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a b s t r a c t

Let T be a 3-partite tournament. We say that a vertex v is
−→
C3 -free if v does not lie on any

directed triangle of T . Let F3(T ) be the set of the
−→
C3 -free vertices in a 3-partite tournament

and f3(T ) its cardinality. In this paper we prove that if T is a regular 3-partite tournament,
then F3(T )must be contained in one of the partite sets of T . It is also shown that for every
regular 3-partite tournament, f3(T ) does not exceed n9 , where n is the order of T . On the

other hand, we give an infinite family of strongly connected tournaments having n− 4
−→
C3 -

free vertices. Finally we prove that for every c ≥ 3 there exists an infinite family of strongly
connected c-partite tournaments, Dc(T ), with n− c − 1

−→
C3 -free vertices.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let c be a non-negative integer, a c-partite or multipartite tournament is a digraph obtained from a complete c-partite
graph by substituting each edge with exactly one arc. A tournament is a c-partite tournament with exactly c vertices. The
partite sets of T are the maximal independent sets of T . Let D be an oriented graph. The vertex set and the arc set of an
oriented graph D are denoted by V (D) and A(D), respectively. The out-neighborhood (in-neighborhood, resp.) N+(x) (N−(x),
resp.) of a vertex x is the set {y ∈ V (D) | xy ∈ A(D)} ({y ∈ V (D) | yx ∈ A(D)}, resp.). The numbers d+(x) = |N+(x)|
and d−(x) = |N−(x)| are the out-degree and the in-degree of x, respectively. The global irregularity of an oriented graph D is
defined as

ig(D) = maxx,y∈V (D){max{d+(x), d−(x)} −min{d+(y), d−(y)}}.

An oriented graph D is regular (almost regular, resp.) if ig(D) = 0 (ig(D) ≤ 1, resp.). Let X, Y ⊆ V (D), X dominates Y , denoted
by X =⇒ Y , if Y ⊆ N+(x) for every x ∈ X . An oriented graph D is strongly connected if for every ordered pair of vertices
(x, y) there is a directed path from x to y. Anm-cycle of an oriented graph is a directed cycle of lengthm. Let T be a c-partite
tournament.We say that a vertex v is

−→
C3 -free if v does not lie on any directed triangle of T . Let F3(T ) be the set of the

−→
C3 -free

vertices in a c-partite tournament and f3(T ) its cardinality. For the standard terminology on digraphs see [1].
The structure of cycles in multipartite tournaments has been extensively studied, see for example [3,4,6,7] and [11]. A

very recent survey on this topic [10] appeared with several interesting open problems. For instance, the study of cycles
whose length does not exceed the number of partite sets leads to various extensions and generalizations of classic results
on tournaments. Bondy [2] proved that each strongly connected c-partite tournament contains an m-cycle for each m ∈
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{3, . . . , c}. In 1994, Guo and Volkmann [5] proved that every partite set of a strongly connected c-partite tournament T has
at least one vertex that lies on a cycle of lengthm for eachm ∈ {3, . . . , c}. This result also generalizes a theorem of Gutin [8].
There are examples showing that not every vertex of a strongly connected c-partite tournament is contained in a cycle of
length m for each m ∈ {3, . . . , c} in general [10]. However, Zhou et al. [12] proved that every vertex of a regular c-partite
tournament with at least four partite sets (c ≥ 4) is contained in a cycle of lengthm for eachm ∈ {3, . . . , c}. Volkmann [9]
provided the following infinite family of 4p-regular 3-partite tournaments which shows that the previous theorem is not
valid for regular 3-partite tournaments

Example 1 (Volkmann). LetF be the family of tournamentswith the partite setsU = U1∪U2, V = V1∪V2 andW = W1∪W2
such that:

1. For every natural number p, the sets have sizes |W1| = p, |W2| = 3p and |U1| = |U2| = |V1| = |V2| = 2p.
2. The sets U1 ∪ V1 and U2 ∪ V2 generate p-regular bipartite tournaments T1 and T2, respectively.
3. V1 =⇒ U2 and U1 =⇒ V2.
4. V (T1) =⇒ W1 =⇒ V (T2) and V (T2) =⇒ W2 =⇒ V (T1).

This result leads to the natural question: which is the maximum number of
−→
C3 -free vertices on regular 3-partite

tournaments? In the case of Example 1 we have an infinite family of regular 3-partite tournaments such that f3(T ) =
|V (T )|
12 .

In this paper we prove that if T is a regular 3-partite tournament, there is at most one partite set of T containing the vertices
in F3(T ). We also show that for every regular 3-partite tournament, f3(T ) does not exceed V (T )

9 . On the other hand, we give an

infinite family of strongly connected tournaments having n−4
−→
C3 -free vertices. Finally we prove that for every c ≥ 3 there

exists an infinite family of strongly connected c-partite tournaments, Dc(T ), with n− c − 1
−→
C3 -free vertices. This examples

show that regularity is an important constraint to have lots of vertices that are contained in a directed triangle.
We conclude this section with the following

Remark 1. Let P1, P2, P3 be the partite sets of a regular 3-partite tournament T . Then, r = |P1| = |P2| = |P3| and
d+(x) = d−(x) = r for all x ∈ V (T ).

2. Tripartite regular tournaments

Let T be a 3-partite regular tournament and P be a partite set of T , u, v ∈ V (T ) and S ⊆ V (T ). For the rest of this article
we use the following notation:

P+−(u, v) := N+(u) ∩ N−(v) ∩ P ,
P−+(u, v) := N−(u) ∩ N+(v) ∩ P ,
P+(S) := (

⋂
s∈S N

+(s)) ∩ P ,
P−(S) := (

⋂
s∈S N

−(s)) ∩ P and
P∗(S) := P \ (P+(S) ∪ P−(S)).

If S = {v} for some v ∈ V (T ), then we briefly write P+(v) and P−(v) to denote P+({v}) and P−({v}), respectively.

Theorem 2. For every regular 3-partite tournament, there is a partite set containing F3(T ).

Proof. Let U, V ,W be the partite sets of the 3-partite regular tournament T . By Remark 1, there exists a positive integer r
such that r = |U| = |V | = |W | and d+(x) = d−(x) = r for every x ∈ V (T ). Suppose that there exists S = {u, v} ⊆ F3(T )
such that u ∈ U , v ∈ V and uv ∈ A(T ).
If x ∈ W−+(u, v), u lies on a directed triangle (u, v, x), which is impossible since S ⊆ F3(T ). Thus,W−+(u, v) = ∅ and

W = W+(S) ∪W−(S) ∪W+−(u, v). (1)

By definition,W+(S),W−(S) andW+−(u, v) are pairwise disjoint sets.
IfW+(S) = ∅, from Eq. (1) we obtain that r = d−(v) ≥ |W | + |{u}| = r + 1 > r , a contradiction. Thus,

W+(S) 6= ∅. (2)

Analogously,

W−(S) 6= ∅, (3)

since d−(u) = r < |W | + |{v}|.
The sets U−(v) and U+(v) form a partition of U . Notice that u ∈ U−(v). By Remark 1 and relation (3), |W+(S)| < r , thus

U+(v) 6= ∅ because r = d+(v) = |W+(S)| + |U+(v)|. By a similar argument, Remark 1 and relation (2), V+(u) and V−(u)
are non-empty sets.
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Let x ∈ U−(v) and w ∈ W+(S). Since v ∈ F3(T ), we have that the directed path (x, v, w) is not contained in a directed
triangle of T . This implies that xw ∈ A(T ), thus

U−(v) =⇒ W+(S). (4)

Evenmore, for every y ∈ V−(u) andw ∈ W+(S), the directed path (y, u, w) is not a directed triangle of T , since u ∈ F3(T ),
thus

V−(u) =⇒ W+(S). (5)

From relations (4) and (5), for everyw ∈ W+(S)we have that

U−(v) ∪ V−(u) ∪ {v} ⊆ N−(w)

and

|U−(v)| + |V−(u)| + 1 ≤ r. (6)

On the other hand, for every x ∈ U+(v) and w′ ∈ W−(S), we have that the directed path (w′, v, x) is not in a directed
triangle of T , then

W−(S) =⇒ U+(v). (7)

Moreover, for every y ∈ V+(u) andw′ ∈ W−(S), we have that the directed path (w′, u, y) is not in a directed triangle of
T , thus

W−(S) =⇒ V+(u). (8)

Thus, from relations (7) and (8), for everyw ∈ W−(S)we have that

U+(v) ∪ V+(s) ∪ {u} ⊆ N−(w′)

and

|U+(v)| + |V+(u)| + 1 ≤ r. (9)

Since T is regular |U+(v)|+ |U−(v)| = r and |V+(u)|+ |V−(u)| = r . If we sum Eqs. (6) and (9) we get a contradiction. Thus,
u and v must be elements of the same partition set of T . �

Remark 3. Let C be a 4-cycle that contains vertices from all the partite sets of a regular 3-partite tournament. Then, the
number of

−→
C3 -free vertices belonging to C is at most one.

Proof. Since C is not an induced cycle, we have that at least three of its vertices lies in a directed triangle, thus at most one
of them can be

−→
C3 -free. �

Theorem 4. Let T be a 3-partite regular tournament with partite sets V0, V1 and V2. If u, v ∈ F3(T ) ∩ V0, then there exists
i ∈ {1, 2} such that V+−i (u, v) = V−+i (u, v) = ∅.

Proof. Let V0, V1 and V2 be the partite sets of a r-regular 3-partite tournament and S = {u, v} ⊆ F3(T ) ∩ V0. It is enough
to prove that if V−+1 (u, v) 6= ∅, then V+−2 (u, v) = V−+2 (u, v) = ∅. Let x1 ∈ V−+1 (u, v). If there exists x2 ∈ V+−2 (u, v), then
(u, x2, v, x1) is a directed 4-cycle of T containing two vertices in F3(T ), which by Remark 3 is impossible. Thus,

V+−2 (u, v) = ∅. (10)

If y2 ∈ V−+2 (u, v) and y1 ∈ V+−1 (u, v), then (v, y2, u, y1) is a directed 4-cycle of T containing two vertices of F3(T ). Then,

V+−1 (u, v) = ∅. (11)

By Remark 1,

r = |N+(u)| = |V+1 (S)| + |V+−1 (u, v)| + |V+2 (S)| + |V+−2 (u, v)|, (12)

r = |N−(v)| = |V−1 (S)| + |V+−1 (u, v)| + |V−2 (S)| + |V+−2 (u, v)|, (13)

and by relations (10) and (11),

2r =
∑
i=1,2

|V+i (S)| +
∑
i=1,2

|V−i (S|)

which is a contradiction because

r = |V+i (S)| + |V−+i (u, v)| + |V−i (S)| for i = {1, 2}
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and V−+i (u, v) 6= ∅ for i = {1, 2}. Therefore, V−+2 (u, v) is empty. Thus, we have proved that V+−2 (u, v) = V−+2 (u, v) = ∅.
�

Colorally 1. Let T be a 3-partite regular tournament such that F3(T ) 6= ∅. Then, there exists at least one partite set P such that
P = P+(F3(T )) ∪ P−(F3(T )).

Proof. Let P1 and P2 be partite sets of T not containing F3(T ). Suppose that P1 6= P+1 (F3(T )) ∪ P−1 (F3(T )) and P2 6=
P+2 (F3(T )) ∪ P−2 (F3(T )).
Then, there exist u, v ∈ F3(T ) such that P+−1 (u, v) 6= ∅. By Theorem 4,

P2 = P+2 ({u, v}) ∪ P−2 ({u, v}). (14)

Since P2 6= P+2 (F3(T )) ∪ P−2 (F3(T )), there exists w ∈ F3(T ) such that P2 6= P+2 ({u, w}) ∪ P−2 ({u, w}). Then, by
relation (14), P2 6= P+2 ({v, w}) ∪ P−2 ({v, w}). Applying Theorem 4, we have that P1 = P+1 ({u, w}) ∪ P−1 ({u, w}) and
P1 = P+1 ({v, w}) ∪ P−1 ({v, w}). Thus,

P+−1 (u, v) ⊆ P+1 ({u, w}) ∩ P−1 ({v, w}) ⊆ N+(w) ∩ N−(w) = ∅,

which is a contradiction because P+−1 (u, v) 6= ∅. �

Theorem 5. Let T be a r-regular 3-partite tournament. Then, f3(T ) < r
3 .

Proof. Let T be a 3-partite tournament, by Theorem 2 there exist partite sets P1 and P2 of T such that Pi ∩ F3(T ) = ∅ for
i = 1, 2. Denote by P+i and P

−

i the sets P
+

i (F3(T )) and P−i (F3(T )), respectively for i ∈ {1, 2}. By Corollary 1, we can assume
that P1 = P+1 ∪ P

−

1 . By definition P
∗

2 = P2 \ (P+2 ∪ P
−

2 ), then P2 = P+2 ∪ P
−

2 ∪ P
∗

2 . We may assume f3(T ) > 0 for the rest of
the proof.
Let v ∈ P−1 andw ∈ P+2 ∪ P

∗

2 . There exists x ∈ F3(T ) such that vx ∈ A(T ) and xw ∈ A(T ). Since the directed path (v, x, w)
is not in a directed triangle of T , then vw ∈ A(T ). Thus,

P−1 =⇒ P
+

2 (15)

and

P−1 =⇒ P
∗

2 . (16)

Let v ∈ P+1 andw ∈ P−2 ∪ P
∗

2 . There exists x ∈ F3(T ) such that xv ∈ A(T ) andwx ∈ A(T ). Since the directed path (w, x, v)
is not in a directed triangle of T , thenwv ∈ A(T ). Thus,

P−2 =⇒ P
+

1 (17)

and

P∗2 =⇒ P
+

1 . (18)

From relations (15) and (16), we have that P+1 and P
−

2 are not empty sets, otherwise, d
−(v) > r for every vertex v ∈ P2

which is impossible. Analogously, from relations (17) and (18), we have that P−1 and P
+

2 are not empty sets, otherwise,
d−(v) > r for every vertex v ∈ P1. Let

s1 = |{uv ∈ A(T ) | u ∈ P+1 , v ∈ P+2 }|,
s2 = |{uv ∈ A(T ) | u ∈ P+2 , v ∈ P+1 }|,
t1 = |{uv ∈ A(T ) | u ∈ P−1 , v ∈ P−2 }| and
t2 = |{uv ∈ A(T ) | u ∈ P−2 , v ∈ P−1 }|.

If s1 = 0, then d−(x) > |P+2 | + |P
∗

2 | + |P
−

2 | + f3(T ) > r , which is impossible. Thus s1 6= 0. Analogously, s2, t1, t2 6= 0.
Notice that s1 + s2 = |P+1 ||P

+

2 | and t1 + t2 = |P
−

1 ||P
−

2 |. We consider the following cases.

Case 1. |P+1 | ≤
r
2

Subcase 1.1. s1 ≥
|P+1 ||P

+

2 |

2
From the regularity of T , the relations (15), (16) and the definitions of P+2 and s1, we have that

r|P+2 | = |{uv ∈ A(T ) | v ∈ P
+

2 }| ≥ s1 + f3(T )|P
+

2 | + |P
−

1 ||P
+

2 |.

By the hypothesis,

r|P+2 | ≥
|P+1 ||P

+

2 |

2
+ f3(T )|P+2 | + |P

−

1 ||P
+

2 |.
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Since |P+2 | > 0, the last equation is equivalent to

r ≥
|P+1 |
2
+ f3(T )+ |P−1 | = |P

+

1 | + f3(T )+ |P
−

1 | −
|P+1 |
2

.

Since T is regular, |P+1 | + |P
−

1 | = r . Thus,

r ≥ f3(T )+ r −
|P+1 |
2

,

which implies that

|P+1 |
2
≥ f3(T ).

Finally by the hypothesis of Case 1,

f3(T ) ≤
r
4
.

Subcase 1.2. s2 ≥
|P+1 ||P

+

2 |

2
From relations (17) and (18) and the definitions of P+1 and s2, it follows that

r|P+1 | = |{uv ∈ A(T ) | v ∈ P
+

1 }| ≥ s2 + f3(T )|P
+

1 | + |P
−

2 ||P
+

1 | + |P
∗

2 ||P
+

1 |.

If we proceed as we did in the previous subcase, by the hypothesis s2 ≥
|P+1 ||P

+

2 |

2 and the fact that |P+2 | + |P
∗

2 | + |P
−

2 | = r , we
obtain that

f3(T ) ≤
|P+2 |
2

.

If f3(T ) ≥ r
3 , from the last relation we obtain that |P

+

2 | ≥
2
3 r .

On the other hand, from relations (15) and (16) and the definitions of t1 and P−1 , it follows that

r|P−1 | = |{uv ∈ A(T ) | u ∈ P
−

1 }| ≥ t1 + f3(T )|P
−

1 | + |P
+

2 ||P
−

1 | + |P
∗

2 ||P
−

1 |.

Since |P−1 | > 0, |P
∗

2 | ≥ 0, t1 ≥ 0, |P
+

2 | ≥
2
3 r and f3(T ) ≥

r
3 we have that

r ≥ |P+2 | + |P
∗

2 | + f3(T )+
t2
|P−1 |

> |P+2 | + f3(T ) ≥ r.

which is impossible, thus f3(T ) < r
3 .

Case 2. |P−1 | ≤
r
2

Subcase 2.1. t2 ≥
|P−1 ||P

−

2 |

2
From the regularity of T , relation (17) and the definitions of P−2 and t2 we have that

r|P−2 | = |{uv ∈ A(T ) | u ∈ P
−

2 }| ≥ t2 + f3(T )|P
−

2 | + |P
+

1 ||P
−

2 |.

By the hypothesis, since |P−2 | > 0 and |P
+

1 | + |P
−

1 | = r , the last equation is equivalent to

|P−1 |
2
≥ f3(T ).

Finally, by the hypothesis of Case 2,

f3(T ) ≤
r
4
.

Subcase 2.2. t1 ≥
|P−1 ||P

−

2 |

2
From relations (15) and (16) and the definitions of P−1 and t1, it follows that

r|P−1 | = |{uv ∈ A(T ) | u ∈ P
−

1 }| ≥ t1 + f3(T )|P
−

1 | + |P
+

2 ||P
−

1 | + |P
∗

2 ||P
−

1 |.

By the hypothesis, t1 ≥
|P−1 ||P

−

2 |

2 and the fact that |P+2 | + |P
∗

2 | + |P
−

2 | = r , we have that

f3(T ) ≤
|P−2 |
2

.
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Fig. 1. T0(n).

If f3(T ) ≥ r
3 , from the last relation we obtain that |P

−

2 | ≥
2
3 r .

On the other hand, from relations (17) and (18) and the definitions of s2 and P+1 , it follows that

r|P+1 | = |{uv ∈ A(T ) | v ∈ P
+

1 }| ≥ s2 + f3(T )|P
+

1 | + |P
−

2 ||P
+

1 | + |P
∗

2 ||P
+

1 |.

Since |P+1 | > 0, |P
∗

2 | ≥ 0, s2 ≥ 0, |P
−

2 | ≥
2
3 r and f3(T ) ≥

r
3 , then

r ≥ |P−2 | + |P
∗

2 | + f3(T )+
s2
|P+1 |

> |P−2 | + f3(T ) ≥ r

which is impossible. Thus f3(T ) < r
3 . �

3. Strong c-partite tournaments with lots of
−→
C3 -free vertices

First we give an infinite family of strongly connected 3-partite tournaments having n− 4
−→
C3 -free vertices (see Fig. 1).

Example 2. Let T0(n) be the 3-partite tournament with n vertices and partite sets X ∪ u, Y ∪ w and Z ∪ v1, v2 such that:

A(T0(n)) = {(x, v) | x ∈ X, v ∈ Y ∪ Z ∪ {v2, w}} ∪ {(y, v) | y ∈ Y , v ∈ {v2, u}}
∪ {(z, v) | z ∈ Z, v ∈ Y ∪ {u, w}} ∪ {(v1, v) | v ∈ X ∪ Y ∪ {u}} ∪ {(v2, u), (u, w), (w, v1), (w, v2)}.

Note that T0(n) is a strongly connected: for every x ∈ X , y ∈ Y and z ∈ Z there exists the directed cycle
(v2, u, w, v1, x, z, y) in T0(n). Observe that F3(T0(n)) = X ∪ Y ∪ Z . Thus, for every n there is a strongly connected 3-partite
tournament with n− 4

−→
C3 -free vertices.

The regularity is also important to prove that every vertex is in a directed triangle in the case of c-partite tournaments,
c ≥ 4. In the following example we give an infinite family of c-partite tournaments on n vertices having n− c − 1

−→
C3 -free

vertices (see Fig. 2).

Example 3. Let T0(n− c + 3) be the tripartite tournament on n− c + 3 vertices of Example 2 and T be a tournament with
order c − 3. Let Dc(T )be the c-partite tournament with vertex set V (T0(n− c + 3)) ∪ V (T ) and such that

A(Dc(T )) = A(T0(n− c + 3)) ∪ A(T ) ∪ {xu | x ∈ V (T )} ∪ {yx | y ∈ V (T0(n− c + e)) \ {u} and x ∈ V (T )}.

It is clear that Dc(T ) is strongly connected because T0(n − c + 3) is strongly connected and for every vertex x of T , xu
andwx are arcs of A(Dc(T )). If

−→
C3 is a directed triangle with at least one vertex in X ∪ Y ∪ Z , then it cannot be contained in

T0(n− c + 3). If
−→
C3 has only one vertex a ∈ X ∪ Y ∪ Z then a is a source of

−→
C3 . If
−→
C3 has only one vertex of b ∈ V (T ) then b

is a sink of
−→
C3 . Thus, f3(Dc(T )) = |X ∪ Y ∪ Z | = n− c − 1. So we have proved the following

Theorem 6. For every c ≥ 3 there exists an infinite family of strongly connected c-partite tournaments, Dc(T )with n−c−1
−→
C3 -

free vertices.

Finally we conjecture that for every tournament T , the maximum number of C3-free vertices of T is
|V (T )|
12 as suggested

by Example 1.
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Fig. 2. Dc(T ).
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