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Abstract

We prove some sufficient conditions for a directed graph to have the property of a conjecture
of JM. Laborde, Ch. Payan and N.H. Huang (1982): “Every directed graph contains an
independent set which meets every longest directed path”.

1. Introduction

Let G be a directed graph, and denote by V(G) its vertex-set, by A(G) its arc-set,
X(G) denotes its chromatic number, and A(G) the length of the longest directed
path. Independently, B. Roy and T. Gallai proved that X (G) < A(G). Consider an
independent set S (‘stable’ set), and denote by G — S the subgraph of G induced by
V(G) — §; in 1982, Laborde, Payan and Huang conjectured a plausible looking
extension of this result.

Conjecture 1 (Grillet [6]). Every directed graph G contains an independent set S such
that A(G — S) < A(G).

A path 4 =(x,,...,x;) will always be a directed and elementary path; it is
a longest path if k is maximum, and a non-augmentable path if for every vertex a, none
of the sequences (a, X1, Xa, .-, Xk (X1, X025 ey Xis Gy Xit 1o, X} OF (X1, Xg, cvn, Xi, @)
are paths. The anti-path of .# is the sequence 4~ = (x;, X4_1, ..., %), which is not
necessarily a path.

Undefined terms are in [1].

The problem considered in this paper is: For which graphs do we have ./#nS # 0
for some independent set S and for every longest path .#?; or for every non-
augmentable path .#?
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Remark. It is not true that every maximum independent set meets every longest
path. Consider, for example, the graph consisting of two disjoint cycles
[Xo, X1, X2, X3, X4, Xo] and [yo, Y1, Y2, V3, Ya» Yo, With the arcs xy, Xo, X1X2, X2X3,
X4,X3, XaXo, YoV1> YoVas Y2V1» YaY2, ¥3Ya; and all the x;p; except xqy,. Clearly, the
independent set {x¢y,} is maximum and does not meet the longest path, which is
(X1, X2, X3, Y3, V2, V1 )-

2. Non-augmentable paths and kernels

A graph has a kernel S if § is an independent set and if every vertex which is not in
S has at least one successor in S. Many classes of graphs (and in particular those which
have no odd circuits) have kernels (see for instance [1, 4]). The following result is
a slight generalization of a result proved in [6].

Theorem 1. Let A be a subset of V(G) which contains every vertex a such that each of
the maximal (resp. longest) anti-path starting at a contains all the successors of a. If the
subgraph G, induced by A has a kernel S, then S is an independent set which meets all the
non-augmentable (resp. longest) paths and (G — S) < A(G).

Let .# be a non-augmentable path which does not meet S, and let z be its terminal
vertex. Since .# is non-augmentable, we have z € 4, and, consequently, z has a suc-
cessor in S; this implies z € . #nS. A contradiction.

Theorem 2. Let P denote the graph with vertices a, b, ¢, d and arcs (a, b), (¢, b),
(c,d), and let Q denote the graph with vertices a, b, c, d and arcs (a, b), (c, b), (¢, d),
(b,d). If G is a graph with no pair of parallel arcs, no subgraph isomorphic to P
and no subgraph isomorphic to Q, then every maximal independent set meets every
non-augmentable path.

Let 4 = (xq,X3,...,Xi, Xi+1,---,X;) D& a non-augmentable path which does not
meet the maximal independent set S; by the maximality of S, each of these vertices is
adjacent to S. By the maximality of .#, the number of arcs going from S to x, is
m(S, x,} = 0, and the number of arcs going from x, to § is m(x,, S} = 0. Let ¢ be the
last vertex x; of the sequence with m(S, x;) = 0; let b be the next vertex in the sequence.
Then m(S, ¢) = 0, m(S, b) # 0. Let d be a successor of ¢ in § and let a be a predecessor
of b in S. Since .# is non-augmentable, (d, b)¢ A(G), (c, a)¢ A(G); and the vertices a, d
are distinct and non-adjacent. Thus, the subgraph induced by {a, b, c, d} is either
isomorphic to P or to Q.

Remark. When the vertices of G are the elements of a poset, and when the arcs of
G represent the partial order, we have a stronger result due to Grillet [6], who proved
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that if every induced subgraph isomorphic to P = {(a, b), (¢, b), (¢, d)} is contained in
an induced subgraph isomorphic to Q = {(a, b), (¢, b), (¢, d), (¢, e), (e, b) }, then every
maximal independent set meets every non-augmentable path.

3. The main results

Now, for a graph H, we denote by I(H) the set of initial vertices for the longest paths
in H, and by T(H) the set of terminal vertices for the longest paths in H.

We say that a vertex x of H satisfies the property P(H) if for every arc
(y, x)e H[I(H)] (the subgraph of H induced by I(H) which is not a double edge, at
least one of the following conditions hold:

(i) every longest path of H with initial vertex y contains x;

(ii) every longest path of H which contains x, and does not start at x, also
contains y.

Lemma. If each subgraph H of G has a vertex in I(H) which satisfies the property
P(H), then 1(G) contains an independent set S such that A(G — S) < A(G).

A similar result was proved in [7], and the proof can easily be adapted.

Theorem 3. If in a graph G every circuit without double edge has a vertex with inner
demi-degree <1 or outer demi-degrees < 1, then I(G) contains an independent set
S such that A(G — §) < A(G).

Proof. By the lemma, it suffices to show that a graph G satisfying the condition has
a vertex x € I(G) with the property P(G).

By contradiction. Suppose that the above statements were false and let x be a vertex
in I(G), then there is a vertex y € I(G) such that (y, x) is not a double edge of G, y is the
origin of a longest path of G not containing x; and there exists a longest path of
G not starting in x which contains x but does not contain y. Again, there is a vertex
z € I{(G) with (z, y) not a double edge of G, z is the origin of a longest path not contain-
ing y and there exists a longest path not starting in y which contains y but does not
contain z. Continuing this procedure, we obtain a circuit without double edge
C, = (X0, X1, .. Xn—1, Xo) such that for each i (1 <i < n — 1), there is:

(1) A longest path with origin x; not containing x;. , (notation mod. n) and

{(2) A longest path not starting in x;, which contains x; but does not contain x;_,
(notation mod. n). It follows from (1) that the outer demi-degree of each vertex in C,, is
at least two and (2) implies that the inner demi-degree of each vertex in C, is at least
two, contradicting the hypothesis.

In what follows we denote by K} the complete digraph on n vertices and every edge
is a double edge. If G and H are isomorphic digraphs we write D >~ H. []
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Theorem 4. Let G be a digraph such that every circuit without double edges has a vertex
x which satisfies: G[I' (x)] = K}y (where n(x) = dg (x) the inner demi-degree of x,
and G[I'g(x)] is the subgraph of G induced by the inner neighbors of x) or
G[Tg(x)] = K, m(x) = 8¢ (x). Then there exists an independent set S < I(G) with
MG — §) < A(G).

Proof. We will prove that any digraph satisfying the hypothesis of Theorem 4 has
a vertex x € I(G) which satisfies P(G).

By contradiction. Suppose that the statement were false. Proceeding as in the proof
of Theorem 3 we obtain a circuit without double edges C, = (xo, X1, ..., Xn—1, Xo)
such that for each i, (0 <i < n — 1) there is:

(1) A longest path starting at x; not containing x;, ; (notation mod. n) and

(2) A longest path not starting at x; which contains x; and does not contain x;_,
(notation mod. n). Now we analyze the two possible cases:

Case 1. There exists a vertex x; € C, with G[I'g (x;)] = Ky n(xg) = dg (x;). Let
o = (20, 21, ..., 2p) alongest path with x;, = z; (0 <j < p)not containing x; _ ;, then we
have {(z;_1, xu), (k- 1, X))} S A(G), hence {(zj— 1, Xx—1), (Xx—1,2j-1)} S A(G) and
o =(2g,.--1Zj—1, Xk— 1, Xk» Zj+1,---,Zp) 18 a directed path with length greater than
those of «, contradicting the choice of .

Case 2. There exists a vertex x; € C, with G[T'¢ (x,)] = K, m(x) = 8¢ (). Let
B =(¥o = Xk, ¥1, ..., y,) @ longest path starting in x, and not containing x, . ;, then we
have {(y1, Xi+ 1), (X415, y1)} € A(G) and B’ = (yo = Xp, X415 Vs .-, ¥g) & path longer
than f§ contradicting the choice of . [J

Theorem 5. Let C < (V(G) — T(G)). If G — C has a kernel S then J(G — S) < A(G).

Proof. Suppose that there exists a longest path a with ¥ (x)nS =@ and denote by
2z, the endpoint of a. Clearly, z, € [(V(G) — C)n(V(G) — S)] and since S is a kernel of
G — C there exists y € § such that (z,, y) € A(G) Hence o' = au(zy, y) is a path longer
than «, contradicting the choice of «. [J

Theorem 6. Let C < (V(G) — T(G))u{x e V(G)|G[I'¢ (x)] = K}y, n(x) = dg (x)}.
If G—C has a kernel then there exists an independent set S = V(G) such that
MG = S) < AG).

Proof. Denote by C' = Cn{x e V(G)|G[T'¢ (x)] = K}, n(x) = d¢ (x)}. We proceed
by induction on the cardinality of C'. If C' = @) then Theorem 6 follows directly from
Theorem 5. Suppose that C' # @ and let N be a kernel of G — C. Since N is an
independent set, we can assume that there exists a longest path & = (z, z4, ..., z,) such
that Nno = 0.

Case 1. z,€ V(G)— C. We have z, € (V(G) — C)n(V(G) — N) hence there exists
y € N with (z,, y) € A(G), and o' = aU(z,, y) is a path, contradicting the choice of a.
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Case 2. z, € C. Clearly z,e€ C'. We prove that Nu{z,} is an independent sct. By
contradiction, suppose that there exists s € N with {(s, z,), (z,, 8) }NA(G) # 0. As in
Case 1 we sec that (z,, s)¢ A(G), hence (s, z,) € A(G). Now the hypothesis implies
{(Zn=1:5), (8, Z4=1)} < A(G) and &' = (z¢,...,2,4-1, S, Z,) is a path, contradicting the
choice of a. It follows that Nu{z,} is an independent set. In fact it is a kernel of
G — Cy, where C; = C — {z,} and it follows from the inductive hypothesis that there
exists an independent set § < V(G) with (G — S) < A(G).

Corollary 1. Let G be a digraph. If there exists a set C < (V(G)— T(G))u
{xe V(G)|G[I's(x)] = K}, n(x) =8¢ (x)} intersecting each odd circuit then there
exists an independent set S < V(G) such that A(G — S) < A(G).

Remark 2. Clearly a digraph G satisfies Conjecture 1 if and only if G™* does it (G™*
denotes the reverse digraph of G, obtained from G by reversing the direction of the
arcs). Hence by applying the principle of directional duality, we have that for each
theorem or corollary, there is a corresponding theorem or corollary obtained by
replacing the kernel by cokernel, I(G) by T(G), 6& (x) by ég (x), I'¢ (x) by I'g (x).
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