The number of $\overrightarrow{C_{3}}$-free vertices on 3-partite tournaments*

Ana Paulina Figueroa ${ }^{\text {a }}$, Bernardo Llano ${ }^{\text {b }}$, Rita Zuazua ${ }^{\text {c }}$
${ }^{\text {a }}$ Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana, Cuajimalpa, Artificios 40, Colonia Hidalgo, 01120, México, D.F., Mexico
${ }^{\text {b }}$ Departamento de Matemáticas, Universidad Autónoma Metropolitana, Iztapalapa, San Rafael Atlixco 186, Colonia Vicentina, 09340, México, D.F., Mexico
${ }^{\text {c }}$ Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, D.F., Mexico

A R T I C LE IN F O

Article history:

Received 1 July 2009
Received in revised form 12 March 2010
Accepted 1 June 2010
Available online 1 July 2010

Keywords:

Directed triangle free vertex
Regular 3-partite tournament

Abstract

Let T be a 3-partite tournament. We say that a vertex v is $\overrightarrow{C_{3}}$-free if v does not lie on any directed triangle of T. Let $F_{3}(T)$ be the set of the \vec{C}_{3}-free vertices in a 3-partite tournament and $f_{3}(T)$ its cardinality. In this paper we prove that if T is a regular 3-partite tournament, then $F_{3}(T)$ must be contained in one of the partite sets of T. It is also shown that for every regular 3-partite tournament, $f_{3}(T)$ does not exceed $\frac{n}{9}$, where n is the order of T. On the other hand, we give an infinite family of strongly connected tournaments having $n-4 \overrightarrow{C_{3}}$ free vertices. Finally we prove that for every $c \geq 3$ there exists an infinite family of strongly connected c-partite tournaments, $D_{c}(T)$, with $n-c-1 \overrightarrow{C_{3}}$-free vertices.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let c be a non-negative integer, a c-partite or multipartite tournament is a digraph obtained from a complete c-partite graph by substituting each edge with exactly one arc. A tournament is a c-partite tournament with exactly c vertices. The partite sets of T are the maximal independent sets of T. Let D be an oriented graph. The vertex set and the arc set of an oriented graph D are denoted by $V(D)$ and $A(D)$, respectively. The out-neighborhood (in-neighborhood, resp.) $N^{+}(x)\left(N^{-}(x)\right.$, resp.) of a vertex x is the set $\{y \in V(D) \mid x y \in A(D)\}\left(\{y \in V(D) \mid y x \in A(D)\}\right.$, resp.). The numbers $d^{+}(x)=\left|N^{+}(x)\right|$ and $d^{-}(x)=\left|N^{-}(x)\right|$ are the out-degree and the in-degree of x, respectively. The global irregularity of an oriented graph D is defined as

$$
i_{g}(D)=\max _{x, y \in V(D)}\left\{\max \left\{d^{+}(x), d^{-}(x)\right\}-\min \left\{d^{+}(y), d^{-}(y)\right\}\right\}
$$

An oriented graph D is regular (almost regular, resp.) if $i_{g}(D)=0\left(i_{g}(D) \leq 1\right.$, resp.). Let $X, Y \subseteq V(D), X$ dominates Y, denoted by $X \Longrightarrow Y$, if $Y \subseteq N^{+}(x)$ for every $x \in X$. An oriented graph D is strongly connected if for every ordered pair of vertices (x, y) there is a directed path from x to y. An m-cycle of an oriented graph is a directed cycle of length m. Let T be a c-partite tournament. We say that a vertex v is $\overrightarrow{C_{3}}$-free if v does not lie on any directed triangle of T. Let $F_{3}(T)$ be the set of the $\overrightarrow{C_{3}}$-free vertices in a c-partite tournament and $f_{3}(T)$ its cardinality. For the standard terminology on digraphs see [1].

The structure of cycles in multipartite tournaments has been extensively studied, see for example [3,4,6,7] and [11]. A very recent survey on this topic [10] appeared with several interesting open problems. For instance, the study of cycles whose length does not exceed the number of partite sets leads to various extensions and generalizations of classic results on tournaments. Bondy [2] proved that each strongly connected c-partite tournament contains an m-cycle for each $m \in$

[^0]$\{3, \ldots, c\}$. In 1994, Guo and Volkmann [5] proved that every partite set of a strongly connected c-partite tournament T has at least one vertex that lies on a cycle of length m for each $m \in\{3, \ldots, c\}$. This result also generalizes a theorem of Gutin [8]. There are examples showing that not every vertex of a strongly connected c-partite tournament is contained in a cycle of length m for each $m \in\{3, \ldots, c\}$ in general [10]. However, Zhou et al. [12] proved that every vertex of a regular c-partite tournament with at least four partite sets $(c \geq 4)$ is contained in a cycle of length m for each $m \in\{3, \ldots, c\}$. Volkmann [9] provided the following infinite family of 4 p-regular 3-partite tournaments which shows that the previous theorem is not valid for regular 3-partite tournaments

Example 1 (Volkmann). Let \mathcal{F} be the family of tournaments with the partite sets $U=U_{1} \cup U_{2}, V=V_{1} \cup V_{2}$ and $W=W_{1} \cup W_{2}$ such that:

1. For every natural number p, the sets have sizes $\left|W_{1}\right|=p,\left|W_{2}\right|=3 p$ and $\left|U_{1}\right|=\left|U_{2}\right|=\left|V_{1}\right|=\left|V_{2}\right|=2 p$.
2. The sets $U_{1} \cup V_{1}$ and $U_{2} \cup V_{2}$ generate p-regular bipartite tournaments T_{1} and T_{2}, respectively.
3. $V_{1} \Longrightarrow U_{2}$ and $U_{1} \Longrightarrow V_{2}$.
4. $V\left(T_{1}\right) \Longrightarrow W_{1} \Longrightarrow V\left(T_{2}\right)$ and $V\left(T_{2}\right) \Longrightarrow W_{2} \Longrightarrow V\left(T_{1}\right)$.

This result leads to the natural question: which is the maximum number of \vec{C}_{3}-free vertices on regular 3-partite tournaments? In the case of Example 1 we have an infinite family of regular 3-partite tournaments such that $f_{3}(T)=\frac{|V(T)|}{12}$. In this paper we prove that if T is a regular 3-partite tournament, there is at most one partite set of T containing the vertices in $F_{3}(T)$. We also show that for every regular 3-partite tournament, $f_{3}(T)$ does not exceed $\frac{V(T)}{9}$. On the other hand, we give an infinite family of strongly connected tournaments having $n-4 \vec{C}_{3}$-free vertices. Finally we prove that for every $c \geq 3$ there exists an infinite family of strongly connected c-partite tournaments, $D_{c}(T)$, with $n-c-1 \overrightarrow{C_{3}}$-free vertices. This examples show that regularity is an important constraint to have lots of vertices that are contained in a directed triangle.

We conclude this section with the following
Remark 1. Let P_{1}, P_{2}, P_{3} be the partite sets of a regular 3-partite tournament T. Then, $r=\left|P_{1}\right|=\left|P_{2}\right|=\left|P_{3}\right|$ and $d^{+}(x)=d^{-}(x)=r$ for all $x \in V(T)$.

2. Tripartite regular tournaments

Let T be a 3-partite regular tournament and P be a partite set of $T, u, v \in V(T)$ and $S \subseteq V(T)$. For the rest of this article we use the following notation:

$$
\begin{aligned}
& P^{+-}(u, v):=N^{+}(u) \cap N^{-}(v) \cap P, \\
& P^{-+}(u, v):=N^{-}(u) \cap N^{+}(v) \cap P, \\
& P^{+}(S):=\left(\bigcap_{s \in S} N^{+}(s)\right) \cap P, \\
& P^{-}(S):=\left(\bigcap_{s \in S} N^{-}(s)\right) \cap P \text { and } \\
& P^{*}(S):=P \backslash\left(P^{+}(S) \cup P^{-}(S)\right) .
\end{aligned}
$$

If $S=\{v\}$ for some $v \in V(T)$, then we briefly write $P^{+}(v)$ and $P^{-}(v)$ to denote $P^{+}(\{v\})$ and $P^{-}(\{v\})$, respectively.
Theorem 2. For every regular 3-partite tournament, there is a partite set containing $F_{3}(T)$.
Proof. Let U, V, W be the partite sets of the 3-partite regular tournament T. By Remark 1, there exists a positive integer r such that $r=|U|=|V|=|W|$ and $d^{+}(x)=d^{-}(x)=r$ for every $x \in V(T)$. Suppose that there exists $S=\{u, v\} \subseteq F_{3}(T)$ such that $u \in U, v \in V$ and $u v \in A(T)$.

If $x \in W^{-+}(u, v), u$ lies on a directed triangle (u, v, x), which is impossible since $S \subseteq F_{3}(T)$. Thus, $W^{-+}(u, v)=\emptyset$ and

$$
\begin{equation*}
W=W^{+}(S) \cup W^{-}(S) \cup W^{+-}(u, v) \tag{1}
\end{equation*}
$$

By definition, $W^{+}(S), W^{-}(S)$ and $W^{+-}(u, v)$ are pairwise disjoint sets.
If $W^{+}(S)=\emptyset$, from Eq. (1) we obtain that $r=d^{-}(v) \geq|W|+|\{u\}|=r+1>r$, a contradiction. Thus,

$$
\begin{equation*}
W^{+}(S) \neq \emptyset \tag{2}
\end{equation*}
$$

Analogously,

$$
\begin{equation*}
W^{-}(S) \neq \emptyset \tag{3}
\end{equation*}
$$

since $d^{-}(u)=r<|W|+|\{v\}|$.
The sets $U^{-}(v)$ and $U^{+}(v)$ form a partition of U. Notice that $u \in U^{-}(v)$. By Remark 1 and relation (3), $\left|W^{+}(S)\right|<r$, thus $U^{+}(v) \neq \emptyset$ because $r=d^{+}(v)=\left|W^{+}(S)\right|+\left|U^{+}(v)\right|$. By a similar argument, Remark 1 and relation $(2), V^{+}(u)$ and $V^{-}(u)$ are non-empty sets.

Let $x \in U^{-}(v)$ and $w \in W^{+}(S)$. Since $v \in F_{3}(T)$, we have that the directed path (x, v, w) is not contained in a directed triangle of T. This implies that $x w \in A(T)$, thus

$$
\begin{equation*}
U^{-}(v) \Longrightarrow W^{+}(S) \tag{4}
\end{equation*}
$$

Even more, for every $y \in V^{-}(u)$ and $w \in W^{+}(S)$, the directed path (y, u, w) is not a directed triangle of T, since $u \in F_{3}(T)$, thus

$$
\begin{equation*}
V^{-}(u) \Longrightarrow W^{+}(S) \tag{5}
\end{equation*}
$$

From relations (4) and (5), for every $w \in W^{+}(S)$ we have that

$$
U^{-}(v) \cup V^{-}(u) \cup\{v\} \subseteq N^{-}(w)
$$

and

$$
\begin{equation*}
\left|U^{-}(v)\right|+\left|V^{-}(u)\right|+1 \leq r . \tag{6}
\end{equation*}
$$

On the other hand, for every $x \in U^{+}(v)$ and $w^{\prime} \in W^{-}(S)$, we have that the directed path $\left(w^{\prime}, v, x\right)$ is not in a directed triangle of T, then

$$
\begin{equation*}
W^{-}(S) \Longrightarrow U^{+}(v) \tag{7}
\end{equation*}
$$

Moreover, for every $y \in V^{+}(u)$ and $w^{\prime} \in W^{-}(S)$, we have that the directed path $\left(w^{\prime}, u, y\right)$ is not in a directed triangle of T, thus

$$
\begin{equation*}
W^{-}(S) \Longrightarrow V^{+}(u) \tag{8}
\end{equation*}
$$

Thus, from relations (7) and (8), for every $w \in W^{-}(S)$ we have that

$$
U^{+}(v) \cup V^{+}(s) \cup\{u\} \subseteq N^{-}\left(w^{\prime}\right)
$$

and

$$
\begin{equation*}
\left|U^{+}(v)\right|+\left|V^{+}(u)\right|+1 \leq r . \tag{9}
\end{equation*}
$$

Since T is regular $\left|U^{+}(v)\right|+\left|U^{-}(v)\right|=r$ and $\left|V^{+}(u)\right|+\left|V^{-}(u)\right|=r$. If we sum Eqs. (6) and (9) we get a contradiction. Thus, u and v must be elements of the same partition set of T.

Remark 3. Let C be a 4-cycle that contains vertices from all the partite sets of a regular 3-partite tournament. Then, the number of \vec{C}_{3}-free vertices belonging to C is at most one.
Proof. Since C is not an induced cycle, we have that at least three of its vertices lies in a directed triangle, thus at most one of them can be $\overrightarrow{C_{3}}$-free.

Theorem 4. Let T be a 3-partite regular tournament with partite sets V_{0}, V_{1} and V_{2}. If $u, v \in F_{3}(T) \cap V_{0}$, then there exists $i \in\{1,2\}$ such that $V_{i}^{+-}(u, v)=V_{i}^{-+}(u, v)=\emptyset$.
Proof. Let V_{0}, V_{1} and V_{2} be the partite sets of a r-regular 3-partite tournament and $S=\{u, v\} \subseteq F_{3}(T) \cap V_{0}$. It is enough to prove that if $V_{1}^{-+}(u, v) \neq \emptyset$, then $V_{2}^{+-}(u, v)=V_{2}^{-+}(u, v)=\emptyset$. Let $x_{1} \in V_{1}^{-+}(u, v)$. If there exists $x_{2} \in V_{2}^{+-}(u, v)$, then (u, x_{2}, v, x_{1}) is a directed 4 -cycle of T containing two vertices in $F_{3}(T)$, which by Remark 3 is impossible. Thus,

$$
\begin{equation*}
V_{2}^{+-}(u, v)=\emptyset . \tag{10}
\end{equation*}
$$

If $y_{2} \in V_{2}^{-+}(u, v)$ and $y_{1} \in V_{1}^{+-}(u, v)$, then $\left(v, y_{2}, u, y_{1}\right)$ is a directed 4-cycle of T containing two vertices of $F_{3}(T)$. Then,

$$
\begin{equation*}
V_{1}^{+-}(u, v)=\emptyset \tag{11}
\end{equation*}
$$

By Remark 1,

$$
\begin{align*}
& r=\left|N^{+}(u)\right|=\left|V_{1}^{+}(S)\right|+\left|V_{1}^{+-}(u, v)\right|+\left|V_{2}^{+}(S)\right|+\left|V_{2}^{+-}(u, v)\right|, \tag{12}\\
& r=\left|N^{-}(v)\right|=\left|V_{1}^{-}(S)\right|+\left|V_{1}^{+-}(u, v)\right|+\left|V_{2}^{-}(S)\right|+\left|V_{2}^{+-}(u, v)\right|, \tag{13}
\end{align*}
$$

and by relations (10) and (11),

$$
2 r=\sum_{i=1,2}\left|V_{i}^{+}(S)\right|+\sum_{i=1,2} \mid V_{i}^{-}(S \mid)
$$

which is a contradiction because

$$
r=\left|V_{i}^{+}(S)\right|+\left|V_{i}^{-+}(u, v)\right|+\left|V_{i}^{-}(S)\right| \text { for } i=\{1,2\}
$$

and $V_{i}^{-+}(u, v) \neq \emptyset$ for $i=\{1,2\}$. Therefore, $V_{2}^{-+}(u, v)$ is empty. Thus, we have proved that $V_{2}^{+-}(u, v)=V_{2}^{-+}(u, v)=\emptyset$.

Colorally 1. Let T be a 3-partite regular tournament such that $F_{3}(T) \neq \emptyset$. Then, there exists at least one partite set P such that $P=P^{+}\left(F_{3}(T)\right) \cup P^{-}\left(F_{3}(T)\right)$.

Proof. Let P_{1} and P_{2} be partite sets of T not containing $F_{3}(T)$. Suppose that $P_{1} \neq P_{1}^{+}\left(F_{3}(T)\right) \cup P_{1}^{-}\left(F_{3}(T)\right)$ and $P_{2} \neq$ $P_{2}^{+}\left(F_{3}(T)\right) \cup P_{2}^{-}\left(F_{3}(T)\right)$.

Then, there exist $u, v \in F_{3}(T)$ such that $P_{1}^{+-}(u, v) \neq \emptyset$. By Theorem 4,

$$
\begin{equation*}
P_{2}=P_{2}^{+}(\{u, v\}) \cup P_{2}^{-}(\{u, v\}) . \tag{14}
\end{equation*}
$$

Since $P_{2} \neq P_{2}^{+}\left(F_{3}(T)\right) \cup P_{2}^{-}\left(F_{3}(T)\right)$, there exists $w \in F_{3}(T)$ such that $P_{2} \neq P_{2}^{+}(\{u, w\}) \cup P_{2}^{-}(\{u, w\})$. Then, by relation (14), $P_{2} \neq P_{2}^{+}(\{v, w\}) \cup P_{2}^{-}(\{v, w\})$. Applying Theorem 4, we have that $P_{1}=P_{1}^{+}(\{u, w\}) \cup P_{1}^{-}(\{u, w\})$ and $P_{1}=P_{1}^{+}(\{v, w\}) \cup P_{1}^{-}(\{v, w\})$. Thus,

$$
P_{1}^{+-}(u, v) \subseteq P_{1}^{+}(\{u, w\}) \cap P_{1}^{-}(\{v, w\}) \subseteq N^{+}(w) \cap N^{-}(w)=\emptyset
$$

which is a contradiction because $P_{1}^{+-}(u, v) \neq \emptyset$.
Theorem 5. Let T be a r-regular 3-partite tournament. Then, $f_{3}(T)<\frac{r}{3}$.
Proof. Let T be a 3-partite tournament, by Theorem 2 there exist partite sets P_{1} and P_{2} of T such that $P_{i} \cap F_{3}(T)=\emptyset$ for $i=1$, 2. Denote by P_{i}^{+}and P_{i}^{-}the sets $P_{i}^{+}\left(F_{3}(T)\right)$ and $P_{i}^{-}\left(F_{3}(T)\right)$, respectively for $i \in\{1,2\}$. By Corollary 1 , we can assume that $P_{1}=P_{1}^{+} \cup P_{1}^{-}$. By definition $P_{2}^{*}=P_{2} \backslash\left(P_{2}^{+} \cup P_{2}^{-}\right)$, then $P_{2}=P_{2}^{+} \cup P_{2}^{-} \cup P_{2}^{*}$. We may assume $f_{3}(T)>0$ for the rest of the proof.

Let $v \in P_{1}^{-}$and $w \in P_{2}^{+} \cup P_{2}^{*}$. There exists $x \in F_{3}(T)$ such that $v x \in A(T)$ and $x w \in A(T)$. Since the directed path (v, x, w) is not in a directed triangle of T, then $v w \in A(T)$. Thus,

$$
\begin{equation*}
P_{1}^{-} \Longrightarrow P_{2}^{+} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{1}^{-} \Longrightarrow P_{2}^{*} \tag{16}
\end{equation*}
$$

Let $v \in P_{1}^{+}$and $w \in P_{2}^{-} \cup P_{2}^{*}$. There exists $x \in F_{3}(T)$ such that $x v \in A(T)$ and $w x \in A(T)$. Since the directed path (w, x, v) is not in a directed triangle of T, then $w v \in A(T)$. Thus,

$$
\begin{equation*}
P_{2}^{-} \Longrightarrow P_{1}^{+} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{2}^{*} \Longrightarrow P_{1}^{+} \tag{18}
\end{equation*}
$$

From relations (15) and (16), we have that P_{1}^{+}and P_{2}^{-}are not empty sets, otherwise, $d^{-}(v)>r$ for every vertex $v \in P_{2}$ which is impossible. Analogously, from relations (17) and (18), we have that P_{1}^{-}and P_{2}^{+}are not empty sets, otherwise, $d^{-}(v)>r$ for every vertex $v \in P_{1}$. Let

$$
\begin{aligned}
& s_{1}=\left|\left\{u v \in A(T) \mid u \in P_{1}^{+}, v \in P_{2}^{+}\right\}\right|, \\
& s_{2}=\left|\left\{u v \in A(T) \mid u \in P_{2}^{+}, v \in P_{1}^{+}\right\}\right|, \\
& t_{1}=\left|\left\{u v \in A(T) \mid u \in P_{1}^{-}, v \in P_{2}^{-}\right\}\right| \text {and } \\
& t_{2}=\left|\left\{u v \in A(T) \mid u \in P_{2}^{-}, v \in P_{1}^{-}\right\}\right| .
\end{aligned}
$$

If $s_{1}=0$, then $d^{-}(x)>\left|P_{2}^{+}\right|+\left|P_{2}^{*}\right|+\left|P_{2}^{-}\right|+f_{3}(T)>r$, which is impossible. Thus $s_{1} \neq 0$. Analogously, $s_{2}, t_{1}, t_{2} \neq 0$.
Notice that $s_{1}+s_{2}=\left|P_{1}^{+} \| P_{2}^{+}\right|$and $t_{1}+t_{2}=\left|P_{1}^{-} \| P_{2}^{-}\right|$. We consider the following cases.
Case 1. $\left|P_{1}^{+}\right| \leq \frac{r}{2}$
Subcase 1.1. $s_{1} \geq \frac{\left|P_{1}^{+}\right|\left|P_{2}^{+}\right|}{2}$
From the regularity of T, the relations (15), (16) and the definitions of P_{2}^{+}and s_{1}, we have that

$$
r\left|P_{2}^{+}\right|=\left|\left\{u v \in A(T) \mid v \in P_{2}^{+}\right\}\right| \geq s_{1}+f_{3}(T)\left|P_{2}^{+}\right|+\left|P_{1}^{-}\right|\left|P_{2}^{+}\right|
$$

By the hypothesis,

$$
r\left|P_{2}^{+}\right| \geq \frac{\left|P_{1}^{+}\right|\left|P_{2}^{+}\right|}{2}+f_{3}(T)\left|P_{2}^{+}\right|+\left|P_{1}^{-}\right|\left|P_{2}^{+}\right|
$$

Since $\left|P_{2}^{+}\right|>0$, the last equation is equivalent to

$$
r \geq \frac{\left|P_{1}^{+}\right|}{2}+f_{3}(T)+\left|P_{1}^{-}\right|=\left|P_{1}^{+}\right|+f_{3}(T)+\left|P_{1}^{-}\right|-\frac{\left|P_{1}^{+}\right|}{2} .
$$

Since T is regular, $\left|P_{1}^{+}\right|+\left|P_{1}^{-}\right|=r$. Thus,

$$
r \geq f_{3}(T)+r-\frac{\left|P_{1}^{+}\right|}{2}
$$

which implies that

$$
\frac{\left|P_{1}^{+}\right|}{2} \geq f_{3}(T)
$$

Finally by the hypothesis of Case 1 ,

$$
f_{3}(T) \leq \frac{r}{4} .
$$

Subcase 1.2. $s_{2} \geq \frac{\left|P_{1}^{+} \| P_{2}^{+}\right|}{2}$
From relations (17) and (18) and the definitions of P_{1}^{+}and s_{2}, it follows that

$$
r\left|P_{1}^{+}\right|=\left|\left\{u v \in A(T) \mid v \in P_{1}^{+}\right\}\right| \geq s_{2}+f_{3}(T)\left|P_{1}^{+}\right|+\left|P_{2}^{-}\right|\left|P_{1}^{+}\right|+\left|P_{2}^{*}\right|\left|P_{1}^{+}\right| .
$$

If we proceed as we did in the previous subcase, by the hypothesis $s_{2} \geq \frac{\left|P_{1}^{+} \| P_{2}^{+}\right|}{2}$ and the fact that $\left|P_{2}^{+}\right|+\left|P_{2}^{*}\right|+\left|P_{2}^{-}\right|=r$, we obtain that

$$
f_{3}(T) \leq \frac{\left|P_{2}^{+}\right|}{2}
$$

If $f_{3}(T) \geq \frac{r}{3}$, from the last relation we obtain that $\left|P_{2}^{+}\right| \geq \frac{2}{3} r$.
On the other hand, from relations (15) and (16) and the definitions of t_{1} and P_{1}^{-}, it follows that

$$
r\left|P_{1}^{-}\right|=\left|\left\{u v \in A(T) \mid u \in P_{1}^{-}\right\}\right| \geq t_{1}+f_{3}(T)\left|P_{1}^{-}\right|+\left|P_{2}^{+}\right|\left|P_{1}^{-}\right|+\left|P_{2}^{*}\right|\left|P_{1}^{-}\right| .
$$

Since $\left|P_{1}^{-}\right|>0,\left|P_{2}^{*}\right| \geq 0, t_{1} \geq 0,\left|P_{2}^{+}\right| \geq \frac{2}{3} r$ and $f_{3}(T) \geq \frac{r}{3}$ we have that

$$
r \geq\left|P_{2}^{+}\right|+\left|P_{2}^{*}\right|+f_{3}(T)+\frac{t_{2}}{\left|P_{1}^{-}\right|}>\left|P_{2}^{+}\right|+f_{3}(T) \geq r
$$

which is impossible, thus $f_{3}(T)<\frac{r}{3}$.
Case 2. $\left|P_{1}^{-}\right| \leq \frac{r}{2}$
Subcase 2.1. $t_{2} \geq \frac{\left|P_{1}^{-}\right|\left|P_{2}^{-}\right|}{2}$
From the regularity of T, relation (17) and the definitions of P_{2}^{-}and t_{2} we have that

$$
r\left|P_{2}^{-}\right|=\left|\left\{u v \in A(T) \mid u \in P_{2}^{-}\right\}\right| \geq t_{2}+f_{3}(T)\left|P_{2}^{-}\right|+\left|P_{1}^{+}\right|\left|P_{2}^{-}\right| .
$$

By the hypothesis, since $\left|P_{2}^{-}\right|>0$ and $\left|P_{1}^{+}\right|+\left|P_{1}^{-}\right|=r$, the last equation is equivalent to

$$
\frac{\left|P_{1}^{-}\right|}{2} \geq f_{3}(T)
$$

Finally, by the hypothesis of Case 2,

$$
f_{3}(T) \leq \frac{r}{4}
$$

Subcase 2.2. $t_{1} \geq \frac{\left|P_{1}^{-}\right|\left|P_{2}^{-}\right|}{2}$
From relations (15) and (16) and the definitions of P_{1}^{-}and t_{1}, it follows that

$$
r\left|P_{1}^{-}\right|=\left|\left\{u v \in A(T) \mid u \in P_{1}^{-}\right\}\right| \geq t_{1}+f_{3}(T)\left|P_{1}^{-}\right|+\left|P_{2}^{+}\right|\left|P_{1}^{-}\right|+\left|P_{2}^{*}\right|\left|P_{1}^{-}\right| .
$$

By the hypothesis, $t_{1} \geq \frac{\left|P_{1}^{-}\right|\left|P_{2}^{-}\right|}{2}$ and the fact that $\left|P_{2}^{+}\right|+\left|P_{2}^{*}\right|+\left|P_{2}^{-}\right|=r$, we have that

$$
f_{3}(T) \leq \frac{\left|P_{2}^{-}\right|}{2}
$$

Fig. 1. $T_{0}(n)$.
If $f_{3}(T) \geq \frac{r}{3}$, from the last relation we obtain that $\left|P_{2}^{-}\right| \geq \frac{2}{3} r$.
On the other hand, from relations (17) and (18) and the definitions of s_{2} and P_{1}^{+}, it follows that

$$
r\left|P_{1}^{+}\right|=\left|\left\{u v \in A(T) \mid v \in P_{1}^{+}\right\}\right| \geq s_{2}+f_{3}(T)\left|P_{1}^{+}\right|+\left|P_{2}^{-}\right|\left|P_{1}^{+}\right|+\left|P_{2}^{*}\right|\left|P_{1}^{+}\right| .
$$

Since $\left|P_{1}^{+}\right|>0,\left|P_{2}^{*}\right| \geq 0, s_{2} \geq 0,\left|P_{2}^{-}\right| \geq \frac{2}{3} r$ and $f_{3}(T) \geq \frac{r}{3}$, then

$$
r \geq\left|P_{2}^{-}\right|+\left|P_{2}^{*}\right|+f_{3}(T)+\frac{s_{2}}{\left|P_{1}^{+}\right|}>\left|P_{2}^{-}\right|+f_{3}(T) \geq r
$$

which is impossible. Thus $f_{3}(T)<\frac{r}{3}$.

3. Strong c-partite tournaments with lots of $\overrightarrow{\mathcal{C}_{3}}$-free vertices

First we give an infinite family of strongly connected 3-partite tournaments having $n-4 \overrightarrow{C_{3}}$-free vertices (see Fig. 1).
Example 2. Let $T_{0}(n)$ be the 3-partite tournament with n vertices and partite sets $X \cup u, Y \cup w$ and $Z \cup v_{1}, v_{2}$ such that:

$$
\begin{aligned}
A\left(T_{0}(n)\right)= & \left\{(x, v) \mid x \in X, v \in Y \cup Z \cup\left\{v_{2}, w\right\}\right\} \cup\left\{(y, v) \mid y \in Y, v \in\left\{v_{2}, u\right\}\right\} \\
& \cup\{(z, v) \mid z \in Z, v \in Y \cup\{u, w\}\} \cup\left\{\left(v_{1}, v\right) \mid v \in X \cup Y \cup\{u\}\right\} \cup\left\{\left(v_{2}, u\right),(u, w),\left(w, v_{1}\right),\left(w, v_{2}\right)\right\} .
\end{aligned}
$$

Note that $T_{0}(n)$ is a strongly connected: for every $x \in X, y \in Y$ and $z \in Z$ there exists the directed cycle $\left(v_{2}, u, w, v_{1}, x, z, y\right)$ in $T_{0}(n)$. Observe that $F_{3}\left(T_{0}(n)\right)=X \cup Y \cup Z$. Thus, for every n there is a strongly connected 3-partite tournament with $n-4 \overrightarrow{C_{3}}$-free vertices.

The regularity is also important to prove that every vertex is in a directed triangle in the case of c-partite tournaments, $c \geq 4$. In the following example we give an infinite family of c-partite tournaments on n vertices having $n-c-1 \overrightarrow{C_{3}}$-free vertices (see Fig. 2).

Example 3. Let $T_{0}(n-c+3)$ be the tripartite tournament on $n-c+3$ vertices of Example 2 and T be a tournament with order $c-3$. Let $D_{c}(T)$ be the c-partite tournament with vertex set $V\left(T_{0}(n-c+3)\right) \cup V(T)$ and such that

$$
A\left(D_{c}(T)\right)=A\left(T_{0}(n-c+3)\right) \cup A(T) \cup\{x u \mid x \in V(T)\} \cup\left\{y x \mid y \in V\left(T_{0}(n-c+e)\right) \backslash\{u\} \text { and } x \in V(T)\right\} .
$$

It is clear that $D_{c}(T)$ is strongly connected because $T_{0}(n-c+3)$ is strongly connected and for every vertex x of $T, x u$ and $w x$ are arcs of $A\left(D_{c}(T)\right)$. If $\overrightarrow{C_{3}}$ is a directed triangle with at least one vertex in $X \cup Y \cup Z$, then it cannot be contained in $T_{0}(n-c+3)$. If $\overrightarrow{C_{3}}$ has only one vertex $a \in X \cup Y \cup Z$ then a is a source of $\overrightarrow{C_{3}}$. If $\overrightarrow{C_{3}}$ has only one vertex of $b \in V(T)$ then b is a sink of $\overrightarrow{C_{3}}$. Thus, $f_{3}\left(D_{c}(T)\right)=|X \cup Y \cup Z|=n-c-1$. So we have proved the following

Theorem 6. For every $c \geq 3$ there exists an infinite family of strongly connected c-partite tournaments, $D_{c}(T)$ with $n-c-1 \overrightarrow{C_{3}}$ free vertices.

Finally we conjecture that for every tournament T, the maximum number of C_{3}-free vertices of T is $\frac{|V(T)|}{12}$ as suggested by Example 1 .

Fig. 2. $D_{c}(T)$.

Acknowledgements

We thank the anonymous referees for their suggestions to improve this paper.

References

[1] J. Bang-Jensen, G. Gutin, Theory algorithms and applications, Springer, London, 2000.
[2] J.A. Bondy, Disconnected orientations and a conjecture of Las Vergnas, J. London Math. Soc. s2-14 (2) (1976) 277-282.
[3] W.D. Goddard, G. Kubicki, O.R. Oellermann, S. Tian, On multipartite tournaments, J. Combin. Theory Ser. B 52 (2) (1991) $284-300$.
[4] W.D. Goddard, O.R. Oellermann, On the cycle structure of multipartite tournaments, Graph Theory, Combinatorics, and Applications 1 (1991) 525-533.
[5] Y. Guo, L. Volkmann, Cycles in multipartite tournaments, J. Combin. Theory Ser B 62 (2) (1994) 363-366.
[6] Y. Guo, L. Volkmann, Extendable cycles in multipartite tournaments, Graphs Combin. 20 (2) (2004) 185-190.
[7] G. Gutin, Cycles in strong n-partite tournaments, Vetisi Acad. Navuk DSSR Ser. Fiz. Navuk 5 (1984) 105-106.
[8] G. Gutin, On cycles in multipartite tournaments, J. Combin. Theory Ser. B 58 (2) (1993) 319-321.
[9] L. Volkmann, Cycles in multipartite tournaments: Results and problems, Discrete Math. 245 (1-3) (2002) 19-53.
[10] L. Volkmann, Multipartite tournaments: A survey, Discrete Math. 307 (24) (2007) 3097-3129.
[11] A. Yeo, Diregular c-partite tournaments are vertex-pancyclic when $c \geq 5$, J. Graph Theory 32 (2) (1999) 137-152.
[12] G. Zhou, T. Yao, K.M. Zhang, A note on regular multipartite tournaments, J. Nanjing Univ. Math. Biq 15 (1998) 73-75.

[^0]: th This work was supported by the Scholarship Program for Posdoctoral Fellowships sponsored by Universidad Autónoma Metropolitana - Iztapalapa, PAPIIT IN111309-2 and Conacyt Mexico.

 E-mail addresses: apaulinafg@gmail.com (A.P. Figueroa), llano@xanum.uam.mx (B. Llano), ritazuazua@gmail.com (R. Zuazua).

