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Abstract

Overlap integrals over the full real line —oco <x<oo for a family of the g-Hermite functions H,(sin Kx|q)e"‘2’3, 0<
g= e~2< 1 are evaluated. In particular, an explicit form of the squared norms for these g-extensions of the Hermite
functions (or the wave functions of the linear harmonic oscillator in quantum mechanics) is obtained. The classical
Fourier-Gauss transform connects the g-Hermite functions with different values 0 <g<1 and ¢>1 of the parameter g.
An explicit expansion of the g-Hermite polynomials H,(sin kx|q) in terms of the Hermite polynomials H,(x) emerges as

a by-product. © 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

The Hermite functions
(&) = [vr2"n!] 2 H,(£)e 57, (1.1)

where H,(£) are the classical Hermite polynomials, are of great mathematical interest as an explicit
example of an orthonormal and complete system in the Hilbert space L*(R) of square-integrable
functions with respect to the full real line —co <¢ <oo [1]. In mathematical physics they are known
to represent solutions of the linear harmonic oscillator problem, which plays a very important role in
quantum mechanics. In what follows, we attempt to study in detail some particular g-generalization
of the Hermite functions (1.1).

2. Overlap integrals and squared norms

Let us consider a family of g-Hermite functions
Un(Elg) 1= ca(@)H (sin k&lg)e <72, 0<g=e X<, (2.1)
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where the normalization constant c,(q) = [v/7(q;¢),]~"? and the g-shifted factorial (g;q), is defined
as (z;9)o=1 and (z;¢), = HZ;&(I —zq*), n=1,2,3... (throughout this paper, we will employ the
standard notations of g-special functions, see [2] or [3]). The continuous g-Hermite polynomials
H,(x|q) in (2.1) are those g-extensions of the ordinary Hermite polynomials H,(x), which satisfy
the three-term recurrence relation

H,.(x|q)=2xH/(x|q) — (1 —¢")H, 1(x|]g), n=0,1,2,..., (2.2)

with the initial condition Hy(x|g) =1 [4]. Their explicit form is given by the Fourier expansion

H,(sinkélg) =" (~1y' [’,’:] g2n—mns, (2.3)
n=0

q

where [:ﬂ is the g-binomial coefficient,
q

mq ~ G {anL' (24)

The g-Hermite polynomials (2.3) are solutions of the difference equation

[ei” exp <—ixad—) + e " exp (mad—)] H,(sin ks|q) =2¢™"* cos ks H,(sin ks|q). (2.5)
s s

It is easy to verify that lim, ., k **(q; ¢), =2"n!. Therefore it follows from the recurrence relation
(2.2), that

lin’]l Kk "H,(sinx¢|q) = H,(¢). (2.6)
—

Thus, the normalization in (2.1) is chosen so that when the limit ¢ — 1 is taken they coincide with
the wave functions (&) of the linear harmonic oscillator in quantum mechanics, i.e.

Yn(CI1) = lim Y (Clg) = ¥n(©)- (2.7)

As it is well known, the wave functions ¥,(&) satisfy the orthogonality relation

IR GIIGLE (2.8)

and may serve as a basis in the Hilbert space L,(R) of square-integrable functions with respect
to dé.
We evaluate first the corresponding integral

bus@)= [ In(ElaWh(E1) dE = Ln(@) (2.9)
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for the g-Hermite functions (2.1). Since H,(—x|q) =(—1)"H,(x|g) by definition, the functions v, (¢|q)
and Y,(¢|g) of the opposite parities (m — n=2k + 1, k=0,1,2,...) are orthogonal and nontrivial
integrals in (2.9) are

Lyns2i(q) =[0G (g5 Onsn) 2 / H,(sin k| q)H,,, x(sin ¢|q)e ™" dé. (2.10)
Using the Rogers linearization formula [5]

H,(x|q)H,(x|q) = ; % {'ZLHn_mm(x\q), m < n, (2.11)

for the g-Hermite polynomials (2.3), one can represent (2.10) as

ntl. N2

Linia(q)= (q—\/’——gﬁ [Z:; . mq [ N Hoya(sinké|g)e™< dé. (2.12)

It remains only to substitute the explicit form of the g-Hermite polynomials (2.3) into (2.12) and
to evaluate the integral with respect to the variable ¢ by the aid of the well-known integral transform

/ dxe® ' = /re ™. (2.13)

The result is

k+D7*/2

/ 1 n q
L) = (" )L (—1)"“[ ] kM
o R ; ! q(q;Q)2k+/

2(k+1)

< v D] g (2.14)
j=0 Y q
The sum over j in (2.14) gives the factor (¢">~*~'; )41y because of the Gauss identity
. _ —~ [n k(k—1)/2 k
GEan=3[§] ) (2.15)
k=0 q
In view of the formulas (see, for example, [2] or [3])
(Z @ik =(2:9)u(2q"; @i (2.16)
(z2q7"5 @) =q """ (=2)"(4/2;@)ns (2.17)
this factor is equal to
(q"z_kﬁl; qQ)ok+ny=(—1 )k+[qv(k+1)2"/2(ql/2; ‘I)iw- (2.18)
Now substituting (2.18) into (2.14), yields
2w (4" 9%
In,n' ( ): rH—l; W [n] = 2.19
+2k q (q q)2/( ; l . (q’ q)2k+[ ( )
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Since (g; 9)a+1 = (g 9)u(g™* "5 ), by (2.16) and

(g5 @)n—m =(—1)"gmm =127 (;{”q;) (2.20)

one can express (2.19) through the basic hypergeometric series ;¢;:

(q > q)A

. Lk (g™ g )i " T g Y g, q7). (2.21)

In.n+2k(q) =

A particular case of (2.21) with £ =0,

_ . (q ’q)k —n n
In,n(q)—kgo[ ] g ) (222)

represents the squared norm of the g-Hermite function y,(|gq). As is evident from (2.22), I, ,(q) is
finite and positive for all the values of ¢ €(0,1).

3. Orthogonalization

It is clear that the g-Hermite functions (2.1) are linearly independent, for they are expressed
through the g-Hermite polynomials of different order (multiplied by the common exponential fac-
tor e~*/2). Therefore, once the overlap integrals (2.19) for them are known, the system {y,(&[q)}
can be orthogonalized by the formation of suitable linear combinations. Since the subsequences
{Yi(€lg)} and {Ymi11(&lg)}, k=0,1,2,..., are mutually orthogonal by definition, one needs to
form such combinations for the even and odd functions separately. In other words, if we define
(see [6, p. 154])

1o.o(q) Lia(g) - Lalq)
Lo(q) Lag) - bLalg)
bl =| : : :
Ly20(q) Di22(q) - DLi22(q)

Yo (&lg) néle) - Yl
Iy.o(q) ly2(q) e lo2(q)
L o(q) bL(q) T L(q)

= <" : : : : , (3.1)
Dy —2.0(q) Di—22(q) T by _221(q)
colg@)Ho(sinkélg) cq)Hax(sinkélg) -+ culq)Hu(sinkélq)

then {l/;2k(é|q)} is an orthogonal system, for (3.1) is orthogonal to Yo(&|q), Ya(&lg), ... ¥ —2(&|q)
and hence to ¥,,(&|q) for all n<k.
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Similarly, for the odd g-Hermite functions the appropriate linear combinations are

11(q) 1)3(q) o Lua(q)
L .(q) Li(g) - Lav(q)
Vo Elp) =] : : :
Li(q) In—13(q) - Duoruii(q)
¥(&lg) vi(&lg) - Yau+1(€lq)
5,1(q) 1,3(q) 1 241(q)
L.(q) L5(q) e Lok1(q)
—e : : : : . (32)
Ly—1,1(q) Iy—1,3(q) T L1 2k41(q)
cl(q)Hx(sinkélq) Cs(‘I)Hs(SinKﬂ‘I) Czk+1(‘1)H2k+|(Sian‘Q)
A system of the functions
Uo(Elg) = el @Hu(sinklg)e 7, n=0,1,2,..., (3.3)

is thus orthogonal over the full real line —oo <& <oo with respect to d¢. The polynomials H,(x|q)
in (3.3) are linear combinations of the g-Hermite polynomials (2.3) of the form

A,(xlg)="_ ani(q)Hi(x|g). (3.4)

k=0
From the second determinants in (3.1) and (3.2) it follows that the connection coefficients a, ;(g)
in (3.4) are equal to

oo 2(q) = (1) [(q;q)Zk:l "

(4:9))
Lo o(q) La(q) - Lha—2(q) Laia(q) - Lhau(q)
5 (q) Lyq) - 12.21—2(‘1) Lojo(g) -+ Laxu(q)
: : : : : : : > (3.5)
Ly—20(q) Ly-22(q) --- 12k—2.2_/'—2(q) Ly —22542(q) - Lyi—22(q)
@]
ofzk+1,2j+1(Q):(—I)I(HJrl M
(4:9)2j11
5.1(q) Lis(q) - Lai-1(q) Liyis(q) o Lan(q)
y L1(q) Li(q) - Laii(q) Lais(g) o Boaa(q)
Li11(q) Tu—13(q) -+ Tu—12-1(9) Du—12j43(q) -+ Di—1%41(q)
(3.6)

for n=2k and n=2k + 1, £k=0,1,2,..., respectively.
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4. Fourier expansion

Having established that the g-Hermite functions y,(&|g) are square integrable, it is natural to look
for their expansion in terms of the Hermite functions (&) (or, in other words, the linear harmonic
oscillator wave functions in quantum mechanics):

W) =3 Cor@Wi(&). (4.1)
k=0

To find Fourier coefficients C, ;(g) of ,(¢|q) with respect to the system {y4(&)}, multiply both
sides of (4.1) by (&) and integrate them over the variable ¢ within infinite limits with the help
of the orthogonality (2.8). This yields

Conld)= [ GO dE=[m2miG ) [ Hy(sinkelH e T de @2)

To evaluate the last integral in (4.2), substitute in the Fourier expansion (2.3) for H,(sin k¢|q)
and integrate it term by term by using the integral transform (see [6, p. 124, Eq. (23)])

/ H,,(x)ez"‘»"_":dx = \/5(21y)"e*-"2 (4.3)

for the Hermite polynomials H,(&). This results in

n+m m n”

— m, k(k— n7
Conlg) = MZ< [ ] (2k — ny"gH4= (44)

Reversing the order of summation in (4.4) with respect to the index £ makes it evident that the
Fourier coefficients C, ,(g) are real for 0 <g <1, namely

cos(n+mm/2 | . k)
(n % M2 g SZ(—l)km (2k — ny"g e, (4.5)
k=0 4

V2rmi(q; q).

Note that since the both functions ¥,(¢|g) and y,(£) (see (1.1) and (2.1), respectively) contain the
same exponential factor e <2, the relations (4.1) and (4.5) are equivalent to an explicit expansion

Com(q)=

Hy(sinkélg)= " au(@)Hi() (4.6)

k=0

of the g-Hermite polynomials in terms of ordinary Hermite polynomials. The coefficients of this
expansion a,{(g) are real and equal to

kn8

aw(q)= K]‘f cos(n-l—k)n/ZZ( 1) [ ] (1 — n/2)F g2, (4.7)

As a consistency check, one may evaluate the sum over k£ in the right-hand side of (4.6) by
substituting in it the coefficients a,,(gq) from (4.7) and using the generating function

o 1 st—1°
kZ_; ) =¢ (4.8)
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for the ordinary Hermite polynomials H,(s). This gives indeed the explicit form (2.3) of the
g-Hermite polynomials H,(sin k&|q) in the left-hand side of (4.6).

5. Fourier integral transform

Since the g-Hermite functions (2.1) belong to L,(R), one may define their Fourier transforms with
the same property of the square integrability. A remarkable fact is that the classical Fourier integral
transform relates the g-Hermite functions with different values 0 <g <1 and ¢>1 of the parameter 4.

We remind the reader that to consider the values 1 <q <oo of the parameter ¢ it is convenient to
introduce [7] the g~ '-Hermite polynomials

ho(xlq):=v"H,(ixlg ™). (5.1)
They satisfy the three-term recurrence relation
hooi(x|lg)=2xh,(x|q) + (1 — ¢ "h, 1(x|q), n=0,1,2,..., (5.2)

with the initial condition A(x|q)=1. As follows from the Fourier expansion (2.3) and the inversion
formula

i, e li], 53

for the g-binomial coefficient (2.4), the explicit form of 4,(x|q) is given by

h.(sinh k&lg) =Y (—1)lg"*=" [Z] gln=2hine, (5.4)
q

k=0

The g-Hermite (2.3) and the g~'-Hermite (5.4) polynomials are related to each other by the
classical Fourier—Gauss transform [8]

/4 oo
. ey 7 . —in—n32
H,(sink&|g)e <" =1 —/ h,(sinh xn|g)e™="""/% dy. 5.5
( lq) ) ( nlq) n (5.5)
This means that the ¢g~'-Hermite functions

U(nlg ) =" e, (g )ha(sinh kn|q)e 2, (5.6)

obtained from (2.1) by the change g — ¢~ ! of the parameter ¢, are connected with the g-Hermite

functions (2.1) by the classical Fourier transform

—1/4\n oo 5
lﬂn(élq):(“i/ﬁ) /m e “"Y,(nlg~" ) dn. (5.7)

Their expansion in terms of the Hermite functions (1.1) has the form

Ualnlg™ )= "> Cusl(g™ " Waln), (5.8)

k=0
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where the Fourier coefficients C, ;(q™') are equal to

Coilg™ ) =g"" cos(n — k)n/2C, (q) (5.9)

and the C, ,(q) are given in (4.5).

6. Relationship with the coherent states

In the study of a number of quantum-mechanical problems it turns out very useful to employ a
system of coherent states. The wave functions of coherent states for the linear harmonic oscillator
are expressed in terms of the Hermite functions (1.1) as

Y(&2) = (|z) = exp(—|z] /2)2 Wn(é) (6.1)

where z is the complex parameter. The g-Hermite functions (2.1) are in fact some linear combinations
of Y(&;z) with particular values of the parameter z. Indeed, if one substitutes the explicit form of
the Fourier coefficients (4.4) into (4.1), then the sum over the index & in it can be evaluated by
(6.1). Thus the required relationship is

VK ) B
W(l= DD [kme 2k — n/2)). (62)

In a similar manner, from (5.8) and (5.9) it follows that the corresponding relationship for the
g~ '-Hermite functions (5.6) is

n(n+l)/4 n

Wolg = S e "l ] W01 VIK(2 — ). (63)
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