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DENDRITES AND LIGHT OPEN MAPPINGS

JANUSZ J. CHARATONIK, W LODZIMIERZ J. CHARATONIK, AND PAWE L KRUPSKI

(Communicated by Alan Dow)

Abstract. It is shown that a metric continuum X is a dendrite if and only
if for every compact space Y and for every light open mapping f : Y → f(Y )
such that X ⊂ f(Y ) there is a copy X′ of X in Y for which the restriction
f |X′ : X′ → X is a homeomorphism. Another characterization of dendrites
in terms of continuous selections of multivalued functions is also obtained.

All spaces considered in this paper are assumed to be metric, and all mappings
are continuous.

In [3] J. Mioduszewski proved the following result.

1. Theorem. Let X be a dendrite. Then the following condition (µ0) is satisfied.
(µ0) For every compact space Y , for every continuous 0-dimensional multifunction

F : X → 2Y and for every point (x0, y0) ∈ X×Y with y0 ∈ F (x0) there exists
a continuous selection f : X → Y of F such that f(x0) = y0.

If we delete a part of condition (µ0) related to the point (x0, y0), we get a weaker
condition (µ).

2. Corollary. Every dendrite X satisfies the following condition.
(µ) For every compact space Y and for every continuous 0-dimensional multi-

function F : X → 2Y there exists a continuous selection f : X → Y of
F .

In [4, (2.4), p. 188] G. T. Whyburn proved the following theorem.

3. Theorem. Let X be a dendrite. Then the following condition (ω0) is satisfied.
(ω0) For every compact space Y , for every light open mapping f : Y → f(Y ) with

X ⊂ f(Y ) and for every point y0 ∈ f−1(X) ⊂ Y there exists a homeomorphic
copy X ′ of X in Y with y0 ∈ X ′ such that the restriction f |X ′ : X ′ → f(X ′) =
X is a homeomorphism.

If, similarly as for (µ0) we delete a part of (ω0) related to the point y0, we get a
weaker condition (ω).

4. Corollary. Every dendrite X satisfies the following condition.
(ω) For every compact space Y and for every light open mapping f : Y → f(Y )

with X ⊂ f(Y ) there exists a homeomorphic copy X ′ of X in Y such that the
restriction f |X ′ : X ′ → f(X ′) = X is a homeomorphism.
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5. Proposition. For every continuum X the following implications hold:

(µ0) ⇒ (ω0)
⇓ ⇓

(µ) ⇒ (ω)

Proof. Since the vertical implications are obvious, only the horizontal ones need a
proof. Assume (µ0). Let Y and Z be compact spaces and let f : Y → Z be a light
open mapping with X ⊂ f(Y ). Choose a point y0 ∈ f−1(X). Since the restriction
g = f |f−1(X) : f−1(X) → X is an open mapping [4, (7.2), p. 147], there is no
loss of generality in assuming f(Y ) = X . Define a multifunction F : X → 2Y

by F (x) = f−1(x) for each x ∈ X . Then F is continuous by the openness of g,
and it is 0-dimensional by its lightness. Then the selection s : X → Y for F such
that s(f(y0)) = y0 which exists by (µ0) embeds X in Y . So X ′ = s(X) ⊂ Y is
the needed continuum, and therefore the implication from (µ0) to (ω0) is shown.
The argument for the implication from (µ) to (ω) is the same. Thus the proof is
complete.

In this paper we show that if an arbitrary continuum X (not necessarily locally
connected) satisfies condition (ω), then X is a dendrite. So, not only (µ0) but even
the weakest condition of the four specified in Proposition 5 characterizes dendrites
in the class of all continua. We start with the following proposition.

6. Proposition. Each continuum X that satisfies condition (ω) is unicoherent.

Proof. Suppose on the contrary that a continuum X which satisfies (ω) is not
unicoherent. Then there are continua P and Q and nonempty closed sets A and B
such that

X = P ∪Q, P ∩Q = A ∪B, A ∩B = ∅.
Let P0 and P1 be two disjoint copies of P , and let Q0 and Q1 be two disjoint copies
of Q. Assume moreover that

P0 ∩Q0 = A0, Q0 ∩ P1 = B0, P1 ∩Q1 = A1, Q1 ∩ P0 = B1,

where A0, A1 are copies of A, and B0, B1 are copies of B. Then

Y = P0 ∪Q0 ∪ P1 ∪Q1

is a continuum. Let f : Y → X be the natural projection. Then f is two-to-
one and open. Since X satisfies (ω), there is a copy X ′ of X in Y such that
h = f |X ′ : X ′ → f(X ′) = X is a homeomorphism. Let x0 ∈ P \Q ⊂ X , and take
a point y0 ∈ X ′ with f(y0) = x0. Then either y0 ∈ P0 or y0 ∈ P1. By symmetry let
y0 ∈ P0. Since h−1(P ) is a continuum which is homeomorphic to P , intersecting P0

(at y0) and contained in P0∪P1, we infer that h−1(P ) = P0. Similarly h−1(Q) = Q0

or h−1(Q) = Q1. Thus either X ′ = P0 ∪Q0 or X ′ = P0 ∪Q1. In the former case
we have B0 ∪B1 ⊂ X ′; in the latter one A0 ∪A1 ⊂ X ′. So, in both cases, h is not
one-to-one on X ′, a contradiction. The proof is complete.

7. Proposition. Each continuum X that satisfies condition (ω) is locally con-
nected.

Proof. Suppose X is not locally connected at a point p ∈ X . Then there is an
open set U containing p and such that each open neighborhood of p contained in
U is not connected. Let C be the component of U containing p. Let {Kn} be
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a sequence of components of U such that the sequence {clKn} of closures of Kn

tends to such a subcontinuum K of clC that p ∈ K. For each n ∈ N choose a
point qn ∈ clKn ∩ bdU . By compactness we may assume, taking a subsequence if
necessary, that {qn} converges to a limit point q ∈ K ∩ bdU . Let A and B be two
open subsets of U \ C such that U = A ∪ C ∪B, A ∩B = ∅, with K2n−1 ⊂ A and
K2n ⊂ B for each n ∈ N. Thus every component of U different from C is contained
either in A or in B. Let V be a neighborhood of p such that clV ⊂ U . We will
define a continuum T . To this aim consider two disjoint copies of X , that is, the
product X × {0, 1}. On the set ((X \B)× {0})∪ ((X \A)× {1}) we introduce an
equivalence relation ∼ as follows:

(x, t1) ∼ (y, t2) ⇔ x = y and (x /∈ V or t1 = t2).

Define

T = (((X \B)× {0}) ∪ ((X \A)× {1})) / ∼,
and note that T is compact. We will use the notation (x, t), where x ∈ X and
t ∈ {0, 1} for points of T . Observe that T looks like the continuum X except C ∩V
is “doubled”; therefore the copies of clK2n−1 tend to one copy of K, while the
copies of clK2n tend to the other one.

We will show that T is connected. Assume on the contrary that there are compact
subsets P and Q of T such that T = P ∪ Q, and P ∩ Q = ∅. Let s : T → X be
defined by s((x, t)) = x. Then s(P ) and s(Q) are compact subsets of X such that
s(P ) ∪ s(Q) = X , so s(P ) ∩ s(Q) 6= ∅. Let x ∈ s(P ) ∩ s(Q). Because of symmetry
we can assume that (x, 0) ∈ P and (x, 1) ∈ Q. Denote by L the component of
V containing x. Then L × {0} ⊂ P and L × {1} ⊂ Q. Since the closure of a
component of a proper subset of a continuum meets the boundary of the subset [2,
§47, III, Theorem 2, p. 172], there is a point y ∈ clL ∩ bdV . Then (y, 0) ∈ P and
(y, 1) ∈ Q, but (y, 0) = (y, 1), so P ∩Q 6= ∅, a contradiction. Thus connectedness
of T is shown.

To construct the continuum Y take two disjoint copies of T , that is, the product
T ×{0, 1}. In T ×{0} consider the (closed) subset Z = ((C ∩ clV )×{0, 1})×{0},
and let a mapping g : Z → T × {1} be defined by

g (((x, 0), 0)) = ((x, 1), 1) and g (((x, 1), 0)) = ((x, 0), 1).

In the product T × {0, 1} generate an equivalence relation ≈ by z ≈ g(z) for each
element z ∈ Z ⊂ T × {0}. Define

Y = (T × {0, 1})/ ≈ .
Note that the space Y equals T × {0} attached to T × {1} by g; in symbols Y =
T × {0} ∪g T × {1}, according to Definition 6.1 of Dugundji’s book [1, p. 127].

Let f : Y → X be the natural projection. Then f−1(x) is a two point set unless
x ∈ C ∩ bd V , when it is a singleton. Thus f is light. To show the openness of
f recall that a mapping is open if and only if it is interior at each point y of its
domain, that is, for each open neighborhood W of y the point f(y) is an interior
point of f(W ) [4, p. 149]. So, take a point y = ((x, i), j) ∈ Y and consider five
cases.

1) If x /∈ clV , then (s−1(X \ clV ))×{j} is an open neighborhood of y that goes
homeomorphically onto X \ clV under f , so f is interior at y.

2) If x ∈ A ∪B, then (s−1(A∪B))× {j} is an open neighborhood of y with the
same property.
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3) If x ∈ C ∩ V and y = ((x, 0), 0), then

(((A ∪ C) ∩ V )× {0} × {0}) ∪g (((B ∪C) ∩ V )× {1} × {1})

is again an open neighborhood of y that is mapped homeomorphically onto V under
f .

4) If x ∈ C ∩ V and y = ((x, 1), 0), then the needed neighborhood of y is
(((B ∪ C) ∩ V )× {1} × {0}) ∪g (((A ∪C) ∩ V )× {0} × {1}).

5) If x ∈ C ∩ bd V , then f−1(x) is a singleton, i.e., ((x, i), j) = ((x, i′), j′) = y
for every i, i′, j, j′ ∈ {0, 1}. Let W ⊂ f−1(U) be an open subset of Y that contains
the point y. Define

W1 = (W ∩ (A ∪C)) × {0} × {0} and W2 = (W ∩ (B ∪C)) × {1} × {0}.

Observe that f |W1 and f |W2 are homeomorphisms, and therefore f(W1) is open in
A∪C, and f(W2) is open in B∪C. Hence the set f(W1)∪f(W2) ⊂ f(W ) contains
x in its interior, so f is interior at y. This finishes the proof of openness of f .

Now we will show that there is no copy X ′ of X in Y such that f |X ′ : X ′ → X is
a homeomorphism. Suppose the contrary. Then either ((p, 0), 0) = ((p, 1), 1) ∈ X ′,
or ((p, 1), 0) = ((p, 0), 1) ∈ X ′. Assume the former case. Hence for almost all n ∈ N
we have clK2n−1 × {0} × {0} ⊂ X ′. Thus, since q /∈ V , we infer ((q, 0), 0) =
((q, 1), 0) ∈ X ′. On the other hand, clK2n × {1} × {1} ⊂ X ′ for almost all n ∈ N,
so ((q, 1), 1) = ((q, 0), 1) ∈ X ′, and consequently f |X ′ is not one-to-one. The proof
is then complete.

8. Proposition. If a nondegenerate continuum X satisfies condition (ω), then
dimX = 1.

Proof. By Proposition 7 the continuum X is locally connected. Let M stand for
the Menger universal curve. By Theorem 2 of [5, p. 497] there exists a light open
surjection f : M → X . By (ω) there is a homeomorphic copy X ′ of X in M . So,
X ′ ⊂ M , which implies 1 ≤ dimX = dimX ′ ≤ dimM = 1. Thus the conclusion
follows.

9. Theorem. Each continuum X that satisfies condition (ω) is a dendrite.

Proof. It is known that every locally connected 1-dimensional unicoherent contin-
uum is a dendrite [2, §57, III, Corollary 8, p. 442]. Thus the conclusion follows
from Propositions 6, 7 and 8.

10. Corollary. For each continuum X the following conditions are equivalent.

(11) X is a dendrite;
(12) X satisfies condition (µ0);
(13) X satisfies condition (µ);
(14) X satisfies condition (ω0);
(15) X satisfies condition (ω).

Proof. The implication from (11) to (12) is Mioduszewski’s Theorem 1. Proposition
5 provides the implications (12) to each of (13) and (14), and each of (13) and (14)
to (15). Finally (15) implies (11) by Theorem 9.
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