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OPENNESS AND MONOTONEITY OF INDUCED MAPPINGS

W LODZIMIERZ J. CHARATONIK

(Communicated by Alan Dow)

Abstract. It is shown that for locally connected continuum X if the induced
mapping C(f) : C(X) → C(Y ) is open, then f is monotone. As a corollary
it follows that if the continuum X is hereditarily locally connected and C(f)
is open, then f is a homeomorphism. An example is given to show that local
connectedness is essential in the result.

All spaces considered in this paper are assumed to be metric. A mapping means
a continuous function. We denote by N the set of all positive integers, and by C
the complex plane. Given a space S, a point c ∈ S and a number ε > 0, we denote
by BS(c, ε) the open ball in S with center c and radius ε.

A continuum means a compact connected space. Given a continuum X with
a metric d, we let 2X denote the hyperspace of all nonempty closed subsets of X
equipped with the Hausdorff metric H defined by

H(A, B) = max{sup{d(a, B) : a ∈ A}, sup{d(b, A) : b ∈ B}}
(see, e.g., [5, (0.1), p. 1 and (0.12), p. 10]). Further, we denote by C(X) the
hyperspace of all subcontinua of X , i.e., of all connected elements of 2X , and by
F1(X) the hyperspace of singletons. The reader is referred to Nadler’s book [5] for
needed information on the structure of hyperspaces.

Given a mapping f : X → Y between continua X and Y , we consider mappings
(called the induced ones)

2f : 2X → 2Y and C(f) : C(X)→ C(Y )

defined by

2f(A) = f(A) for every A ∈ 2X and C(f)(A) = f(A) for every A ∈ C(X).

A mapping between continua is said to be:
— open provided the image of an open subset of the domain is open in the range;
— monotone provided the point-inverses are connected;
— light provided the point-inverses are zero-dimensional.
The following theorem is the main result of this paper.

1. Theorem. Let a continuum X be locally connected, and a mapping f : X →
Y be such that the induced mapping C(f) : C(X) → C(Y ) is open. Then f is
monotone.
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Proof. Assume f satisfies the assumptions of the theorem and that it is not mono-
tone. Let p and q be two points of X such that f(p) = f(q) that belong to different
components of f−1(f(p)). By continuity of f there is a positive ε such that for
every continuum L ⊂ Y such that f(p) ∈ L and H(L, {f(p)}) < ε the components
of f−1(L) containing p and q respectively are distinct. By local connectedness
of Y there is a continuum V such that f(p) ∈ intV and H(V, {f(p)}) < ε, i.e.,
V ⊂ BY (f(p), ε). Let Up and Uq be components of f−1(V ) containing p and q
respectively. Since in locally connected continua components of open sets are open
[4, §49, II, Theorem 4, p. 230], we conclude that p ∈ intUp and q ∈ intUq. Let
δ > 0 be such that BX(p, δ) ⊂ Up and BX(q, δ) ⊂ Uq.

Let B be an order arc in C(Y ) from {f(p)} to Y through V . Define A as a subset
of B composed of all elements L ∈ B such that the component of f−1(L) containing
p is distinct from the component of f−1(L) containing q. Note that V ∈ A and
that if L, L′ ∈ B, L ∈ A and L′ ⊂ L, then L′ ∈ A. Thus A is a connected subset of
B containing {f(p)} and V . Since B \ A is closed, we see that A is an open subset
of B. Let Q = supA = inf(B \A). Then Q ∈ clA\A. Denote by P the component
of f−1(Q) containing both p and q. Openness of C(f) implies that f is open (see
[3, Theorem 4.3, p. 243]; compare also [2, Theorem 3.2]), so f(P ) = Q [6, (7.5),
p. 148]. We will show that C(f)(BC(X)(P, δ)) is not open in C(Y ). So, assume
the contrary. Then there is a continuum K ∈ BC(X)(P, δ) with f(K) ∈ A. Since
p, q ∈ P and H(P, K) < δ, we have K ∩ Up 6= ∅ 6= K ∩ Uq. Then Up ∪K ∪ Uq is a
continuum containing both p and q, whose image f(Up ∪K ∪ Uq) = f(K) is in A,
contrary to the definition of A. The proof is finished.

2. Corollary. Let a continuum X be hereditarily locally connected, and a mapping
f : X → Y be such that the induced mapping C(f) : C(X)→ C(Y ) is open. Then
f is a homeomorphism.

Proof. It is enough to show that monotone open mappings on hereditarily locally
connected continua are homeomorphisms. Assume the contrary, and let y ∈ Y be
such that f−1(y) is a nondegenerate continuum in X . Let {yn} be an arbitrary
sequence converging to y. Then continua f−1(yn) tend to f−1(y), so f−1(y) is a
nondegenerate continuum of convergence, contrary to hereditary local connected-
ness of X .

3. Example. There are a continuum X and a mapping f : X → X such that
C(f) : C(X)→ C(X) is light and open, but not monotone.

Proof. Let S = {z ∈ C : |z| = 1} be the unit circle. For n ∈ N put Xn = S, and
let ϕn : Xn+1 → Xn be defined by ϕn(z) = z3. Then X = lim←−(Xn, ϕn) is the
triodic solenoid. Define f : X → X by f({z1, z2, . . . }) = {z2

1 , z2
2 , . . . }, and note

that f is well-defined. It has been proved in [1, Example 4.5] that the restriction
C(f)|(C(X) \ {X}) is two-to-one and C(f)−1(X) is a singleton. Thus C(f) is light
and it is not a homeomorphism. We will prove that C(f) is open. To this aim it
is enough to show that the mapping is interior at each point of its domain [6, p.
149], i.e., that for each P ∈ C(X) and for each open neighborhood U of P in C(X)
we have C(f)(P ) ∈ intC(f)(U). For each n ∈ N let fn : Xn → Xn be defined by
fn(z) = z2 (and thus f = lim←− fn), and let πn : X → Xn be the projection. Let P ∈
C(X) be a proper subcontinuum of X . Then there exists an index n ∈ N such that
πn−1(P ) is a proper subcontinuum of Xn−1, so πn(P ) is an arc of length less than
2π/3. Let Un be an open arc in Xn containing πn(P ) and having its length still less
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than 2π/3. Then the set V = {A ∈ C(X) : πn(A) ∈ Un} is an open neighborhood
of P in X such that the restriction C(f)|V : V → C(f)(V) is a homeomorphism
onto the open set C(f)(U) = {A ∈ C(X) : πn(A) ∈ fn(Un)} containing C(f)(P ).
So interiority of C(f) at P is shown in the case P 6= X . To prove that C(f) is
interior at X consider, for n ∈ N, the sets Vn = {A ∈ C(X) : πn(A) = Xn} and
note that the family {Vn : n ∈ N} is a local base of (closed) neighborhoods of X on
C(X). So, it is enough to prove that C(f)(Vn) ⊃ Vn+1. To this end take A ∈ Vn+1,
and let B ∈ X be such that f(B) = A. Since

fn+1(πn+1(B)) = πn+1(f(B)) = πn+1(A) = Xn+1,

we see that πn+1(B) is an arc in Xn+1 of length at least π. Thus πn(B) =
ϕn(πn+1(B)) = Xn, i.e., B ∈ Vn, whence it follows that A = f(B) ∈ C(f)(Vn).
The proof is then complete.

In connection with Theorem 1 and Example 3 it would be interesting to know if
a stronger result is true, namely whether or not the conclusion of Theorem 1 can be
deduced from local connectedness of Y only (without assuming local connectedness
of X). In other words we have the following question.

4. Question. Can the assumption of local connectedness of the domain continuum
X be relaxed to that of the range continuum Y in Theorem 1?
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E-mail address: wjcharat@lya.fciencias.unam.mx


