On the square integrability of the q-Hermite functions

M.K. Atakishiyeva ${ }^{a}$, N.M. Atakishiyev ${ }^{\mathrm{b}, *}$, C. Villegas-Blas ${ }^{\mathrm{b}}$
${ }^{a}$ Facultad de Ciencias, UAEM, Apartado Postal 396-3, C.P. 62250 Cuernavaca, Morelos, Mexico
${ }^{\mathrm{b}}$ Instituto de Matematicas, UNAM, Apartado Postal 273-3, C.P. 62210 Cuernavaca, Morelos, Mexico

Received 20 October 1997; received in revised form 21 May 1998

Abstract

Overlap integrals over the full real line $-\infty<x<\infty$ for a family of the q-Hermite functions $H_{n}(\sin \kappa x \mid q) \mathrm{e}^{-x^{2} / 2}, 0<$ $q=\mathrm{e}^{-2 \kappa^{2}}<1$ are evaluated. In particular, an explicit form of the squared norms for these q-extensions of the Hermite functions (or the wave functions of the linear harmonic oscillator in quantum mechanics) is obtained. The classical Fourier-Gauss transform connects the q-Hermite functions with different values $0<q<1$ and $q>1$ of the parameter q. An explicit expansion of the q-Hermite polynomials $H_{n}(\sin \kappa x \mid q)$ in terms of the Hermite polynomials $H_{n}(x)$ emerges as a by-product. (c) 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

The Hermite functions

$$
\begin{equation*}
\psi_{n}(\xi):=\left[\sqrt{\pi} 2^{n} n!\right]^{-1 / 2} H_{n}(\xi) \mathrm{e}^{-\xi^{2} / 2} \tag{1.1}
\end{equation*}
$$

where $H_{n}(\xi)$ are the classical Hermite polynomials, are of great mathematical interest as an explicit example of an orthonormal and complete system in the Hilbert space $L^{2}(\mathbb{R})$ of square-integrable functions with respect to the full real line $-\infty<\xi<\infty$ [1]. In mathematical physics they are known to represent solutions of the linear harmonic oscillator problem, which plays a very important role in quantum mechanics. In what follows, we attempt to study in detail some particular q-generalization of the Hermite functions (1.1).

2. Overlap integrals and squared norms

Let us consider a family of q-Hermite functions

$$
\begin{equation*}
\psi_{n}(\xi \mid q):=c_{n}(q) H_{n}(\sin \kappa \xi \mid q) \mathrm{e}^{-\xi^{2} / 2}, \quad 0<q=\mathrm{e}^{-2 \kappa^{2}}<1, \tag{2.1}
\end{equation*}
$$

[^0]where the normalization constant $c_{n}(q)=\left[\sqrt{\pi}(q ; q)_{n}\right]^{-1 / 2}$ and the q-shifted factorial $(q ; q)_{n}$ is defined as $(z ; q)_{0}=1$ and $(z ; q)_{n}=\prod_{k=0}^{n-1}\left(1-z q^{k}\right), n=1,2,3 \ldots$ (throughout this paper, we will employ the standard notations of q-special functions, see [2] or [3]). The continuous q-Hermite polynomials $H_{n}(x \mid q)$ in (2.1) are those q-extensions of the ordinary Hermite polynomials $H_{n}(x)$, which satisfy the three-term recurrence relation
\[

$$
\begin{equation*}
H_{n+1}(x \mid q)=2 x H_{n}(x \mid q)-\left(1-q^{n}\right) H_{n-1}(x \mid q), \quad n=0,1,2, \ldots \tag{2.2}
\end{equation*}
$$

\]

with the initial condition $H_{0}(x \mid q)=1$ [4]. Their explicit form is given by the Fourier expansion

$$
H_{m}(\sin \kappa \xi \mid q)=\mathbf{1}^{m} \sum_{n=0}^{m}(-1)^{n}\left[\begin{array}{l}
m \tag{2.3}\\
n
\end{array}\right]_{q} \mathrm{e}^{\mathrm{u}(2 n-m) \kappa \zeta},
$$

where $\left[\begin{array}{l}m \\ n\end{array}\right]_{q}$ is the q-binomial coefficient,

$$
\left[\begin{array}{c}
m \tag{2.4}\\
n
\end{array}\right]_{q}:=\frac{(q ; q)_{m}}{(q ; q)_{n}(q ; q)_{m-n}}=\left[\begin{array}{c}
m \\
m-n
\end{array}\right]_{q}
$$

The q-Hermite polynomials (2.3) are solutions of the difference equation

$$
\begin{equation*}
\left[\mathrm{e}^{\mathrm{i} \kappa s} \exp \left(-\mathrm{i} \kappa \frac{\mathrm{~d}}{\mathrm{~d} s}\right)+\mathrm{e}^{-\mathrm{i} \kappa s} \exp \left(\mathrm{i} \kappa \frac{\mathrm{~d}}{\mathrm{~d} s}\right)\right] H_{n}(\sin \kappa s \mid q)=2 q^{-n / 2} \cos \kappa s H_{n}(\sin \kappa s \mid q) \tag{2.5}
\end{equation*}
$$

It is easy to verify that $\lim _{q \rightarrow 1} \kappa^{-2 n}(q ; q)_{n}=2^{n} n!$. Therefore it follows from the recurrence relation (2.2), that

$$
\begin{equation*}
\lim _{q \rightarrow 1} \kappa^{-n} H_{n}(\sin \kappa \xi \mid q)=H_{n}(\xi) \tag{2.6}
\end{equation*}
$$

Thus, the normalization in (2.1) is chosen so that when the limit $q \rightarrow 1$ is taken they coincide with the wave functions $\psi_{n}(\xi)$ of the linear harmonic oscillator in quantum mechanics, i.e.

$$
\begin{equation*}
\psi_{n}(\xi \mid 1):=\lim _{q \rightarrow 1} \psi_{n}(\xi \mid q)=\psi_{n}(\xi) \tag{2.7}
\end{equation*}
$$

As it is well known, the wave functions $\psi_{n}(\xi)$ satisfy the orthogonality relation

$$
\begin{equation*}
\int_{-\infty}^{\infty} \psi_{m}(\xi) \psi_{n}(\zeta) \mathbf{d} \xi=\delta_{m n} \tag{2.8}
\end{equation*}
$$

and may serve as a basis in the Hilbert space $L_{2}(\mathbb{R})$ of square-integrable functions with respect to $\mathrm{d} \xi$.

We evaluate first the corresponding integral

$$
\begin{equation*}
I_{m, n}(q):=\int_{-\infty}^{\infty} \psi_{m}(\xi \mid q) \psi_{n}(\xi \mid q) \mathrm{d} \xi=I_{n, m}(q) \tag{2.9}
\end{equation*}
$$

for the q-Hermite functions (2.1). Since $H_{n}(-x \mid q)=(-1)^{n} H_{n}(x \mid q)$ by definition, the functions $\psi_{m}(\xi \mid q)$ and $\psi_{n}(\xi \mid q)$ of the opposite parities $(m-n=2 k+1, k=0,1,2, \ldots$) are orthogonal and nontrivial integrals in (2.9) are

$$
\begin{equation*}
I_{n, n+2 k}(q)=\left[\pi(q ; q)_{n}(q ; q)_{n+2 k}\right]^{-1 / 2} \int_{-\infty}^{\infty} H_{n}(\sin \kappa \xi \mid q) H_{n+2 k}(\sin \kappa \xi \mid q) \mathrm{e}^{-\xi^{2}} \mathrm{~d} \xi . \tag{2.10}
\end{equation*}
$$

Using the Rogers linearization formula [5]

$$
H_{m}(x \mid q) H_{n}(x \mid q)=\sum_{k=0}^{m} \frac{(q ; q)_{n}}{(q ; q)_{n-m+k}}\left[\begin{array}{c}
m \tag{2.11}\\
k
\end{array}\right]_{q} H_{n-m+2 k}(x \mid q), \quad m \leqslant n,
$$

for the q-Hermite polynomials (2.3), one can represent (2.10) as

$$
I_{n, n+2 k}(q)=\frac{\left(q^{n+1} ; q\right)_{2 k}^{1 / 2}}{\sqrt{\pi}} \sum_{l=0}^{n}(q ; q)_{2 k+l}^{-1}\left[\begin{array}{c}
n \tag{2.12}\\
l
\end{array}\right]_{q} \int_{-\infty}^{\infty} H_{2 k+2 l}(\sin \kappa \xi \mid q) \mathrm{e}^{-\xi^{2}} \mathrm{~d} \xi .
$$

It remains only to substitute the explicit form of the q-Hermite polynomials (2.3) into (2.12) and to evaluate the integral with respect to the variable ξ by the aid of the well-known integral transform

$$
\begin{equation*}
\int_{-\infty}^{\infty} \mathrm{d} x \mathrm{e}^{2 x y-x^{2}}=\sqrt{\pi} \mathrm{e}^{-y^{2}} \tag{2.13}
\end{equation*}
$$

The result is

$$
\begin{align*}
I_{n, n+2 k}(q)= & \left(q^{n+1} ; q\right)_{2 k}^{1 / 2} \sum_{l=0}^{n}(-1)^{k+l}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} \frac{q^{(k+l)^{2} / 2}}{(q ; q)_{2 k+l}} \\
& \times \sum_{j=0}^{2(k+l)}(-1)^{j}\left[\begin{array}{c}
2(k+l) \\
j
\end{array}\right]_{q} q^{j^{2} / 2-j(k+l)} \tag{2.14}
\end{align*}
$$

The sum over j in (2.14) gives the factor $\left(q^{1 / 2-k-l} ; q\right)_{2(k+l)}$ because of the Gauss identity

$$
(z ; q)_{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{2.15}\\
k
\end{array}\right]_{q} q^{k(k-1) / 2}(-z)^{k} .
$$

In view of the formulas (see, for example, [2] or [3])

$$
\begin{align*}
& (z ; q)_{n+k}=(z ; q)_{n}\left(z q^{n} ; q\right)_{k}, \tag{2.16}\\
& \left(z q^{-n} ; q\right)_{n}=q^{-n(n+1) / 2}(-z)^{n}(q / z ; q)_{n} \tag{2.17}
\end{align*}
$$

this factor is equal to

$$
\begin{equation*}
\left(q^{1 / 2-k-1} ; q\right)_{2(k+l)}=(-1)^{k+1} q^{-(k+l)^{2} / 2}\left(q^{1 / 2} ; q\right)_{k+1}^{2} \tag{2.18}
\end{equation*}
$$

Now substituting (2.18) into (2.14), yields

$$
I_{n, n+2 k}(q)=\left(q^{n+1} ; q\right)_{2 k}^{1 / 2} \sum_{l=0}^{n}\left[\begin{array}{l}
n \tag{2.19}\\
l
\end{array}\right]_{q} \frac{\left(q^{1 / 2} ; q\right)_{k+l}^{2}}{(q ; q)_{2 k+l}} .
$$

Since $(q ; q)_{2 k+l}=(q ; q)_{2 k}\left(q^{2 k+1} ; q\right)_{l}$ by (2.16) and

$$
\begin{equation*}
(q ; q)_{n-m}=(-1)^{m} q^{m(m-1) / 2-m n} \frac{(q ; q)_{n}}{\left(q^{-n} ; q\right)_{m}}, \tag{2.20}
\end{equation*}
$$

one can express (2.19) through the basic hypergeometric series ${ }_{3} \phi_{1}$:

$$
\begin{equation*}
I_{n, n+2 k}(q)=\frac{\left(q^{1 / 2} ; q\right)_{k}^{2}}{(q ; q)_{2 k}}\left(q^{n+1} ; q\right)_{2 k}^{1 / 2} \phi_{1}\left(q^{-n}, q^{k+1 / 2}, q^{k+1 / 2} ; q^{2 k+1} ; q, q^{n}\right) \tag{2.21}
\end{equation*}
$$

A particular case of (2.21) with $k=0$,

$$
I_{n, n}(q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{2.22}\\
k
\end{array}\right]_{q} \frac{\left(q^{1 / 2} ; q\right)_{k}^{2}}{(q ; q)_{k}}={ }_{3} \phi_{1}\left(q^{-n}, q^{1 / 2}, q^{1 / 2} ; q ; q, q^{n}\right)
$$

represents the squared norm of the q-Hermite function $\psi_{n}(\xi \mid q)$. As is evident from (2.22), $I_{n, n}(q)$ is finite and positive for all the values of $q \in(0,1)$.

3. Orthogonalization

It is clear that the q-Hermite functions (2.1) are linearly independent, for they are expressed through the q-Hermite polynomials of different order (multiplied by the common exponential factor $\mathrm{e}^{-\xi^{2} / 2}$). Therefore, once the overlap integrals (2.19) for them are known, the system $\left\{\psi_{n}(\xi \mid q)\right\}$ can be orthogonalized by the formation of suitable linear combinations. Since the subsequences $\left\{\psi_{2 k}(\xi \mid q)\right\}$ and $\left\{\psi_{2 k+1}(\xi \mid q)\right\}, k=0,1,2, \ldots$, are mutually orthogonal by definition, one needs to form such combinations for the even and odd functions separately. In other words, if we define (see [6, p. 154])

$$
\begin{align*}
\tilde{\psi}_{2 k}(\xi \mid q) & =\left|\begin{array}{cccc}
I_{0,0}(q) & I_{0,2}(q) & \cdots & I_{0,2 k}(q) \\
I_{2,0}(q) & I_{2,2}(q) & \cdots & I_{2,2 k}(q) \\
\vdots & \vdots & \vdots & \vdots \\
I_{2 k-2,0}(q) & I_{2 k-2,2}(q) & \cdots & I_{2 k-2,2 k}(q) \\
\psi_{0}(\xi \mid q) & \psi_{2}(\xi \mid q) & \cdots & \psi_{2 k}(\xi \mid q)
\end{array}\right| \\
& =\mathrm{e}^{-\xi^{2} / 2}\left|\begin{array}{ccccc}
I_{0,0}(q) & & I_{0,2}(q) & \cdots & I_{0,2 k}(q) \\
I_{2,0}(q) & I_{2,2}(q) & \cdots & I_{2,2 k}(q) \\
\vdots & \vdots & \vdots & \vdots \\
I_{2 k-2,0}(q) & I_{2 k-2,2}(q) & \cdots & I_{2 k-2,2 k}(q) \\
c_{0}(q) H_{0}(\sin \kappa \xi \mid q) & c_{2}(q) H_{2}(\sin \kappa \xi \mid q) & \cdots & c_{2 k}(q) H_{2 k}(\sin \kappa \xi \mid q)
\end{array}\right|, \tag{3.1}
\end{align*}
$$

then $\left\{\tilde{\psi}_{2 k}(\xi \mid q)\right\}$ is an orthogonal system, for (3.1) is orthogonal to $\psi_{0}(\xi \mid q), \psi_{2}(\xi \mid q), \ldots, \psi_{2 k-2}(\xi \mid q)$ and hence to $\tilde{\psi}_{2 n}(\xi \mid q)$ for all $n<k$.

Similarly, for the odd q-Hermite functions the appropriate linear combinations are

$$
\begin{align*}
\tilde{\psi}_{2 k+1}(\xi \mid q) & =\left|\begin{array}{cccc}
I_{1,1}(q) & I_{1,3}(q) & \cdots & I_{1,2 k+1}(q) \\
I_{3,1}(q) & I_{3,3}(q) & \cdots & I_{3,2 k+1}(q) \\
\vdots & \vdots & \vdots & \vdots \\
I_{2 k-1,1}(q) & I_{2 k-1,3}(q) & \cdots & I_{2 k-1,2 k+1}(q) \\
\psi_{1}(\xi \mid q) & \psi_{3}(\xi \mid q) & \cdots & \psi_{2 k+1}(\xi \mid q)
\end{array}\right| \\
& \left.=\mathrm{e}^{-\xi^{2} / 2} \left\lvert\, \begin{array}{cccc}
I_{1,1}(q) & & I_{1,3}(q) & \cdots
\end{array}\right.\right] I_{1,2 k+1}(q) \tag{3.2}\\
I_{3,1}(q) & I_{3,3}(q) \\
\vdots & \vdots \\
I_{2 k-1,1}(q) & I_{2 k-1,3}(q) \\
\cdots & \cdots
\end{align*}
$$

A system of the functions

$$
\begin{equation*}
\tilde{\psi}_{n}(\xi \mid q)=c_{n}(q) \tilde{H}_{n}(\sin \kappa \xi \mid q) \mathrm{e}^{-\xi^{2} / 2}, \quad n=0,1,2, \ldots \tag{3.3}
\end{equation*}
$$

is thus orthogonal over the full real line $-\infty<\xi<\infty$ with respect to $\mathrm{d} \xi$. The polynomials $\tilde{H}_{n}(x \mid q)$ in (3.3) are linear combinations of the q-Hermite polynomials (2.3) of the form

$$
\begin{equation*}
\tilde{H}_{n}(x \mid q)=\sum_{k=0}^{n} \alpha_{n, k}(q) H_{k}(x \mid q) \tag{3.4}
\end{equation*}
$$

From the second determinants in (3.1) and (3.2) it follows that the connection coefficients $\alpha_{n, k}(q)$ in (3.4) are equal to

$$
\begin{align*}
& \alpha_{2 k, 2 j}(q)=(-1)^{k+j+1}\left[\frac{(q ; q)_{2 k}}{(q ; q)_{2 j}}\right]^{1 / 2} \\
& \times\left|\begin{array}{ccccccc}
I_{0,0}(q) & I_{0,2}(q) & \cdots & I_{0,2 j-2}(q) & I_{0,2 j+2}(q) & \cdots & I_{0,2 k}(q) \\
I_{2,0}(q) & I_{2,2}(q) & \cdots & I_{2,2 j-2}(q) & I_{2,2 j+2}(q) & \cdots & I_{2,2 k}(q) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
I_{2 k-2,0}(q) & I_{2 k-2,2}(q) & \cdots & I_{2 k-2,2 j-2}(q) & I_{2 k-2,2 j+2}(q) & \cdots & I_{2 k-2,2 k}(q)
\end{array}\right|, \tag{3.5}\\
& \alpha_{2 k+1,2 j+1}(q)=(-1)^{k+j+1}\left[\frac{(q ; q)_{2 k+1}}{(q ; q)_{2 j+1}}\right]^{1 / 2} \\
& \times\left|\begin{array}{ccccccc}
I_{1,1}(q) & I_{1,3}(q) & \cdots & I_{1,2 j-1}(q) & I_{1,2 j+3}(q) & \cdots & I_{1,2 k+1}(q) \\
I_{3,1}(q) & I_{3,3}(q) & \cdots & I_{3,2 j-1}(q) & I_{3,2 j+3}(q) & \cdots & I_{3,2 k+1}(q) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
I_{2 k-1,1}(q) & I_{2 k-1,3}(q) & \cdots & I_{2 k-1,2 j-1}(q) & I_{2 k-1,2 j+3}(q) & \cdots & I_{2 k-1,2 k+1}(q)
\end{array}\right|, \tag{3.6}
\end{align*}
$$

for $n=2 k$ and $n=2 k+1, k=0,1,2, \ldots$, respectively.

4. Fourier expansion

Having established that the q-Hermite functions $\psi_{n}(\xi \mid q)$ are square integrable, it is natural to look for their expansion in terms of the Hermite functions $\psi_{n}(\xi)$ (or, in other words, the linear harmonic oscillator wave functions in quantum mechanics):

$$
\begin{equation*}
\psi_{n}(\xi \mid q)=\sum_{k=0}^{\infty} C_{n, k}(q) \psi_{k}(\xi) \tag{4.1}
\end{equation*}
$$

To find Fourier coefficients $C_{n, k}(q)$ of $\psi_{n}(\xi \mid q)$ with respect to the system $\left\{\psi_{k}(\xi)\right\}$, multiply both sides of (4.1) by $\psi_{m}(\xi)$ and integrate them over the variable ξ within infinite limits with the help of the orthogonality (2.8). This yields

$$
\begin{equation*}
C_{n, m}(q)=\int_{-\infty}^{\infty} \psi_{n}(\xi \mid q) \psi_{m}(\xi) \mathrm{d} \xi=\left[\pi 2^{m} m!(q ; q)_{n}\right]^{-1 / 2} \int_{-\infty}^{\infty} H_{n}(\sin \kappa \xi \mid q) H_{m}(\xi) \mathrm{e}^{-\xi^{2}} \mathrm{~d} \xi \tag{4.2}
\end{equation*}
$$

To evaluate the last integral in (4.2), substitute in the Fourier expansion (2.3) for $H_{n}(\sin \kappa \xi \mid q)$ and integrate it term by term by using the integral transform (see [6, p. 124, Eq. (23)])

$$
\begin{equation*}
\int_{-\infty}^{\infty} H_{n}(x) \mathrm{e}^{21 x y-x^{2}} \mathrm{~d} x=\sqrt{\pi}(2 \mathrm{l} y)^{n} \mathrm{e}^{-y^{2}} \tag{4.3}
\end{equation*}
$$

for the Hermite polynomials $H_{m}(\xi)$. This results in

$$
C_{n, m}(q)=\frac{\mathbf{1}^{n+m} \kappa^{m} q^{n^{2} / 8}}{\sqrt{2^{m} m!(q ; q)_{n}}} \sum_{k=0}^{n}(-1)^{k}\left[\begin{array}{l}
n \tag{4.4}\\
k
\end{array}\right]_{q}(2 k-n)^{m} q^{k(k-n) / 2}
$$

Reversing the order of summation in (4.4) with respect to the index k makes it evident that the Fourier coefficients $C_{n, m}(q)$ are real for $0<q<1$, namely

$$
C_{n, m}(q)=\frac{\cos (n+m) \pi / 2}{\sqrt{2^{m} m!(q ; q)_{n}}} \kappa^{m} q^{n^{2} / 8} \sum_{k=0}^{n}(-1)^{k}\left[\begin{array}{l}
n \tag{4.5}\\
k
\end{array}\right]_{q}(2 k-n)^{m} q^{k(k-n) / 2}
$$

Note that since the both functions $\psi_{n}(\xi \mid q)$ and $\psi_{n}(\xi)$ (see (1.1) and (2.1), respectively) contain the same exponential factor $\mathrm{e}^{-\xi^{-2} / 2}$, the relations (4.1) and (4.5) are equivalent to an explicit expansion

$$
\begin{equation*}
H_{n}(\sin \kappa \xi \mid q)=\sum_{k=0}^{\infty} a_{n k}(q) H_{k}(\xi) \tag{4.6}
\end{equation*}
$$

of the q-Hermite polynomials in terms of ordinary Hermite polynomials. The coefficients of this expansion $a_{n k}(q)$ are real and equal to

$$
a_{n k}(q)=\frac{\kappa^{k} q^{n^{2} / 8}}{k!} \cos (n+k) \pi / 2 \sum_{l=0}^{n}(-1)^{l^{2}}\left[\begin{array}{c}
n \tag{4.7}\\
l
\end{array}\right]_{q}(l-n / 2)^{k} q^{(l-n) / 2}
$$

As a consistency check, one may evaluate the sum over k in the right-hand side of (4.6) by substituting in it the coefficients $a_{n k}(q)$ from (4.7) and using the generating function

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{t^{k}}{k!} H_{k}(s)=\mathrm{e}^{2 s t-t^{2}} \tag{4.8}
\end{equation*}
$$

for the ordinary Hermite polynomials $H_{k}(s)$. This gives indeed the explicit form (2.3) of the q-Hermite polynomials $H_{n}(\sin \kappa \xi \mid q)$ in the left-hand side of (4.6).

5. Fourier integral transform

Since the q-Hermite functions (2.1) belong to $L_{2}(\mathbb{R})$, one may define their Fourier transforms with the same property of the square integrability. A remarkable fact is that the classical Fourier integral transform relates the q-Hermite functions with different values $0<q<1$ and $q>1$ of the parameter q.

We remind the reader that to consider the values $1<q<\infty$ of the parameter q it is convenient to introduce [7] the q^{-1}-Hermite polynomials

$$
\begin{equation*}
h_{n}(x \mid q):=\mathrm{l}^{-n} H_{n}\left(\imath x \mid q^{-1}\right) \tag{5.1}
\end{equation*}
$$

They satisfy the three-term recurrence relation

$$
\begin{equation*}
h_{n+1}(x \mid q)=2 x h_{n}(x \mid q)+\left(1-q^{-n}\right) h_{n-1}(x \mid q), \quad n=0,1,2, \ldots, \tag{5.2}
\end{equation*}
$$

with the initial condition $h_{0}(x \mid q)=1$. As follows from the Fourier expansion (2.3) and the inversion formula

$$
\left[\begin{array}{l}
n \tag{5.3}\\
k
\end{array}\right]_{q^{-1}}=q^{k(k-n)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}
$$

for the q-binomial coefficient (2.4), the explicit form of $h_{n}(x \mid q)$ is given by

$$
h_{n}(\sinh \kappa \xi \mid q)=\sum_{k=o}^{n}(-1)^{k} q^{k(k-n)}\left[\begin{array}{l}
n \tag{5.4}\\
k
\end{array}\right]_{q} \mathrm{e}^{(n-2 k) \kappa \xi} .
$$

The q-Hermite (2.3) and the q^{-1}-Hermite (5.4) polynomials are related to each other by the classical Fourier-Gauss transform [8]

$$
\begin{equation*}
H_{n}(\sin \kappa \xi \mid q) \mathrm{e}^{-\xi^{2} / 2}=1^{n} \frac{q^{n^{2} / 4}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} h_{n}(\sinh \kappa \eta \mid q) \mathrm{e}^{-1 \xi \eta-\eta^{2} / 2} \mathrm{~d} \eta . \tag{5.5}
\end{equation*}
$$

This means that the q^{-1}-Hermite functions

$$
\begin{equation*}
\psi_{n}\left(\eta \mid q^{-1}\right)=q^{n(n+1) / 4} c_{n}(q) h_{n}(\sinh \kappa \eta \mid q) \mathrm{e}^{-\eta^{2} / 2} \tag{5.6}
\end{equation*}
$$

obtained from (2.1) by the change $q \rightarrow q^{-1}$ of the parameter q, are connected with the q-Hermite functions (2.1) by the classical Fourier transform

$$
\begin{equation*}
\psi_{n}(\xi \mid q)=\frac{\left(1 q^{-1 / 4}\right)^{n}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-1 \xi \bar{\tau} \eta} \psi_{n}\left(\eta \mid q^{-1}\right) \mathrm{d} \eta \tag{5.7}
\end{equation*}
$$

Their expansion in terms of the Hermite functions (1.1) has the form

$$
\begin{equation*}
\psi_{n}\left(\eta \mid q^{-1}\right)=\sum_{k=0}^{\infty} C_{n, k}\left(q^{-1}\right) \psi_{k}(\eta) \tag{5.8}
\end{equation*}
$$

where the Fourier coefficients $C_{n, k}\left(q^{-1}\right)$ are equal to

$$
\begin{equation*}
C_{n, k}\left(q^{-1}\right)=q^{n / 4} \cos (n-k) \pi / 2 C_{n, k}(q) \tag{5.9}
\end{equation*}
$$

and the $C_{n, k}(q)$ are given in (4.5).

6. Relationship with the coherent states

In the study of a number of quantum-mechanical problems it turns out very useful to employ a system of coherent states. The wave functions of coherent states for the linear harmonic oscillator are expressed in terms of the Hermite functions (1.1) as

$$
\begin{equation*}
\psi(\xi ; z)=\langle\xi \mid z\rangle=\exp \left(-|z|^{2} / 2\right) \sum_{n=0}^{\infty} \frac{z^{n}}{\sqrt{n!}} \psi_{n}(\xi) \tag{6.1}
\end{equation*}
$$

where z is the complex parameter. The q-Hermite functions (2.1) are in fact some linear combinations of $\psi(\xi ; z)$ with particular values of the parameter z. Indeed, if one substitutes the explicit form of the Fourier coefficients (4.4) into (4.1), then the sum over the index k in it can be evaluated by (6.1). Thus the required relationship is

$$
\psi_{n}(\xi \mid q)=\frac{\mathrm{l}^{n}}{(q ; q)_{n}^{1 / 2}} \sum_{k=0}^{n}(-1)^{k}\left[\begin{array}{l}
n \tag{6.2}\\
k
\end{array}\right]_{q} \psi(\xi ; 1 \sqrt{2} \kappa(k-n / 2)) .
$$

In a similar manner, from (5.8) and (5.9) it follows that the corresponding relationship for the q^{-1}-Hermite functions (5.6) is

$$
\psi_{n}\left(\eta \mid q^{-1}\right)=\frac{q^{n(n+1) / 4}}{(q ; q)_{n}^{1 / 2}} \sum_{k=0}^{n}(-1)^{k} q^{k(k-n)}\left[\begin{array}{l}
n \tag{6.3}\\
k
\end{array}\right]_{q} \psi(\eta ; \sqrt{2} \kappa(n / 2-k)) .
$$

Acknowledgements

Discussions with S.L. Woronowicz and K.B. Wolf are gratefully acknowledged. This work was partially supported by the UNAM-DGAPA project IN106595.

References

[1] N. Wiener, The Fourier Integral and Certain of its Applications, Cambridge University Press, Cambridge, 1993.
[2] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
[3] R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 94-05, Delft University of Technology, 1994.
[4] R. Askey, M.E.H. Ismail, A generalization of ultraspherical polynomials, in: P. Erdös (Ed.), Studies in Pure Mathematics, Birkhäuser, Boston, MA, 1983, pp. 55-78.
[5] L.J. Rogers, Third memoir on the expansion of certain infinite products, Proc. Lond. Math. Soc. 26 (1895) 15-32.
[6] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, vol. 2, McGraw-Hill, New York, 1953.
[7] R. Askey, Continuous q-Hermite polynomials when $q>1$, in: D. Stanton (Ed.), q-Series and Partitions, IMA Volumes in Mathematics and its Applications, Springer, New York, 1989, pp. 151-158.
[8] N.M. Atakishiyev, Sh.M. Nagiyev, On the wave functions of a covariant linear oscillator, Theor. Math. Phys. 98 (1994) 162-166.

[^0]: * Corresponding author. E-mail: natig@matcuer.unam.mx.

