asemi-umbilic center. In the particular case that it is a radial segment ofp is known as an
inflection pointof the surface. This inflection point is of real type whenp belongs to the curvature ellipse,
and of imaginary type when it doesn’t. A directionθ in Tφ(p)φ(M) for which ∂η

∂θ
andη(θ) are parallel is

said to be anasymptotic direction.
Consider an orthonormal frame{X1,X2,X3,X4} on M and take the dual 1-forms{w1,w2,w3,w4},

given bywi = 〈dφ,Xi〉. Let {wij }4
i,j=1 be the corresponding connection forms (see [3] or [12]). These

forms have the following expression in terms of the dual 1-forms [5, p. 263]:

(4)

w13 = eX3w1 + fX3w2,

w23 = fX3w1 + gX3w2,

w14 = eX4w1 + fX4w2,

w24 = fX4w1 + gX4w2.

Thenormal curvature, N , of M is obtained from the following formula relative to the curvature form of
the normal bundle ofM: dw34 = −Nw1 ∧w2. The functionN is a multiple of the area element onM .
In fact, it can be seen [5, p. 266] that

1

2
π |N(p)| = Area of curvature ellipse atp.

There is an invariant function∆ on M defined as follows: Writee = uX1 + vX2 and consider
〈de,X3〉 ∧ 〈de,X4〉. Now de = udX1 + duX1 + v dX2 + dvX2. Therefore,〈de,X3〉 = uw13 + vw23

and〈de,X4〉 = uw14 + vw24. And taking into account thatw13, w23, w14 andw24 can be put in terms of
the basis{w1,w2} of the dual ofTpM , we obtain

〈de,X3〉 ∧ 〈de,X4〉 = δ(u, v)w1 ∧w2.

Then the function∆ is given by∆(u, v)= detδ(u, v).
It can be shown that∆(p) is > 0, = 0 or < 0 according to the pointp is elliptic, parabolic or

hyperbolic. The inflection points are also special points at which the function∆ vanishes.
Given a normal vector toM at p, η, the height function onM associated toη is defined by

hη(p) = 〈φ(p), η〉. It is easy to see thathη has a singularity at the pointp. In the case that this is a
degenerate singularity (non Morse), we shall say thatη defines a binormal direction forM atp. It can be
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seen [7, Lemma 4] thatθ is an asymptotic direction atp if and only if θ lies in the kernel of the Hessian
of some height functionhη at p. In this case we say thatθ is an asymptotic direction associated to the
binormal directionη atp.

We observe a field of binormal directions need not be defined over the whole surface in general.
Nevertheless it was shown in [6] that according to the point is hyperbolic, parabolic or elliptic we may
find exactly two, one or none binormal directions respectively. A surfaceM is said to belocally convex
if and only if admits a locally support hyperplane at each one of its points. It was also proven in [6] that
a generic surfaceM is locally convex if and only if it is composed of hyperbolic and inflection points
of imaginary type. In this case, we have two globally defined asymptotic fields whose singularities are
the inflection points ofM . The generic structure of these fields, as well as some global properties of the
inflection points has been studied in [4].

Let η be a normal field onM . Then the Hessian matrix of the height functionhη at each point is given
by

(
eη fη
fη gη

)
,

whereeη = −〈φuu, η〉, fη = −〈φuv, η〉, gη = −〈φvv, η〉. We thus observe that the Hessian matrix ofhη
coincides with the Jacobian matrix of the shape operatorSη.

Therefore, ifbi is one of the binormal fields onM , we have that one of the principal directions ofbi is
always given by the corresponding asymptotic direction at each point. The associated principal curvature
is, clearly, identically zero. The other one,ki , shall be called thebinormal curvatureassociated tobi .

Lemma 3.1. Suppose that{bi}, i = 1,2, are the two binormal vector fields onM and the corresponding
asymptotic lines are mutually orthogonal. Then:

(a) The asymptotic lines are the curvature lines for both binormal fields.
(b) M is ν-umbilic for ν = k2b1 + k1b2.

(c) Given any normal vector fieldη linear independent toν, theη-lines of curvature coincide with the
asymptotic lines ofM .

Proof. (a) Considerbi any of the binormal vector fields and letu ∈ TpM be a vector which defines an
asymptotic direction. Thereforeu is in the kernel of the hessian of the height functionhbi . Since this
hessian coincides with the shape operatorSbi at p, the vectoru is an eigenvector ofSbi corresponding
to the null eigenvalue. The other eigenvector must be orthogonal to this one, but by hypothesis this is
the other asymptotic direction at a nonbi -umbilic (i.e., inflection) point. Therefore the asymptotic lines
associated to the binormalbi are the curvature lines of this field.

(b) It follows from (a) that the equation of lines of curvature with respect tob1 and b2 coincide.
Therefore there is a real valued functionr defined onM for which the following equations hold,fb1 =
rfb2 andgb1 − eb1 = r(gb2 − eb2), so 0= fb1 − rfb2 = |b1 − rb2|fν and 0= gb1 − rgb2 − (eb1 − reb2) =
|b1 − rb2|(gν − eν), which impliesp is ν-umbilic. Now, observe that sinceb1 andb2 are binormal we
can assume thateb1 = gb2 = 0 and thusgb1 = −reb2. Thereforer = − gb1

eb2
. ThereforeM is umbilical for

the fieldb1 + gb1
eb2

b2. And thus it is also umbilical for the fieldν = eb2
E
b1 + gb1

E
b2. But it follows from

Lemma 2.3 thatν = k2b1 + k1b2.
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(c) Letη be any normal field onM linearly independent toν. Then, sinceM is ν-umbilic, Lemma 2.1
tells us that theη-lines of curvature coincide with theb1-lines of curvature,i = 1,2. According to (a)
these are the asymptotic lines ofM . ✷
Lemma 3.2. With the hypothesis of Lemma3.1 the curvature associated to the fieldν is given by
λν = k1k2E.

Proof. By working with the isothermic coordinates determined by the asymptotic directions we have

λν = eν

E
= eb2eb1 + gb1eb2

E
.

Now we can assume thateb1 = 0 for b1 is a binormal. Thus

λν = gb1eb2

E
= gb1eb2

G
= k1eb2.

But k2 = eb2
E

and the result follows. ✷
Remark 3.3. Given any normal fieldν onM let ν̄ = ν/‖ν‖. It follows from Eq. (2) thatM is ν umbilic
if and only ifM is ν̄ umbilic. Therefore in what follows we shall assume that the vector fieldν is unitary.

Theorem 3.4. LetM be a surface immersed inR4. The following are equivalent conditions onM :

(a) M has two everywhere defined orthogonal fields of asymptotic lines.
(b) M is ν-umbilic, for some globally defined normal fieldν onM .
(c) The normal curvature ofM vanishes on every point.
(d) All the points ofM are semi-umbilic.

Proof. That (a) implies (b) follows from part (b) in Lemma 3.1. Let us prove that (b) implies (c). Suppose
thus thatM is ν-umbilic, for some normal fieldν. Consider local coordinates and the orthonormal frame,
{X1(p),X2(p), ν(p), ν

⊥(p)}, corresponding to the one in the proof of Lemma 2.1. Now, it can be seen
that [5, p. 266]

|N | = ∣∣(eν − gν)fν⊥ − (eν⊥ − gν⊥)fν
∣∣.

But theν-umbilicity of M tells us thateν − gν = 0 andfν = 0. ThereforeN(p)= 0, ∀p ∈M.

That (c) and (d) are equivalent follows from the fact, mentioned above, that|N | is proportional to
the area of the curvature ellipse. For we have that the curvature ellipse degenerates to a segment (or
eventually to a point) if and only if its area vanishes.

It only remains to show that (c) implies (a). But this follows from the following formula (see [5, p. 268]
or [13]),

tan2(θ1 − θ2)= ∆

N2
,

whereθ1 andθ2 represent the angles in the tangent plane, corresponding to the asymptotic directions at a
pointp in M . ✷
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4. ν-umbilicity and hypersphericity

Lemma 4.1. Suppose thatM is ν-umbilic andλ is theν curvature function onM , whereν is a unitary
normal field onM . In the same frame as in Theorem3.4we have:

(a) w34 ≡ 0 implies thatλ is constant;
(b) if λ constant then for each pointp ∈M we have either,w34(p)= 0 or w14(p)=w24(p)= 0;
(c) if λ is a nonzero constant thenw34 ≡ 0.

Proof. In the considered frame we have thatX3 = ν andX4 = ν⊥. SinceM is X3 umbilic we can write
∇XX3 = λX, for any vectorX tangent toM . Then the connection forms satisfy

(5)wj3(X)= 〈�∇XX3,Xj 〉 = λ〈X,Xj〉 = λwj, j = 1,2.

By taking now the exterior derivative of this equation we get

(6)dλ∧wj + λdwj = dwj3, j = 1,2.

On the other hand, we have forj = 1 [3]

dw13 =w12 ∧w23 +w14 ∧w43.

By substituting in Eq. (6) we obtain

dλ∧w1 + λdw1 = λ(w12 ∧w2)+w14 ∧w43.

But dw1 =w12 ∧w2, therefore

dλ∧w1 =w14 ∧w43

Analogous arguments forj = 2 lead to the expression

(7)dλ∧w2 =w24 ∧w43.

Thereforedλ ≡ 0 if and only if eitherw34 = −w43 = 0, or the 1 formsw14 andw24 are collinear. This
proves (a). Now by writingw14 andw24 we have from Eq. (4)

w14 = eX4w1 + fX4w2,

(8)w24 = fX4w1 + gX4w2.

Now sinceν is globally defined inM , by Theorem 3.4 we can take the isothermic coordinates
determined by the asymptotic direction fields, thus we have thatfX4 vanishes and

w14 = eX4w1,

w24 = gX4w2.

Then, ifw14 andw24 are collinear they must vanish. From which follows (b).
Suppose now thatλ is a nonzero constant and thatw34 �= 0. Then there is some open subsetU in M

such thatw14, w24 are collinear onU , this happens if and only ifw14 = w24 = 0 onU . But in this case
we have thatU is X4-umbilic with vanishing associated curvature, i.e.,X4 is a binormal overU and all
the points inU are inflection points ofM . On the other handU is X3-umbilic with associated curvature
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λ �= 0. So we have

w13 = λw1,

w23 = λw2.

Then using the structure equations and the fact thatdw14 = 0 anddw24 = 0, we see thatw34 = β1w1 and
w34 = β2w2, for someβ1, β2. But w1 andw2 are independent sow34 = 0 onU . Consequentlyw34 ≡ 0
all overM . ✷

Let �∇⊥ be the projection of�∇ in the normal bundle onM , we say that a vector field is parallel along
M if �∇⊥

Y X ≡ 0 for any vectorY tangent toM .

Proposition 4.2. If M is ν-umbilic for some unitary normal fieldν and has isolated inflection points,
then theν-curvature is constant if and only ifν is parallel.

Proof. We observe thatν is parallel if and only ifw34 = 0. The result follows easily by looking at the
proof of the above lemma.✷
Theorem 4.3. LetM be a surface immersed inR4 such that it isν-umbilic for some unitary normal fieldν
with constant associated curvatureλ. Then ifλ �= 0 M is hyperspherical, and ifλ= 0 M is hyperplanar.

Proof. Suppose thatλ �= 0 then we know from Lemma 4.1 thatw34 ≡ 0 onM and henceν is a parallel
field alongM . Sinceν is umbilic, for any vectorX tangent toM , we have

�∇Xν = ∇Xν + �∇⊥
Xν = λX + �∇⊥

Xν.

But �∇⊥ν = 0 and hence

�∇Xν = λX.

Now, the covariant derivation of the radial vector fieldρ is the identity, i.e.,∇Xρ =X, for any vector
X tangent toR4, and thus the following equation holds:

�∇X(ν − λρ)= 0,

for anyX tangent toM . Thereforeν − λρ is parallel alongM . This means thatν − λρ is a constant
vectorX0, so

ν(p)− λ(p)=X0,

p = X0 − ν(p)

λ
,

for all p ∈M . This means thatM belongs to a hypersphere with centerX0
λ

and radius1
λ
.

Assume now thatλ = 0 and consider the frame{Xi}4
i=1 as above. TheneX3 = fX3 = gX3 = 0, and

hencew13 = w23 = 0. Then from Lemma 4.1 eitherw14 = w24 ≡ 0 in which caseeX4 = fX4 = gX4 = 0
and we have thatM is totally umbilic with vanishing curvature and therefore a plane.

Or there existsU open set on whichw34 = 0 which tells us thatdX3 = 0 soX3 is constant and
thereforeU lies in a 3-space perpendicular toX3.

We can then conclude that ifλ= 0 the surfaceM must lie in a hyperplane. ✷
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Remark 4.4. We observe that in the above theorem the hypothesisλ= 0 implies that all the points ofM
are inflection points so we can state the following:

Corollary 4.5. If M is a surface inR4 whose inflection points are isolated and it isν-umbilic for some
unitary normal fieldν with constant curvature thenM is hyperspherical.

Remark 4.6. The existence of two globally defined orthogonal asymptotic fields implies automatically
that the inflection points ofM are isolated.

Corollary 4.7. Suppose thatM is a surface with isolated inflection points inR4. Then M is
hyperspherical if and only if its asymptotic lines are globally defined and orthogonal and its binormal
curvatures{ki}i=1,2 satisfy the following relation(

k1

k2
+ k2

k1
+ 2cosα

)
E = constant,

whereα is the angle between the two binormals at each point.

Proof. As we have seen previously the fieldν = k2b1 + k1b2 has curvatureλν = k1k2E. Now, the unit
field ν/‖ν‖ is constant but this is equivalent to the above requirement.✷
Remark 4.8. A submanifoldM is said to beisoparametricprovided its normal bundle is flat and the
principal curvatures along any parallel normal field ofM are constant. It has been shown in [9, p. 123] that
an isoparametricn-manifold ofRn+k is compact if and only if it is contained in a standard hypersphere.
We can then conclude from the above results that:

(a) Any isoparametric surfaceM in R
4 is ν-umbilic for some globally defined normal fieldν on M .

Moreover,M is locally convex and has everywhere defined orthogonal asymptotic lines.
(b) If M is a compact isoparametric surface inR

4 then there is some globally defined parallel normal
field ν onM , such thatM is ν-umbilic.
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