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PRODUCTS OF QUASI-p-PSEUDOCOMPACT
SPACES

M. SANCHIS (Castells) and A. TAMARIZ-MASCARUA (México)

Abstract. Given p € 3(w) \w, we determine when a product of quasi-p-pseu-
docompact spaces preserves this property. In particular, we analyze the product
of quasi-p-pseudocompact subspaces of 3(w) containing w. We give examples of
spaces X, Y, X, Y; which are quasi-p-pseudocompact for every p € w*, but X
x Y is not pseudocompact, and X X Y; is pseudocompact and it is not quasi-
s-pseudocompact for each s € w*. Besides, we prove that every pseudocompact
space X of B(w) with w C X, is quasi-p-pseudocompact for some p € w*. Finally,
we introduce, for each p € w™, the class P, of all spaces X such that X x Y is
quasi-p-pseudocompact when so is Y'; and we prove: (1) the intersection of classes
Pp (p € w*) coincides with the Frolik class; (2) every class P, is closed under
arbitrary products; (3) the partial ordered set ({’Pp tpEWHD ) is isomorphic
to the set of equivalence classes of free ultrafilters on w with the Rudin—Keisler
order. A topological characterization of RK-minimal ultrafilters is also given.

1. Introduction

All spaces considered in this paper will be Tychonoff spaces. w is the set
of natural numbers, 8(w) is its Stone-Cech compactification and w* = f(w)
\ w, that is, the set of all free ultrafilters on w. The Rudin—Keisler order <pg
on B(w) is defined by p Sk ¢ if there exists a function g : w — w such that
g% (q) = p, where ¢” is the continuous extension to 8(w) of g. If p <rx ¢ and
q Srk p, for p,q € w*, then we say that p and ¢ are RK-equivalent and we
write p gk ¢. It is not difficult to verify that p ~rx ¢ if and only if there
is a permutation o of w such that o?(p) = ¢q. For p € w*, we set Prx(p) =
{7" € B(w) : r SgrK p}. The type of p € w* is the set T'(p) = {r € w*: p ~rK
r}. Finally, we denote by ¥(p) the set T'(p) U w.

The deduction of topological properties by means of the theory of ultra-
filters on w has been widely studied in the literature. The well-known Frolik’s
Theorem [5, Theorem 3.6] on pseudocompactness and the techniques devel-
oped by Ginsburg and Saks in [9] are just two seminal examples. Recently,
another kind of topological properties related to pseudocompactness has been
introduced and studied by using the concept of free ultrafilter (see e.g, [7], [8],
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[13], [14]); namely the authors consider the notion of M-pseudocompactness
for several subsets M of w* introduced by Garcia-Ferreira in [7]. The starting
point is the following

1.1. DEFINITION. For p € w*, a point z € X is said to be a p-limit
point of a sequence (Uy), ., of nonempty subsets of X (in symbols: z =
p-lim (Uy),,.,,) if for each neighborhood V' of z, the set {n <w: U, NV
# (0} belongs to p.

This notion was introduced by Ginsburg and Saks [9] by generalizing the
notion of p-limit point discovered and investigated by Bernstein in [1]. It
should be mentioned that Bernstein’s p-limit concept was also introduced,
in a different form, by Frolik [6] and Katétov [10], [11].

Now, let us agree to say that a space X is M -pseudocompact, where () #
M C w*, if for every sequence (Uy),, ., of nonempty open sets in X, there are
p € M and x € X such that z = p-lim (Uy,), . Thus, X is pseudocompact
if and only if X is w*-pseudocompact; X is quasi-p-pseudocompact if and
only if it is (Prg (p) \ w)-pseudocompact; and X is p-pseudocompact if and
only if it is {p}-pseudocompact. In this paper we are interested in analyzing
M-pseudocompactness for M = Prg(p) \ w. In particular we are going to
study the product of this kind of spaces; besides, we analyze the class P,
of spaces X for which its product with every quasi-p-pseudocompact space
preserves this property. We prove that ﬂpEw* P, coincides with the class

P of Frolik spaces studied in [5]. We also prove that every pseudocompact
subspace of f(w) containing w is quasi-p-pseudocompact for some p € w*,
and we obtain a topological characterization of RK-minimal free ultrafilters
on w.

2. Products of M-pseudocompact spaces

In this section we give some results about products of M-pseudocompact
spaces for arbitrary nonempty M C w*.
The proof of the next theorem follows from a standard argument.

2.1. THEOREM. Let () # M C w*. Let {X,: s € S} be a family of topo-
logical spaces. Then, the product space X =[] g Xs is M-pseudocompact

if and only if HSESO X is M-pseudocompact for every countable subset Sy
of S.

So, the problem of knowing when a product of spaces is M-pseudocom-
pact can be reduced to the case of the product of countably many factors.

For a family { X, : s € S} of topological spaces, we will denote by Oy the
set of nonempty open subsets of X for each s € S, and 7; will be the natural
projection from [], ¢ X, to X;. The next lemma will be useful.
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2.2. LEMMA. Let {X;: s € S} be a family of topological spaces. Let x =
(25)scg € X = [leg Xs be an r-limit of a sequence (Vy,),,,, of subsets of X,
with v € w*. Then x4 = r-lim (Ws(Vn)) new for every s € S.

PROOF. Let s be an arbitrary element of S. Let W be a neighborhood
of zs. Then Y = ngs , where Y, = W, and Y, = X, whenever g # s, is a
neighborhood of z. So,

{n<w:V,NY #£0} €r.
It happens that V;, N Y # 0 if and only if 75(V;,) N W # (. Therefore
{n<w: Ws(Vn)ﬂWs#@} €r.

This means that z; = r-lim (WS(Vn)) <" O

2.3. THEOREM. Let() # M C w*, 0 <t < w and {X;: s < t} be a family
of topological spaces. Then the product space X =[], X, is M-pseudocom-
pact if and only if for every sequence ((U")Kt) ., of elements in [, Os,

there exist r € M and (z4), ., € X such that z, = ' lim (U$) <y for every
s <t
PROOF. Assume that X is M-pseudocompact and let (U}'), ., be a se-

quence of open sets in X, for each s < t. For each n < w, let V,, be the open
set of X defined as follows:

Hs<n Usn X Hs>n XS if t= w,
V., = -
A if t<w.

As X is M-pseudocompact, we can find x = (acs)s<t € X and r € M such
that x = r-lim (V,,), .. Applying Lemma 2.2 it is an easy matter to see
that z, = r-lim (UY), ,, for each s <t

Now, we are going to prove the converse. For each n < w, let U, =
[I,<(VJ" be a standard open set in X for each n < w. We shall prove that
the sequence (U,),,.,, has an r-limit point for some r € M.

For this in turn, we take for each s <t the sequence (V') _ . By as-
sumption, there exist » € M and (zs),., € X such that zy = r-lim (VJ"),
for every s <t. We shall finish the proof by showing that z = (z,),,
= r-lim(Un),,,- In fact, let Wy, x -« x Wy, x[L;cqqiy,..i,1 X5 be a standard

neighborhood of (z,),_, in X. Then

k
E:ﬂ{n<w: Wi, NVt #0} er.
7j=1
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Since

EC{n<w: Wi, xx Wi, x [ X)) mUn;«é(Z)},
G€{i1se ik}

the proof is complete. O

In [7] the following concept was introduced. A space X is said to be
(v, M)-pseudocompact if for every set {(Vng)n@): ¢ <v} of y-many se-
quences, for v < a, of nonempty open subsets of X, there are p € M and
z¢ € X, for each ¢ < v, such that z¢ = p-lim (Vrf)n@; for all £ < «.

As a consequence of Theorems 2.1 and 2.3 we obtain the following gen-
eralization of Theorems 2.2 and 2.3 in [7].

2.4. COROLLARY. Let t be a cardinal number, X a topological space and
M C w*. Then the following assertions are equivalent:

(1) X' is M-pseudocompact.

(2) X is (t, M)-pseudocompact.

Moreover, if t is an infinite cardinal, (1) and (2) are equivalent to

(3) X is (w, M)-pseudocompact.

M-pseudocompactness for the product of subspaces of 3(w) which con-
tain w can be determined by sequences of natural numbers as we are going
to see in Theorem 2.6. First we present a well-known lemma. We include its
proof for the sake of completeness.

2.5. LEMMA. Let r,p € w* and let (ky), ., be a sequence in w. Then

r =p-lim (k) if and only if fB(p) =1 where f(n) = ky,.

n<w

PROOF. Assume that r = p-lim (&), .. Then, for each B € r, we have
that f~'(B) = {n <w: k, € B} € p. On the other hand, f’(p) = {A Cw:
f~Y(A) € p}. Thus r = f5(p).

Now, assume that f(n) =k, for every n < w and f%(p) =r. Let B € r.
We have that {n <w: k, € B} = f"}(B). Since r = fP(p)={ACw:
f7'(A) € p}, then f~1(B) € p. So, r = p-lim (k) O

2.6. THEOREM. Let ) # M C w*, t Sw and {Xs: s < t} be a family of
topological spaces such that w C Xy C B(w) for every s < t. Then the follow-

ing assertions are equivalent:
(1) The product space X =[], Xs is M-pseudocompact.

(2) For every (fs)seq € (w?)!, there exist r € M and (75)gc € X such
that fsﬁ(r) =z, for every s < t.
-1
(3) For every (£2)yc € (@), MN Nyl () (Xs) # 0.
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PROOF. (1) = (2). Let (fs),( € (w*)". For each n < w we take the open

set
:{Hsgn{fs(n)} XHs>nXs if t=w,
[Tec { fs(n)} if < w.

Since X is M-pseudocompact, we can find z = (z;), and r € M such
that z = r-lim (U,) By Lemma 2.2, z; = r-lim (fs(n)) new fOr every
s < t. By Lemma 2.5, these equalities imply that fsﬁ(r) =z, for all s < t.

(2) = (3). It is trivial.

(3) = (1). Let (Uy),,«,, be a sequence of open sets in X. The set w' is
dense in X; thus, for every n < w, there exists (k{), € Uy N w'. Let f,:
w — w be defined by fs(n) =k?. By assumption, there exist r € M and
(25)s¢ € X such that #5(r) = z, for every s < t. By Lemma 2.5, we have
that zs = r-lim (k) This means that (xs),._, = r-lim (Up,) O

n<w"

n<w"*

n<w"’ s<t

3. Products of quasi-p-pseudocompact spaces

Now, we are going to reproduce explicitly some corollaries of Theorems
2.1 and 2.3 when M = Prk(p) \ w and when, for every s € S, X is equal to
a space X.

Let (Un), <.,
A family (Vi) of pairwise disjoint subsequences of (U,,)
t-partition of (U,) if every element of (Up,)
k<t

3.1. THEOREM. Let p € w* and let X be a topological space. Then the
following assertions are equivalent:

(1) X' is quasi-p-pseudocompact for every cardinal number t.

(2) X' is quasi-p-pseudocompact for an infinite cardinal number t.

(3) XY is quasi-p-pseudocompact.

3.2. THEOREM. Letp € w*, 0 <t < w and let X be a topological space.
Then the following assertions are equivalent:

(1) X' is quasi-p-pseudocompact.

(2) For each sequence (Uy), ., of open sets in X and each t-partition
(Vs_)s<_t of (Un)pey, there exist r Sgpx p and (x5),. C X such that x, is an
r-limit of Vs for each s < t.

(3) For each sequence (V). of sequences of open sets in X, there exist
r Sri p and (zs),. C X such that xs is an r-limit of Vs for each s < t.

PROOF. By virtue of Theorem 2.3 we only have to prove (1) = (2) = (3).
(1) = (2). Let (U,) be a sequence of open sets of X. For each s < t,

let Vs = (U,)) such that the family (V)

be a sequence of subsets of a space X, and let 0 < t < w.
new 18 called a

belongs to V; for some

n<w n<w

n<w

., be a subsequence of (Un)n<w s<t
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is a t-partition of (U,) For each n < w, let V;, be the open set of X* de-

fined as follows:

n<w*

HsSn Uss(n) X Hs>n Xs if t=uw,
Vo=4 =

[L< 5(n) if t<uw,
where X, = X for every s > n.

As X' is quasi-p-pseudocompact, we can find z = (z,), € X' and
r Srg p such that z =r-lim (V},) By Lemma 2.2 this means that

Ts = r-lim (Us(n)) n<w for each s < t.

S

(2) = (3). For each s <t, let Vs = (V") ., be a sequence of open sets
in X. Let (As)

s<¢ be a t-partition of w, and consider a faithful enumer-
ation {s(n): n <w} of A, for each s <t. Define the sequence (Wp),_,,

in X as Wi = V2" Then, the family ((Wy), ) is a tpartition

S
s<t
of (Wy),<,- By assumption there exist (z;),., and r Sgpx p such that

s = r-lim (Ws(n)) =r-lim (V" =r-limVs for each s <t. [

S )n<w

3.3. COROLLARY. Let w C X C f(w) and 0 <t S w. If X is quasi-p-
pseudocompact for some p € w*, then the following conditions are equivalent:

(1) X' is quasi-p-pseudocompact.

(2) For each sequence (my), ., in w and each w-partition (Vi),., of
(Mn)p<w, there exist T Spi p and () C X such that xy is an r-limit of
Vi, for each k < w.

(3) For each sequence (si),,, of sequences in w, there exist r Spx p and
(1) pew C X such that xy, is an r-limit of sy, for each k < w.

n<w

n<w

It is easy to prove the following lemma.

3.4. LEMMA. Let ) # M C w*, and let Y be a dense subspace of X. If
Y is M-pseudocompact, then X is M -pseudocompact.

So, we obtain:

3.5. COROLLARY. Letw C X CY C B(w). If X" is quasi-p-pseudocom-
pact for some p € w* and some cardinal number t, then so is Y.

In [13] the authors analyzed the quasi-p-pseudocompact spaces. In par-
ticular, they proved the following result.

3.6. THEOREM. Let w C X C fB(w) and p € w*. Then the following as-
sertions are equivalent:

(1) X is quasi-p-pseudocompact.

(2) X N Pri(p) is quasi-p-pseudocompact.

(3) (X N Pri(p)) \w is dense in w*.

Thus, the space X(p) is a “small” enough quasi-p-pseudocompact sub-
space of B(w). So it is interesting to know if the powers of ¥(p) are quasi-
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p-pseudocompact. In this way, the previous results permit us to obtain the
following theorem.

3.7. THEOREM. Let p € w*, 0 < t S w, and for each s < t, let X be a
subspace of B(w) containing X(p). Then X = [],< X, is quasi-p-pseudo-
compact. a

PRrROOF. This theorem is a consequence of Lemma 3.4 and Corollary 2.4
above, and Theorem 2.6 in [7] which, in particular, establishes that the space
Y(p) is (w, Pri (p) \ w)-pseudocompact. [

3.8. COROLLARY. For every cardinal number t > 0, S(p)' is a quasi-p-
pseudocompact space.

Related to the previous results, the following example is in order.

3.9. EXAMPLE. There exist p € w* and countably many ultrafilters
(Pn) <., in w* such that each ¥(p,) is quasi-p-pseudocompact and the prod-
uct space [] Y(pp) is not pseudocompact.

n<w

PROOF. Choose an increasing (in the Rudin-Keisler order) sequence
(Pn)p<, in w*. Let p be an upper bound of our sequence. Then, for each
n < w, X(pp) is quasi-p-pseudocompact but, by a theorem of Comfort (see
[3]), the product space [, X(pn) is not pseudocompact. O

4. Products of subspaces of S(w)

In this section we construct two spaces X’ and Y’ such that they are
quasi-p-pseudocompact for every p € w* and X’ x Y’ is not pseudocompact.
Besides, for each s € w*, we obtain spaces X; and Yy which are quasi-p-
pseudocompact for every p € w*, and X X Y; is a pseudocompact non-quasi-
s-pseudocompact space. On the other hand, we will prove that if X and
Y are subspaces of f(w) containing w, and X x Y is pseudocompact, then
X x Y is quasi-p-pseudocompact for some p € w*.

For a subset A of w, we denote by A the set {p € w*: A €p}. The
following results are well known.

4.1. LEMMA. (1) The family B' = {X : A C w} is a base for the topology
of B(w), and |B'| = 2%.

(2) For each infinite subset A of w and each p € w*, we have ‘A ﬂT(p)‘
= 2%,

(3) For each p € w*, T(p) is dense in w*.

(4) If p,q € w* with p #gK q, then T(p) NT(q) = 0.

4.2. EXAMPLE. There exist spaces X’ and Y’ which are quasi-p-pseudo-
compact for every p € w* but X’ x Y’ is not pseudocompact.
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PROOF. Let B’ be as in Lemma 4.1.(1). Let B={A Cw: AeB and
|A| = Ro}. Enumerate faithfully the set B as {4 : A < 2v}.

By Lemma 4.1 we can choose, by induction, points a} and b} for each
p € w" and A <2"" such that

(1) 0’1))\7 b?\ € AN T(p)a

(2) a’;\;«éa’g if)\;éé’andbg#bg if X #¢&;

(3) {af : X< 29} n{bl : A <2¥} =0,

We set X' = {a} : p € w*, A <2} and Y’:{bf\:pEw*, A<2¢}) Tt
happens that for every p € w*, both X’ NT(p) and Y'NT(p) are dense in w*,
so they are quasi-p-pseudocompact for every p € w* (Theorem 3.6). More-
over, X' xY' is not pseudocompact because the sequence ((n,n))n < of
open sets in X’ x Y’ does not have a limit point in X' x Y'. O

4.3. EXAMPLE. For each s € w*, there exist spaces X and Ys; which
are quasi-p-pseudocompact for every p € w* and X X Y; is a pseudocompact
non-quasi-s-pseudocompact space.

PROOF. Let X’ and Y’ be the spaces defined in the previous exam-
ple. Let p be an element in w* such that p is not less or equal to s in the
Rudin—Keisler order. For each L = (f,g) € (w*)? we are going to take a point
(zr,yr) € B(w) as follows:

FF={f'n):new}and G={g }(n): n €w} are finite sets, then
we take (zr,yr) = (fﬁ(p),gﬁ (p)) . Observe that in this case =1,y € w.

If F is infinite and there is an infinite subset A of w such that f|,

and g | A are one-to-one functions, then we take ¢ € T'(p) N A and (xr,yL)

= (fﬁ(Q)agﬁ(Q)) . In this case z1,yr, € T'(p).
If F is infinite and there is no infinite subset A of w in which both f and

g are one-to-one, then there exist k1, ko € w such that either

(1) for all n > ks, we have g '(n) C f(k1), or

(2) for all n > ks, f1(n) C g (k).

If (1) happens, we take A C w with |A| = Xy and ‘Aﬂ ffl(m)‘ =1 for
all m > ki. Then we take ¢ € T(p) N A4, and (z1,y1) = (f*(4),9°(¢)). In
this case zy, € T'(p) and yr, € w.

If (2) happens, we take an infinite subset A of w such that ‘A N f_l(m)‘
=1 for allm > ko. Then we take ¢ € T'(p) NA, and (zr,y1) = (£%(q),9°(q)).
Again, in this case 21, € T(p) and y;, € w.

The last possible case is when F is finite and G is infinite. In this case we
take an infinite subset A of w such that g |4 is an one-to-one function. Then,

we choose ¢ € T'(p) N 2{, and we take (zr,yr) = (fﬁ(q),gﬁ (q)) . In this case
zr, € wand yr, € T'(p).

Let N = {(z,y1) : L € (w¥)*}, Xy = X' Um(N) and Y; = Y' Umy(N)
where, for i = 1,2, m; is the i-th-projection map.
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Since X’ and Y’ are dense subspaces of X and Y, respectively, then X
and Y; are quasi-p-pseudocompact for every p € w*. Notice that X x Y; is
not quasi-s-pseudocompact, because the sequence ((n,n)) new of open sets
in X; x Ys does not have an s-limit point. Moreover, due to Theorem 2.6,
X x Y is quasi-p-pseudocompact (so, pseudocompact). O

It is not possible to construct a pseudocompact product of subspaces
of f(w) containing w which is not quasi-p-pseudocompact for any p € w*.
Indeed, we have:

4.4. THEOREM. Let t be a cardinal number satisfying 0 < t £ w. For
each s < t, let Xg be a subspace of f(w) such that w C X,. If X =[], (X
s pseudocompact, then there is p € w* such that X is quasi-p-pseudocompact.

PROOF. Since X is pseudocompact, Theorem 2.6 proclaims that for every
L= (fs),c( € (w?)!, there exist r;, € w* and (75)4c¢ € X such that Pr) =
x5 for every s < t. The set {’I"L : L e (w‘*’)t} has cardinality 2*. Thus, there
exists p € w* such that r;, < p for every L € (w®)" (see Proposition 2.6 in

[1]). Then, by Theorem 2.6, we conclude that X is quasi-p-pseudocompact.
O

Again, using the fact that every collection of free ultrafilters on w having
cardinality < 2¥ has an upper bound in the <gg-order (see Proposition 2.6
in [4]), and using Theorem 4.4, Theorem 2.1 and Theorem 2.6, we obtain:

4.5. THEOREM. Let t be a cardinal number with 0 < t < 2. For each
s <t, let X be a subspace of B(w) such that w C X,. If X =]], (X is
pseudocompact, then there is p € w* such that X is quasi-p-pseudocompact.

4.6. COROLLARY. Letw C X C B(w). If X is pseudocompact, then X is
quasi-p-pseudocompact for some p € w*.

5. The classes P, and P

A Frolik sequence in a space X is a sequence (Up) of subsets of X

such that for each filter G of infinite subsets of w,

ﬂch<UUn>7é®.

Feg neF

n<w

In the following, we say that a space X is Frolik if X x Y is pseudo-
compact for every pseudocompact space Y. The Frolik class P is the class
consisting of exactly all Frolik spaces. In Theorem 3.6 in [5] the following
result was proved:
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5.1. THEOREM. A pseudocompact space belongs to the Frolik class P if
and only if every sequence of disjoint open sets contains a subsequence which
18 a Frolik sequence.

For p € w*, let P, be the class of all spaces X satisfying that X xY
is quasi-p-pseudocompact whenever Y has this property. Since quasi-p-
pseudocompactness is a property preserved under continuous functions, then
every space in P, is quasi-p-pseudocompact and f(X) € P, if f is a contin-
uous function and X € P,. Besides, every regular closed subspace of a space
that belongs to P, is an element of this class too. Also, it is easy to see that
P, is finitely multiplicative. We say that a sequence (U,) of subsets of
X is a Frolik sequence for p if

ﬂch(UUn>7é(Z).

Fep nekr

n<w

Notice that, by the basic properties of ultrafilters, each point in ) Fep

cly (UnE F Un) is a p-limit point of the sequence (Uy),, .. The following the-
orem characterizes the class P,. Following the pattern given in [2, Theorem
2.1], the starting point of the proof is to construct appropriate pseudocom-
pact subspaces of (w) associated with special kinds of sequences of open
sets in a space X.

5.2. THEOREM. Let X be a space. Then the following assertions are
equivalent:

(1) X € P,.

(2) For every sequence (Uy),, ., of pairwise disjoint open sets of X, there
exists a subsequence (Unk)k<w which is a Frolik sequence for every ¢ Sgri p.

(3) For every sequence (Uy),, ., of pairwise disjoint open sets of X, there
exists a subsequence (Up, ), such that, for each q Sgx p there exists x4
€ X for which x4 = q-lim (Uy, ), -

(4) For each quasi-p-pseudocompact space Y, the product X XY is pseu-
docompact.

(5) For each quasi-p-pseudocompact subspace Y of [B(w) containing w,

the product X xY 1is pseudocompact.

PROOF. (1) = (2). Suppose that there exists a sequence (U,), ., of
pairwise disjoint open sets of X such that, for every infinite subset Ny =
{n1,n9,...,nk,...} of natural numbers with ny < nky;, we can find q(Np)
<grK p satisfying

(] cx < U Unk> = 0.

Feq(No) keF
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Consider now the function f : w — w defined by f(k) = ny for each k <
w, and let f# be the continuous extension of f to f(w). Let qy, be such that
fﬁ(q(NO)) = qn,. It is clear that gy, Srrx p. We prove that

N ch(UUn>:(Z).

GeqNO neG

In fact, since f(F) € qn, whenever F' € q(Np), we have that

N ch(UUnk>: N ch( U Unk>3 N ch<UUn>.

Feq(No) keF f(F)E(]NO ni€f(F) Gegqn, nelG

So,

N ch(UUn>:(Z).

GeqNO neG

Let Y be the subspace of S(w) defined as:
Y:wU{qNO : No C w, |No| :w}.

We prove that the space Y is quasi-p-pseudocompact. To see this, let
(nk)p<, be a subsequence of w. Consider Ny = {ni,na,...,ng,...}. It is
clear that gy, = q(Np) -lim (ny) The result follows from the fact that
q(No) =Rk p-

Now, we finish the proof by showing that X x Y is not pseudocompact.
For this in turn, we prove that the sequence (Un X {n}) new is locally finite in

X xY. Let qn, €Y be a cluster point of (n),_,, and let z be a cluster point

of (Un), <y Since ﬂGEqNO clx (UnEG’ Un) = (), there exists G € ¢y, such that
T ¢ clx (UnEG’ Un); that is, there is a neighborhood V' of the point z with
V N (UnegUy,) = 0. Then, G NY is an open neighborhood of gn, such that

V x G does not meet the sequence (U, x {n}) new

(2) = (3). Let (Uy),, be a sequence of pairwise disjoint open sets of
X. Then, there exists a subsequence (Up, ), such that

ﬂch<UUnk>7é®

Feq keF

k<w®

for each ¢ Sgx p. Take x4 € ﬂFeq cly (UkeF Unk) . We are going to prove

that z, = ¢-lim (Uy, ), .- In fact, let V be a neighborhood of z, in X, and
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assume that G = {k <w: V NU,, # 0} does not belong to ¢. So, H =w\ G
€ q. By assumption, there is y € V N U,, where m € H. But, by definition
V NU,, =0, a contradiction.

(3) = (1). Let (U, x V3),,.,, be a sequence of pairwise disjoint open
sets of X XY where Y is quasi-p-pseudocompact. Let (Unk)k<w be a subse-
quence of (Uy),, ., satisfying the requirements in (3). Now, according to the
fact that Y is quasi-p-pseudocompact, the sequence (V;,, ), admits an r-
limit with r Sgx p. Because of the properties of (Up,), ., it is clear that
(Uny X Vi) ey admits an r-limit with r Spg p.

The implications (1) = (4) = (5) are clear. On the other hand, (5) = (2)
is implicit in the proof of (1) = (2). O

As an immediate consequence of Theorem 5.2 we have the following corol-
laries.

5.3. COROLLARY. Let w C X C f(w). Then the following assertions are
equivalent:

(1) X € P,.

(2) For every sequence (an), ., of natural numbers with an # an if
n #m, there exists a subsequence (ap, ) which is o Frolik sequence for
every q¢ SR p-

(3) For every sequence (an),., of natural numbers with an # an if
n #m, there exists a subsequence (an, )., such that, for each q <px p,
there is a q-limit point of (an,),., in X.

(4) For every function s : w — w, there exists a function fs: w — w such
that, for every ¢ <p p, (50 £,)%(g) € X.

5.4. COROLLARY. Every space in the Frolik class P belongs to P, for
every p € w*.

k<w

The previous result implies, in particular, that every Frolik space is quasi-
p-pseudocompact for every p € w*, as was already pointed out in Theorem
2.6 in [13].

5.5. COROLLARY. Ifp,q are two elements in w* such that p Srx q, then

PROOF. Let X € Py, and let (Uy),,.,, be a sequence of pairwise disjoint
open subsets of X. By Theorem 5.2, there is a subsequence (Up, ) of
(Un)p<, such that, for every r Sgrx g, we have

M clx < U Unk> # 0.

Fer keFr

k<w

In particular, the previous equality holds for every » <gx p. But this
means that X € P,. O
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Observe that the spaces X’ and X given in Examples 4.2 and 4.3, re-
spectively, are quasi-p-pseudocompact spaces for every p € w*, but they do
not belong to ¢« Pp-

By applying Theorem 4.1 in [13] and Theorem 5.2 above, we obtain:

5.6. COROLLARY. Every p-pseudocompact space belongs to Py, for all
pE wr.

So, the space Pri(p) is an example of a space belonging to P, (it is p-
pseudocompact, see [9]) which is not Frolik. On the other hand, the space
[1,c.-(B(w)\ {p}) belongs to P but it is not p-pseudocompact for any p € w*
(see Example 2.9 in [13]).

Because of the properties of P,, we can use the space Prx(p) to deter-
mine the set P,N{X : w C X C B(w)}, as we will show in the following
theorem.

5.7. THEOREM. Let w C X C f(w), and let p € w*. Then the following
assertions are equivalent:

(1) The space X belongs to Pp.

(2) The space X x Pri(p) is an element of Pp.

(3) X N Prr(p) € Pp.

PROOF. (1) = (2). Pri(p) is an element of P,, and this class is finitely
productive.

(2) = (3). The space X N Prk(p) is homeomorphic to a regular closed
subset of X x Prx(p).

(3) = (1). The class P, is closed under continuous functions. [0

5.8. CONJECTURE. Let w C X C fB(w), and let p € w*. Then X € Py if
and only if for each open subset W of [(w), there exists an open subset V
of W for which V N Prg(p) C X.

Now we are ready to prove that the partial ordered set (T, <grg), where
T is the set of equivalence classes of free ultrafilters on w, is isomorphic to

(333 D), where 213 = {']Dp ipe w*}.

5.9. THEOREM. Let p,q € w*. Then the following assertions are equiva-
lent:

(1)
(2) :
(3) PRK(p) e Py.
(4) Pri(q) C Pri(p)-
(5) Pri(p) is q-pseudocompact.

PROOF. The implication (1) = (2) is Corollary 5.5. The equivalence (1)
& (4) is trivial and the equivalence (4) < (5) is a consequence of Lemma 1.9
in [9]. Since Prg (p) € P, always holds, then (2) = (3). So, we only have to
prove that (3) = (1).
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Assume that Prg(p) € Py; so, the space Pri(p) x X(g) is pseudocom-
pact. Thus, Prx(p) NT(q) # 0. That is, g Spxp. O

Observe that, even for a subspace X of (w) containing w, the fact of
being quasi-g-pseudocompact for every ¢ Sgx p, does not imply that X be-
longs to P,. Indeed, the space X = f(w) \ T'(p), where p is not RK-minimal,
is quasi-p-pseudocompact for every p € w* (see Example 3.2 in [13]), but it is
not a member of P,, because Y = ¥(p) is quasi-p-pseudocompact (Corollary
3.8) though X x Y is not pseudocompact; in fact, the sequence ((n, n)) <
of open sets, in X x Y, does not have a cluster point in X x Y. Nevertheless,
by Theorem 5.7 and Lemma 3.4, X € P, if r <gg p-

Theorem 5.10 produces a topological characterization of RK-minimal ul-
trafilters.

5.10. THEOREM. Letp,q € w*. The space 3(q) belongs to Py, if and only
if q is RK-minimal and q gk p.

PROOF. If ¢ is RK-minimal and q =gk p, then 3(q) = X(p) = Pri(p).
As we have already seen, Pri (p) € Pp.

Now, assume 3(q) € Pp. Since X(p) is quasi-¢g-pseudocompact, X(p) x
Y(q) is pseudocompact. Hence, the sequence ((n,n))n<w of open sets in
Y (p) x 2(q) has an accumulation point (s,t) € T'(p) x T(q). But, s has to be
equal to t. So, p =gk q.

Suppose that p is not RK-minimal, and let r <gpx p. By Theorem 5.9,
P, C Py, then X(p) € P,. So, X(p) X Pri(r) is pseudocompact. But this
is not true because the sequence ((n,n)) new Of open sets in 3(p) x Pri(r)
does not have an accumulation point in ¥(p) X Prg(r). O

Now, we are going to prove that )
spaces.

5.11. THEOREM. P = ., Pp.

PROOF. Corollary 5.4 establishes that P C (,¢,,« Pp.
Now, assume that X ¢ P. Then there exists a pseudocompact subspace
Y of f(w) containing w, such that X x Y is not pseudocompact (see [2]). By

Corollary 4.6, there is p € w* for which Y is quasi-p-pseudocompact. There-
fore, by Theorem 5.2, X & (¢« Pp. O

pew Pp 18 precisely the class of Frolik

Let p € w*. Let Pg, denote the class of all spaces X such that every
closed subset of X belongs to P,. Of course, P, D Pr,, for every p € w*, but
these classes never coincide. Indeed, every compact space belongs to Pp,p.

5.12. THEOREM. Let X be a space. Then the following assertions are
equivalent:

(1) X € Pryp.

(2) Every discrete sequence (ay),,,, of points of X admits a subsequence
(any,) <y which is a Frolik sequence for every ¢ Sri p-
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PROOF. (1) = (2). Consider a discrete sequence (ay),,,, in X. Then we
can identify (an), ., with w. Let Y = clx{a, : n <w}. Then (an),,, is a
sequence of pairwise disjoint open sets in Y. By (1), Y € P,. Now the result
follows from the theorem of characterization of P,,.

(2) = (1). Let Y be a closed subset of X. Consider a sequence (Uy),, .,
of pairwise disjoint open sets in Y. For each n < w, let a,, be a point with
an, € Up,. It is clear that (a,) is a discrete sequence in X. By (2), for

n<w
some subsequence (ay,, )

k<w?
ﬂdx(UmMQ¢w
Geq keG

whenever ¢ Spg p. Since ay, € Uy, and Y is closed in X, we have

ﬂcly(UUnk>7€V)

Geq kedG

whenever ¢ Srx p. The result follows from the characterization theorem of

the class P,. O

It is a well-known result that the Frolik class P is closed under arbitrary
products (see [12]). In the last part of the paper we turn our attention to
this question for the classes P, for any p € w*.

5.13. LEMMA. Let p € w* and let {V1,Va,...,Vi} be a finite family of
subsets of X. If (Un),, 5 a Frolik sequence for every q gy p, then the
sequence (W) defined as

W, = Vi Z:fiél.,
Uiy if 1<,

n<w

is also a Frolik sequence for every ¢ Sri p.

PROOF. Let ¢ Sgx p. Consider the function f : w — w defined as

t if +<1i
t) = =0
J(®) {t—l if +>1.

Let r denote the ultrafilter f5(q). Since r <gx ¢, there exists z € X with

xemdx(uug.

Fer neFr
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We shall prove that

meﬂch<UWm>.

Geq med

In fact, supposing the contrary, we claim that there exist a neighborhood V'
of z and G € ¢ such that

Vm(LJW%>:Q

meG*

where G* = G\ {1,...1}. Then

Vﬂ( U MJ:@

nef(G*)

which leads us to a contradiction because f(G*) € r and r gk p. O

5.14. LEMMA. Letp € w*. If X € Pp, then every sequence of open sets
in X admits a subsequence which is a Frolik sequence for every q Srx p.

PROOF. Let (Uy),., be a sequence of open sets in X. Choose x, €
Uy for each n <w. If for some subsequence (Up, ), . there exists € X
such that every neighborhood of = meets all but finitely many elements of
(Uni) <y then (Uy, ), o, is a Frolik sequence for every ¢ Srx p. Otherwise,
we construct by induction on n two sequences (V). and (F}),_,, of open
sets and of infinite subsets of w, respectively, and a subsequence (Up, ) of

satisfying:

k<w

1) For each k < w, Vi, C Up,.

2) For each k < w, Vi, NU,, = () whenever r € Fy.
3) For each k < w, Fi, 2 Fy.

(4) V. N Vg = ) whenever r # s.

(Un)n<w
(
(
(

The induction process is as follows. For n = 1, there exist an infinite subset
G of w and a neighborhood W C U; of z; such that W N U, = () whenever
r € G. Then we put Vi = W and F; = G. Suppose now that we have (V;),;<,.

(Fi)igm and (Up,) i<m €njoying the required properties. Consider the sub-
sequence (Up), Fm'_ Let r denote the minimum of Fj,,. Then there exist a
neighborhood W C U, of z, and an infinite subset G of F},, such that W NU,
= () whenever n € G. The induction step is complete by putting V,, 1 = W,
Fpni1 =G and Uy, ., = U,. Now the proof follows from the fact that the

elements of the sequence (V}), ., are pairwise disjoint. [
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5.15. LEMMA. Let p € w*. Let (Uyn),,
q Sri p- Then every subsequence of (Up)

q =RK P-
PROOF. Suppose that there exists a subsequence (Up, )., of (Un),<,
which is not a Frolik sequence for some g Sgg p; that is

ﬂdXOJmozﬂ

Feq keF

be a Frolik sequence for every

new 18 a Frolik sequence for every

Define the function f on w by the requirement that f(k) be n; whenever
k < w. Then, if s = f?(q), we have s <rx ¢ and

ﬂdXOJ%QDrwu(LJMJDﬂdXOJ%>

Feq kEeF Feq nef(F) GEs neG

which leads us to a contradiction. O

5.16. THEOREM. For each p € w*, the class Py is closed under arbitrary
products.

PROOF. As a product space is quasi-p-pseudocompact if and only if each
of its countable subproducts is quasi-p-pseudocompact, a product space be-
longs to P, if and only if each of its countable subproducts does. Thus it
suffices to consider a countable product, say X = [],_, X;, of members of

Py

1<w

Let (Up),,-,, be a sequence of open sets in X where each U, =[], U
is a standard open set in X.

Applying Lemma 5.14 and Lemma 5.15, we can find, for each ¢ < w, an

infinite subset N; = {i1,142,...,%,...} of w such that the sequence (Uiik-)ikeN-

i<w

is a Frolik sequence for every r Sgi p and N1 © N;.

Now define, for each i < w, n(i) as min N;. By Lemma 5.13, for each
1 < w, the sequence (Ufl(l), U7l7.(2)’ . UTZL(Z.), Ui, U, ) is a Frolik sequence
for every r Srx p. Then, for each i < w, Lemma 5.15 says that the sequence

(U;(k)) j<,, 18 also a Frolik sequence for every r Sgi p. It is an easy matter

to prove that the sequence (V}), ., defined as
Vi = 1] Ungey
1<w

for each k < w, is a Frolik sequence (in X) for every r <px p which completes
the proof. O

As a consequence of Theorem 5.11 and Theorem 5.16 we have
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5.17. THEOREM [12]. The Frolik class P is closed under arbitrary prod-
ucts.
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