
ELSEVIER Journal of Computational and Applied Mathematics 99 (1998) 27-35 

JOURNAL OF 
COMPUTATIONAL AND 
APPUED MATHEMATICS 

On the square integrability of the q-Hermite functions 
M.K. Atakish iyeva  a, N.M.  Atakish iyev  b,,, C. Vil legas-Blas  b 

a Facultad de Ciencias, UAEM, Apartado Postal 396-3, C.P. 62250 Cuernavaca, Morelos, Mexico 
b lnstituto de Matematicas, UNAM, Apartado Postal 273-3, C.P. 62210 Cuernavaca, Morelos, Mexico 

Received 20 October 1997; received in revised form 21 May 1998 

Abstract 

Overlap integrals over the full real line - ~  < x < w  for a family of the q-Hermite functions Hn(sin Kxlq)e ~2'2, 0 < 

q=e-2~2< 1 are evaluated. In particular, an explicit form of the squared norms for these q-extensions of the Hermite 
functions (or the wave functions of the linear harmonic oscillator in quantum mechanics) is obtained. The classical 
Fourier-Gauss transform connects the q-Hermite functions with different values 0 < q <  1 and q >  1 of the parameter q. 
An explicit expansion of the q-Hermite polynomials H,,(sin xxlq) in terms of the Hermite polynomials H,(x) emerges as 
a by-product. (~) 1998 Elsevier Science B.V. All rights reserved. 

1. Introduction 

The Hermite functions 

ff,(¢) := [x/~2"n!]-l"2H,( ¢)e -&2, ( 1.1 ) 

where H,(~) are the classical Hermite polynomials, are of  great mathematical interest as an explicit 
example of an orthonormal and complete system in the Hilbert space L2(~) of  square-integrable 
functions with respect to the full real line - e ~  < ~ < c~ [1]. In mathematical physics they are known 
to represent solutions of the linear harmonic oscillator problem, which plays a very important role in 
quantum mechanics. In what follows, we attempt to study in detail some particular q-generalization 
of the Hermite functions ( 1.1 ). 

2. Overlap integrals and squared norms 

Let us consider a family of  q-Hermite functions 

ff,(~lq) := c,( q )H,( sin x~lq)e -~2'2, 0 < q  = e-2~2< 1, 
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where the normalization constant c,(q)= [v/X(q; q),]-I/:  and the q-shifted factorial (q; q)n is defined 
as (z;q)0 = 1 and (z;q)n = l]~_-~(1 -zqk) ,  n= 1,2,3 ... (throughout this paper, we will employ the 
standard notations of q-special functions, see [2] or [3]). The continuous q-Hermite polynomials 
Hn(xlq ) in (2.1) are those q-extensions of the ordinary Hermite polynomials H,(x), which satisfy 
the three-term recurrence relation 

H,,+,(x[q)=2xH,(x[q) - (1 - q")H,, ,(xlq), n =0,  1,2,. . . ,  (2.2) 

with the initial condition Ho(xlq ) = 1 [4]. Their explicit form is given by the Fourier expansion 

(2.3) 
k " J  n=0 q 

where [m]  is the q-binomial coefficient, 
[. j n 

q 

[m] (q;q)m [ m 1 := = . ( 2 . 4 )  
n (q; q),(q; q)m-, m - n 

q q 

The q-Hermite polynomials (2.3) are solutions of the difference equation 

[e~Sexp(-i~c d )  + e-i~Sexp(i~cd)]  Hn(sinKslq)=2q -"/2 cos~sH~(sin~cslq). (2.5) 

It is easy to verify that limq_~ K-2"(q; q),, = 2"n!. Therefore it follows from the recurrence relation 
(2.2), that 

lim ~:-~H,(sin ~c~lq ) = H~(~). (2.6) 
q ~ l  

Thus, the normalization in (2.1) is chosen so that when the limit q--~ 1 is taken they coincide with 
the wave functions G(~) of the linear harmonic oscillator in quantum mechanics, i.e. 

G(~]I ) := lim ~b,(~[q) = ~(~).  (2.7) 
q ~ l  

As it is well known, the wave functions G(~) satisfy the orthogonality relation 

f ~ ~tm(~)~n(~)d~ = 5mn (2.8) 
(3C 

and may serve as a basis in the Hilbert space L2(~) of square-integrable functions with respect 
to d~. 

We evaluate first the corresponding integral 

/? Im.n(q):= ~m(~]q)~,(~lq)d~---I,.m(q) (2.9) 
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for the q-Hermite functions (2.1). Since H,( -x lq  ) = ( -  1 )"Hn(xlq ) by definition, the functions ~b~(¢lq ) 
and ~b,(~[q) of the opposite parities ( m -  n = 2 k  + 1, k = 0 ,  1,2,.. .) are orthogonal and nontrivial 
integrals in (2.9) are 

i? In,,,+zk(q) = [re(q; q),(q; q)n+2k] 1.,,2 H~(sin ~c~[q)Hn+zk(sin ~c~[q)e -:2 d~. (2.10) 
• 0(3 

Using the Rogers linearization formula [5] 

Hm(x[q)H.(x[q)= ~-~ (q;q)" [m 1 (q;q),,-m+~ k H._m+zk(xlq), m ~ n, (2.11) 
k = 0  q 

for the q-Hermite polynomials (2.3), one can represent (2.10) as 

(q.+l;q)~2 ~__~(q; -1 In I f ~  q)2k+l l q Hzk+2t(sinx~lq)e -¢ d~. (2.12) 
/~,,+2k(q) -- x/~ 1=0 

It remains only to substitute the explicit form of the q-Hermite polynomials (2.3) into (2.12) and 
to evaluate the integral with respect to the variable ~ by the aid of the well-known integral transform 

f ~ dxe2,X ,, x 2 v~e -y  ~-. (2.13) 
--.:>c 

The result is 

, q)2k t=0 q (q; q)2~+t 
2 ( k + l )  

. q l/2-s(~+l). (2.14) 
j = 0  q 

The sum over j in (2.14) gives the factor (ql/2-k-t;q)2(k+t) because of the Gauss identity 

k = 0  q 

In view of the formulas (see, for example, [2] or [3]) 

(z; q),+k = (z; q),(zqn; q)k, (2.16) 

(zq-"; q), = q-"("+' v2(-z)"(q/z; q),, (2.17) 

this factor is equal to 

(ql,2-k-/; q)2(k+/) = (-- 1 )k+lq-Ik+l)2/Z(ql/2; q)~+l" (2.18) 

NOW substituting (2.18) into (2.14), yields 

in,~2k(q)=(q~+, .,/2~--, [n] (q,/2;q)~+, (2.19) ; q)z'k 2.~ c (q; q)2~+t 
/ = 0  q 
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Since (q; q)2k+t = (q; q)2k(q2k+l;q)l by (2 .16)  and 

(q;q)n_m=(--l)mq m(m-l)/2-m" (q; q)n (2.20) 
(q-";q)m' 

one can express (2.19) through the basic hypergeometric series 3~b~: 

(ql/2;q)2, ,+ ,J'2 . t . . . .  k+l;2 . k +  :2 q2k+l 
In, n+2k(q)-- (q;q)2k I.q ;q)2k. 3q)lkt/ ,t/ ,~ ; ;q,q ') .  (2.21) 

A particular case of (2.21) with k = 0, 

£ [ n ]  (ql/2; q)2 _3(a,(q_,,,q, 2,q~/2; q; q,q,,), (2.22) 
I, , ,(q) = k (q; q)k 

k=0 q 

represents the squared norm of the q-Hermite function O,(~]q). As is evident from (2.22), I,.,(q) is 
finite and positive for all the values of q E (0, 1 ). 

3. Orthogonalization 

It is clear that the q-Hermite functions (2.1) are linearly independent, for they are expressed 
through the q-Hermite polynomials of different order (multiplied by the common exponential fac- 
tor e-&'2). Therefore, once the overlap integrals (2.19) for them are known, the system {~b,(~lq)} 
can be orthogonalized by the formation of suitable linear combinations. Since the subsequences 
{~2k(~lq)} and {~//2k+l(~[q)}, k=O,  1,2,. . . ,  are mutually orthogonal by definition, one needs to 
form such combinations for the even and odd functions separately. In other words, if we define 
(see [6, p. 154]) 

= 

Io, o(q) lo,2(q) ""  Io.2k(q) 
12,0(q) 12,2(q)  " ' "  I2 ,2k(q)  

/2k-2,0(q) h~ 2,2(q) "'" /2~-2,2~(q) 

~,o(¢[q) ~,2(~lq) " ~2k(~]q) 

Io, o(q) Io,2(q) " "  Io,2k(q) 

I2,0(q) I2,2(q) "'" I2,2k(q) 

/ 2 k - 2 , 0 ( q )  / 2 k - 2 , 2 ( q )  " ' "  / 2k -2 ,2k(q )  

co(q)Ho(sin~fflq) c2(q)H2(sinK~]q) . . .  c2k(q)H2k(sin~lq) 

(3.1) 

then {~2~(¢1q)} is an orthogonal system, for (3.1) is orthogonal to qJ0(~lq),qJ2(~lq) . . . . .  qJ2~-2(~lq) 
and hence to ~2n(~lq) for all n < k .  



M.K. Atakishiyeva et al./ Journal of  Computational and Applied Mathematics 99 (1998) 2~35  31 

Similarly, for the odd q-Hermite functions the appropriate linear combinat ions are 

q 2k+,( lq) = 

II , l (q)  II,3(q) "'" II,2k+l(q) 
I3,1(q) I3,3(q) "'" I3,2~+1(q) 

/ 2k - l , l (q )  I2k-l ,3(q)  " ' "  I2k-l .2k+l(q) 

I1, l(q) 
I3,1(q) 

= e-~2/2 

I zk - I , l (q )  
cl (q)H1 (sin x¢lq) 

A system of  the functions 
~ ~2 2 

 o(¢lq) = c.(q)H.(sin  : lq)e 

II,3(q) "'" II,2k+l(q) 
I3,3(q) "'" I3,2k+l(q) 

I2k-l ,3(q)  " ' "  I2k-l ,2k+l(q) 
c3(q)n3(sinx~lq) "'" Czk+l(q)H2k+l(sin~c¢lq) 

(3.2) 

n = 0 ,  1 ,2 , . . . ,  (3.3) 

is thus orthogonal over the full real line - c ~  < ~ < c ~  with respect to de. The polynomials /~n(x[q)  
in (3.3) are linear combinat ions of  the q-Hermite polynomials  (2.3) of  the form 

ffln(xlq) = ~ ct,,k(q)Hk(xlq). (3.4) 
k=0 

From the second determinants in (3.1) and (3.2) it follows that the connection coefficients 7,,k(q) 
in (3.4) are equal to 

O~2k,2j(q)=(__l)k+j+l [(q;q)2~ ] 

Io, o(q) 
I2,o(q) 

× 

I2k-2,o(q) 

1 / 2  

Io,2(q) "'" I0,2~-2(q) lo,2j+2(q) "'" Io,2k(q) 
I2,2(q) "'" I2,2j-z(q) I2,2j+2(q) "'" I2,2k(q) 

I2k-2,2(q) " ' "  /2k-2 2j -2(q)  I2k-2 2j+2(q) " ' "  I2k-2,2k(q) 

(3.5) 

~2k+l,V+l(q) = (--1)k+j+t ' (q;  q)2k+l" 1/2 
(q; q)2j+l 

II,l(q) II,3(q) "'" II,2j-l(q) 
I3,~(q) I3,3(q) "'" I3,2j-l(q) 

I2k- I , l (q )  I2k-l ,3(q)  " ' "  12k-l ,2j- l(q) 

for n = 2k and n = 2k + 1, k = O, 1,2 . . . . .  respectively• 

]l,2j+3(q) 
I3,2j+3(q) 

I2k-l,2j+3(q) 

"'" II,2k+l(q) ] 
"'" I3,2k+l(q) 

"'" Izk-l,Zk+l(q) 

(3.6) 
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4. Fourier expansion 

Having established that the q-Hermite functions O,(¢[q) are square integrable, it is natural to look 
for their expansion in terms of the Hermite functions ~,,(~) (or, in other words, the linear harmonic 
oscillator wave functions in quantum mechanics): 

O<3 

~,,(~[q) = ~ C,,.k(q)~bk(¢). (4.1) 
k 0 

To find Fourier coefficients C,.k(q) of ~,(~lq) with respect to the system {ffk(¢)}, multiply both 
sides of (4.1) by ffm(~) and integrate them over the variable ~ within infinite limits with the help 
of the orthogonality (2.8). This yields 

F F C,,,m(q) = 4',,(~lq)¢'m(~) d~ = [n2mm!(q; q)n]-12 H,(sin K~lq)H,,(~)e -~ d~. (4.2) 
O<3 OC, 

To evaluate the last integral in (4.2), substitute in the Fourier expansion (2.3) for H,(sin tc~[q) 
and integrate it term by term by using the integral transform (see [6, p. 124, Eq. (23)]) 

H,(x)e2~XY-~-dx = x/~(2ty)"e -~'-' 
OO 

for the Hermite polynomials H,,(~). This results in 

C,,~m(q) = x/2mm!(q;q)~ Z ( - - 1 )  k (2k - n)mq k(k-')'2. 
k=0 q 

(4.3) 

(4.4) 

Reversing the order of summation in (4.4) with respect to the index k makes it evident that the 
Fourier coefficients C,.m(q) are real for 0 < q <  1, namely 

cos  + ± Cn m(q) = m)x/2~cmq"-"8 (--1) k (2k - n)mq k~k-')'2. (4.5) 
" x/2mm!(q; q)n ~=0 q 

Note that since the both functions ~9,(~[q) and ft,(C) (see (1.1) and (2.1), respectively) contain the 
same exponential factor e -¢~'/2, the relations (4.1) and (4.5) are equivalent to an explicit expansion 

OG 

// ,(sin tc~lq) = ~ a,k(q)H~.(~) (4.6) 
k - 0  

of the q-Hermite polynomials in terms of ordinary Hermite polynomials. The coefficients of this 
expansion a,k(q) are real and equal to 

Kk qn2,/8 t l  

I n q  ( l -  n / 2 ) k q  '(/ //)/2. ( 4 . 7 )  a,k(q)-- k ~  cos(n+k)Tt/2~--~(-1); l 
/=0  k J q 

As a consistency check, one may evaluate the sum over k in the right-hand side of (4.6) by 
substituting in it the coefficients a,k(q) from (4.7) and using the generating function 

tk ~Hk(x) = e z*'-'-" (4.8) 
k - 0  
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for the ordinary Hermite polynomials Hk(s). This gives indeed the explicit form (2.3) of the 
q-Hermite polynomials H,(sin x~lq) in the left-hand side of (4.6). 

5. Fourier integral transform 

Since the q-Hermite functions (2.1) belong to L2(~),  one may define their Fourier transforms with 
the same property of the square integrability. A remarkable fact is that the classical Fourier integral 
transform relates the q-Hermite functions with different values 0 < q < 1 and q > 1 of the parameter q. 

We remind the reader that to consider the values 1 < q < e~ of the parameter q it is convenient to 
introduce [7] the q-l-Hermite polynomials 

h,(xlq ) := t-"H,,(txlq -L ). (5.1) 

They satisfy the three-term recurrence relation 

h,+,(x[q)=Zxh,(x[q) + (1 - q-")h, ,(x[q), n = 0 ,  1,2,. . . ,  (5.2) 

with the initial condition ho(xlq ) = 1. As follows from the Fourier expansion (2.3) and the inversion 
formula 

q -  t q 

for the q-binomial coefficient (2.4), the explicit form of h.(x]q) is given by 

h"(sinh~c~lq)= L (--1)kqk'*-") [ n e(n-2k)~4" (5.4) 
k=o q 

The q-Hermite (2.3) and the q-~-Hermite (5.4) polynomials are related to each other by the 
classical Fourier-Gauss transform [8] 

n2/4 / ~ o  
/-/.(sin K~_lq)e -~2/2 -- t n %  h.(sinh xrllq)e -~¢"-'?/2 dq. (5.5) 

V L ~  oG 

This means that the q-l-Hermite functions 

ff,(qlq-~ ) ---- q'ln+'):'ncn(q)hn(sinh xqlq)e -"2/2, (5.6) 

obtained from (2.1) by the change q ~ q-I of the parameter q, are connected with the q-Hermite 
functions (2.1) by the classical Fourier transform 

(tq l / 4 ) n / ~  
~9~(~_]q)-- ~ ~ e-~¢"~.(qlq-~)drl. (5.7) 

Their expansion in terms of the Hermite functions (1.1) has the form 

~"(qlq-~)= L C~,~(q-')~k(q), (5.8) 
k--O 
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where the Fourier coefficients Cn,k(q -~) are equal to 

C,,k(q-1) = qn/4 cos(n -- k)rt/2C,,k(q) 

and the C,,,k(q) are given in (4.5). 

(5.9) 

6. Relationship with the coherent states 

In the study of  a number of  quantum-mechanical problems it tums out very useful to employ a 
system of coherent states. The wave functions of coherent states for the linear harmonic oscillator 
are expressed in terms of the Hermite functions (1.1) as 

oc z n  

g,(g;z) = (glz)= exp(-lz]2/2) ~ ~nV. g,,(¢), 
n=0 

(6.1) 

where z is the complex parameter. The q-Hermite functions (2.1) are in fact some linear combinations 
of ff(~;z) with particular values of the parameter z. Indeed, if one substitutes the explicit form of  
the Fourier coefficients (4.4) into (4.1), then the sum over the index k in it can be evaluated by 
(6.1). Thus the required relationship is 

( _ 1 )  k n 
q/n(~[q)-- (q;q)~;2 k=o k q/(~; tx/2K(k - n/Z)). (6.2) 

q 

In a similar manner, from (5.8) and (5.9) it follows that the corresponding relationship for the 
q-l-Hermite functions (5.6) is 

(__l)kq~(k n) ~9(q; V~C(n/2 -- k)). (6.3) q*o(rllq -1 ) = (q; q)l/'2 k=O q 
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