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THE EPIREFLECnVE HULL OF THE CATEGORY

OF T, DISPERSED SPACES

V. NEUMANN-LARA AND R. G. WILSON1

Abstract. An internal characterization is given of those spaces which can be

embedded in products of 7, dispersed spaces.

A set A- with a topology / will be denoted by (X, t).

A subset Y of a topological space (X, t) is said to be autonomous (in X ) if for all

subspaces Z of X which properly contain Y, there are disjoint, nonempty closed

subsets U and V of Z such that Ye U and U u V = Z.

The concept of an autonomous subset was introduced and investigated in [3]. In

particular it was shown there that an autonomous subset of X is closed and that

a(t) = { Yc: Y = 0 or y is autonomous in (X, t)} is a topology for X which is

clearly no finer than t. In addition, it was proved that the class function A from the

class TOP of all topological spaces to itself defined by A [(X, t)] = (X, a(t)) is a

functor on the category of all topological spaces with continuous maps. In the

future, unless confusion may result, we will write X in place of (X, t) and A (X) will

be used to denote (X, a(t)). Clearly, any subset of A(X) may be considered a

subset of X and vice versa.

The proofs of the following two lemmas are found in [3].

Lemma 1. Each component and each clopen (open and closed) subset of X is

autonomous.

Lemma 2. If Y is an autonomous subset of X and W is an autonomous subset of Y

(with the relative topology), then W is an autonomous subset of X.

Theorem 1. For each topological space X, a(a(t)) = a(t) and so A(A(X)) = A(X).

Proof. It suffices to show that any closed subset C of A(X) is autonomous in

A (X). Considered as a subset of X, C is autonomous. Suppose Z D C, and define

Z* to be the closure of Z in A(X). Since C is autonomous in X there exist disjoint

nonempty relatively r-closed subsets U and V of Z* such that C c U and

U u V = Z*. Thus U and V are clopen subsets of Z* with the relative Mopology

and hence by Lemma 1 are autonomous in Z*. Since Z* is closed in A (X), Z* with
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the relative r-topology is autonomous in A, and thus by Lemma 2, U and V are

autonomous subsets of A. Thus i/nZ and V n Z are disjoint relatively a(r)-

closed subsets of Z such that U n Z d C and whose union is Z. It remains only to

show that V n Z =^= 0. However, £/ and K are relatively a(/)-closed subsets of Z*

which is the a(f)-closure of Z and so the result follows.

Corollary 1.1. A (X) is totally disconnected if and only if X is totally discon-

nected.

Proof. Since a(t) is no finer than t, it follows that if A(X) is totally disconnected

sois A-.

Conversely, if X is totally disconnected then each point of A' is a component and

hence all singleton subsets of X are autonomous by Lemma 1. It follows im-

mediately that A(X) is 7*|. If A(X) is not totally disconnected, then there are points

of A(X) which are not components, and since it is clear that a proper subset of a

component can never be autonomous, it follows that A(A(X)) is not 7,. This

contradicts the theorem.

A topological space (X, t) is said to be autonomously generated if t — a(t). Recall

that a space is dispersed if every nonempty subspace has an isolated point.

Theorem 2. Every Tx zero-dimensional space and every Tx dispersed space is

autonomously generated. Also, every autonomously generated Tx-space is totally

disconnected.

Proof. The first and last statements of the theorem are obvious. Now suppose

(X, t) is dispersed, C c X is closed and Zz) C. Z - C has an isolated point which

must be open and closed in Z since C is closed and X is 7,. If p is such a point

then {/>} and Z — [p] have the required properties.

A space in which every quasi-component is a singleton is said to be totally

separated. That there exist totally separated spaces which are not autonomously

generated is shown by the following example:

Let A be the space of [4], without the dispersion point. A is clearly totally

separated. If Y is an odd-numbered row of A then Y is closed in X, but there is no

clopen subset of A contained in A - T; thus Y is not autonomous in A. Indeed, it

is not hard to show that A (A) » Q, the space of rational numbers.

Theorem 3. The category AG of all autonomously generated spaces is epireflective

in the category TOP of all topological spaces; furthermore, the functor A is the

epireflection.

Proof. Let A be a topological space and Y E AG. Then A( Y) » Y. But it was

shown in [3] that any map/: A-» Y extends to a map/*: A(X)-* A(Y) in such a

way that the following diagram is commutative:

A      ^      y

A(X)     ->     A(Y)
/*
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where ix denotes the identity map from X to A(X).

Since A(Y) at Y, the epireflective character of the subcategory AG follows from

the facts that ix is clearly an epimorphism and that A (X) E AG.

Corollary 3.1. The category AG is closed with respect to the taking of products

and subspaces.

Proof. This is [1, Theorem 1.2.1].

Corollary 3.2. Any subspace of a product of Tx dispersed spaces is autonomously

generated.

It is clear from Corollary 3.1, that UaeI[A(Xa)] - A[HaeIA(Xa)] for any family

{Xa: a E 1} of topological spaces. It follows that the topology of A(U.aeIXa) is no

weaker than the topology of HaeIA(Xa). We do not know in general whether or

not A(EaelXa) at JlaeIA(Xa).

We denote by D(X) the quotient space obtained from X by identifying the

points of each component. The quotient map will be denoted by d. It is not hard to

show that D(X) is totally disconnected and hence T,.

Theorem 4. The category AGX of all autonomously generated Tx-spaces is epireflec-

tive in TOP (and in the category 5", of all Tx-spaces). Furthermore, the epireflection is

X -> A(D(X)) and A(D(X)) at D(A(X)).

Proof. It is clear that if X E TOP or ?T,, Y E AG, and/: X^> Y is continuous,

then there exist maps fd and f¿ which make the following diagram commutative:

X-^-* D(X)     %X    ) A (D(X))

Since D(X) is totally disconnected, it follows that A(D(X)) E AG, (Corollary

1.1). Also, ix ° dis clearly an epimorphism, and the result follows.

To show that A(D(X)) and D(A(X)) are homeomorphic, we note that if

Y E AG, and g: X -» Y is continuous, there exist maps g* and g¡ which make the

following diagram commutative:

X-^A(X)-^D(A(X))

The result will follow from the unicity of the epireflective object if we can show

that D(A(X)) E AG,; or more simply, that D(Y) E AG, whenever Y E AG. To

this end, let C be a closed subset of D(Y). Since D(Y) is totally disconnected and
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hence Tx, it suffices to show that C is autonomous. Suppose Zd C. Since d is onto,

it follows that d~\Z\ d d~l[C] and since d~x[C\ is closed it is autonomous in Y.

Thus there are nonempty, relatively closed subsets U and V of d~l[Z] such that

U u V = d~l[Z] and </~'[C] c t/. Since no proper subset of a component of Y is

autonomous in Y, it follows that the relative topology on each component of Y is

indiscrete. Now there exist closed subsets U* and V* of Y such that U = £/* n

rf-'[Z] and K = V* n ¿_I[Z] andsoifxGt/andyG F then x E U* - V*

and y G K* - U*. Thus x and y belong to different components of Y and so

d(x) ¥= d(y). It follows that d[U] n d[V] = 0. Since Í7* and K* are closed in Y,

they are the union of components of Y and hence d~l[d[U*]] — U* and

d~\d[V*\] = F* and so d[U*] and </[K*] are closed in D(Y); clearly, </[t/] =

d[U*] n Z and d[V] = d[V*] n Z and so d[U*] n Z and ¿[V*] n Z are disjoint

relatively closed subsets of Z whose union is Z and such that C c d[ U*] n Z.

The following easy lemma is left to the reader:

Lemma 3. If C is autonomous in X and Y c A, then either C C\ Y = 0 or C D Y

is autonomous in Y.

We are now in a position to prove the main result of this article, namely that the

autonomously generated r,-spaces form the epireflective hull in % or in TOP of

the category of Tx dispersed spaces.

Theorem 5. A topological space X is an autonomously generated Tx-space if and

only if it can be embedded in a product of Tx dispersed spaces.

Proof. Suppose that A is an autonomously generated 7,-space and let C c A be

closed. Since C is autonomous in A, there is an open and closed subset of A

contained in A — C. Let 5, be a maximal family of disjoint clopen subsets of A

contained in A — C. For each ordinal a, having selected 5^ for each ß < a and

supposing that A - U ß<a(U %)D C, we select &a as follows: 9a is a maximal

family of disjoint relatively clopen subsets of A — U p<a(U ^b) which are disjoint

from C. The existence of such a family is guaranteed by Lemma 3. Let o be the

first ordinal for which A - U /s<„(U %) = C and let % = C. Then the family

Xc = {F: F£Îa some a < a) is a partition of A and it is easy to see that each

member of this partition is a closed subset of A. If Xc is now given the quotient

topology and qc: X -> Xc denotes the quotient map, then it is clear that Xc becomes

a 7,-space and that if p E X — C, then qc(p) £ 9C[C]; in other words, qc sep-

arates C from any point/? G X — C. The necessity follows from [5, Theorem 8.16]

if we can show that Xc is dispersed. Let B c Xc and a = min{ ß: {F} E B for

some F G fp}. Now fix F0 G % such that {F0} G B. It suffices to show that {F0}

is an isolated point of ql^X - U T<«(U%)] since this latter set clearly contains

B. Since {F0} is closed in Xc, it is required to show that {F0} is open in

qc[X - U r<II(UÍ,)]; thus we need to find an open set U in Xc such that

{F0} = U n qc[X - U Y<a(U %)]. We take U = qc[\Jy<a(\J%) u FJ which is

open in Ac since q~l[U] = U y<0(U %) U F0 which is open in A, and clearly has

the desired property.
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The theorem now follows from Corollary 3.2.

The space Xc constructed in the above theorem is not in general uniquely

determined but will depend on the selection of the families &a. If X is a Tj-space,

Xc may or may not be Hausdorff for a fixed C-in fact, if X is nonregular, at least

one of the spaces Xc will not be Hausdorff. However, we do not know whether or

not every autonomously generated T2-space can be embedded in a product of T2

dispersed spaces.

We now give another characterization of autonomously generated T,-spaces.

Theorem 6. A Tx-space X is autonomously generated if and only if for each closed

set C c X, there is a Tx dispersed space Y and a continuous surjection f: X —» T such

that C = f~l[y]for some y E Y.

Proof. The necessity follows from the construction described in Theorem 5.

For the sufficiency, let C c X be closed, Y be a T, dispersed space, /: A' -* T

continuous and onto such that C = f~\y\ for some y E Y. If Z d C, then it

follows that/[Z] d f[C]. But Y is T, and dispersed and hence is totally discon-

nected; thus/[C] = {y} is autonomous. Thus there is a relatively clopen subset U

of f[Z] disjoint from f[C\. Then f~l[U] is relatively open and closed in/_1[/[Z]]

and so f~l[U] n Z is relatively open and closed in Z, is disjoint from C and is

nonempty.

As a final remark, we note that the category of all autonomously generated

T,-spaces cannot be simply generated either in TOP or 9,, since the spaces Q^

constructed in [2] are all T2 and dispersed.
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