THE EPIREFLECTIVE HULL OF THE CATEGORY OF T_1 DISPERSED SPACES

V. NEUMANN-LARA AND R. G. WILSON¹

ABSTRACT. An internal characterization is given of those spaces which can be embedded in products of T_1 dispersed spaces.

A set X with a topology t will be denoted by (X, t).

A subset Y of a topological space (X, t) is said to be *autonomous* (in X) if for all subspaces Z of X which properly contain Y, there are disjoint, nonempty closed subsets U and V of Z such that $Y \subset U$ and $U \cup V = Z$.

The concept of an autonomous subset was introduced and investigated in [3]. In particular it was shown there that an autonomous subset of X is closed and that $a(t) = \{Y^c: Y = \emptyset \text{ or } Y \text{ is autonomous in } (X, t)\}$ is a topology for X which is clearly no finer than t. In addition, it was proved that the class function A from the class TOP of all topological spaces to itself defined by A[(X, t)] = (X, a(t)) is a functor on the category of all topological spaces with continuous maps. In the future, unless confusion may result, we will write X in place of (X, t) and A(X) will be used to denote (X, a(t)). Clearly, any subset of A(X) may be considered a subset of X and vice versa.

The proofs of the following two lemmas are found in [3].

LEMMA 1. Each component and each clopen (open and closed) subset of X is autonomous.

LEMMA 2. If Y is an autonomous subset of X and W is an autonomous subset of Y (with the relative topology), then W is an autonomous subset of X.

THEOREM 1. For each topological space X, a(a(t)) = a(t) and so A(A(X)) = A(X).

PROOF. It suffices to show that any closed subset C of A(X) is autonomous in A(X). Considered as a subset of X, C is autonomous. Suppose $Z \supseteq C$, and define Z^* to be the closure of Z in A(X). Since C is autonomous in X there exist disjoint nonempty relatively t-closed subsets U and V of Z^* such that $C \subset U$ and $U \cup V = Z^*$. Thus U and V are clopen subsets of Z^* with the relative t-topology and hence by Lemma 1 are autonomous in Z^* . Since Z^* is closed in A(X), Z^* with

Received by the editors July 17, 1979 and, in revised form, October 14, 1979; presented to the Society, January 5, 1980.

AMS (MOS) subject classifications (1970). Primary 54F65.

Key words and phrases. Dispersed space, epireflection, autonomous subset.

¹This author gratefully acknowledges the support of the Consejo Nacional de Ciencia y Tecnología, grant PNCB 1626.

the relative t-topology is autonomous in X, and thus by Lemma 2, U and V are autonomous subsets of X. Thus $U \cap Z$ and $V \cap Z$ are disjoint relatively a(t)-closed subsets of Z such that $U \cap Z \supset C$ and whose union is Z. It remains only to show that $V \cap Z \neq \emptyset$. However, U and V are relatively a(t)-closed subsets of Z^* which is the a(t)-closure of Z and so the result follows.

COROLLARY 1.1. A(X) is totally disconnected if and only if X is totally disconnected.

PROOF. Since a(t) is no finer than t, it follows that if A(X) is totally disconnected so is X.

Conversely, if X is totally disconnected then each point of X is a component and hence all singleton subsets of X are autonomous by Lemma 1. It follows immediately that A(X) is T_1 . If A(X) is not totally disconnected, then there are points of A(X) which are not components, and since it is clear that a proper subset of a component can never be autonomous, it follows that A(A(X)) is not T_1 . This contradicts the theorem.

A topological space (X, t) is said to be autonomously generated if t = a(t). Recall that a space is dispersed if every nonempty subspace has an isolated point.

THEOREM 2. Every T_1 zero-dimensional space and every T_1 dispersed space is autonomously generated. Also, every autonomously generated T_1 -space is totally disconnected.

PROOF. The first and last statements of the theorem are obvious. Now suppose (X, t) is dispersed, $C \subset X$ is closed and $Z \supseteq C$. Z - C has an isolated point which must be open and closed in Z since C is closed and X is T_1 . If p is such a point then $\{p\}$ and $Z - \{p\}$ have the required properties.

A space in which every quasi-component is a singleton is said to be *totally separated*. That there exist totally separated spaces which are not autonomously generated is shown by the following example:

Let X be the space of [4], without the dispersion point. X is clearly totally separated. If Y is an odd-numbered row of X then Y is closed in X, but there is no clopen subset of X contained in X - Y; thus Y is not autonomous in X. Indeed, it is not hard to show that $A(X) \cong Q$, the space of rational numbers.

THEOREM 3. The category AG of all autonomously generated spaces is epireflective in the category TOP of all topological spaces; furthermore, the functor A is the epireflection.

PROOF. Let X be a topological space and $Y \in AG$. Then $A(Y) \cong Y$. But it was shown in [3] that any map $f: X \to Y$ extends to a map $f^*: A(X) \to A(Y)$ in such a way that the following diagram is commutative:

$$\begin{array}{ccc} X & \stackrel{f}{\rightarrow} & Y \\ i_x \downarrow & & \downarrow i_y \\ A(X) & \stackrel{f}{\rightarrow} & A(Y) \end{array}$$

where i_x denotes the identity map from X to A(X).

Since $A(Y) \cong Y$, the epireflective character of the subcategory AG follows from the facts that i_x is clearly an epimorphism and that $A(X) \in AG$.

COROLLARY 3.1. The category AG is closed with respect to the taking of products and subspaces.

PROOF. This is [1, Theorem 1.2.1].

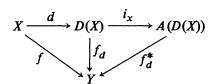
COROLLARY 3.2. Any subspace of a product of T_1 dispersed spaces is autonomously generated.

It is clear from Corollary 3.1, that $\prod_{\alpha\in I}[A(X_{\alpha})]\cong A[\prod_{\alpha\in I}A(X_{\alpha})]$ for any family $\{X_{\alpha}\colon \alpha\in I\}$ of topological spaces. It follows that the topology of $A(\prod_{\alpha\in I}X_{\alpha})$ is no weaker than the topology of $\prod_{\alpha\in I}A(X_{\alpha})$. We do not know in general whether or not $A(\prod_{\alpha\in I}X_{\alpha})\cong \prod_{\alpha\in I}A(X_{\alpha})$.

We denote by D(X) the quotient space obtained from X by identifying the points of each component. The quotient map will be denoted by d. It is not hard to show that D(X) is totally disconnected and hence T_1 .

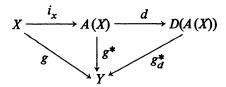
THEOREM 4. The category AG_1 of all autonomously generated T_1 -spaces is epireflective in TOP (and in the category \mathfrak{T}_1 of all T_1 -spaces). Furthermore, the epireflection is $X \to A(D(X))$ and $A(D(X)) \cong D(A(X))$.

PROOF. It is clear that if $X \in \text{TOP}$ or \mathfrak{I}_1 , $Y \in \text{AG}_1$ and $f: X \to Y$ is continuous, then there exist maps f_d and f_d^* which make the following diagram commutative:



Since D(X) is totally disconnected, it follows that $A(D(X)) \in AG_1$ (Corollary 1.1). Also, $i_* \circ d$ is clearly an epimorphism, and the result follows.

To show that A(D(X)) and D(A(X)) are homeomorphic, we note that if $Y \in AG_1$ and $g: X \to Y$ is continuous, there exist maps g^* and g_d^* which make the following diagram commutative:



The result will follow from the unicity of the epireflective object if we can show that $D(A(X)) \in AG_1$; or more simply, that $D(Y) \in AG_1$ whenever $Y \in AG$. To this end, let C be a closed subset of D(Y). Since D(Y) is totally disconnected and

hence T_1 , it suffices to show that C is autonomous. Suppose $Z \supset C$. Since d is onto, it follows that $d^{-1}[Z] \supset d^{-1}[C]$ and since $d^{-1}[C]$ is closed it is autonomous in Y. Thus there are nonempty, relatively closed subsets U and V of $d^{-1}[Z]$ such that $U \cup V = d^{-1}[Z]$ and $d^{-1}[C] \subset U$. Since no proper subset of a component of Y is autonomous in Y, it follows that the relative topology on each component of Y is indiscrete. Now there exist closed subsets U^* and V^* of Y such that $U = U^* \cap d^{-1}[Z]$ and $V = V^* \cap d^{-1}[Z]$ and so if $x \in U$ and $y \in V$ then $x \in U^* - V^*$ and $y \in V^* - U^*$. Thus x and y belong to different components of Y and so $d(x) \neq d(y)$. It follows that $d[U] \cap d[V] = \emptyset$. Since U^* and V^* are closed in Y, they are the union of components of Y and hence $d^{-1}[d[U^*]] = U^*$ and $d^{-1}[d[V^*]] = V^*$ and so $d[U^*]$ and $d^{-1}[U^*] \cap Z$ and $d^{-1}[U^*] \cap Z$ and $d^{-1}[U^*] \cap Z$ and $d^{-1}[U^*] \cap Z$ are disjoint relatively closed subsets of Z whose union is Z and such that $C \subset d[U^*] \cap Z$.

The following easy lemma is left to the reader:

LEMMA 3. If C is autonomous in X and $Y \subset X$, then either $C \cap Y = \emptyset$ or $C \cap Y$ is autonomous in Y.

We are now in a position to prove the main result of this article, namely that the autonomously generated T_1 -spaces form the epireflective hull in \mathfrak{T}_1 or in TOP of the category of T_1 dispersed spaces.

THEOREM 5. A topological space X is an autonomously generated T_1 -space if and only if it can be embedded in a product of T_1 dispersed spaces.

PROOF. Suppose that X is an autonomously generated T_1 -space and let $C \subset X$ be closed. Since C is autonomous in X, there is an open and closed subset of X contained in X - C. Let \mathcal{F}_1 be a maximal family of disjoint clopen subsets of X contained in X - C. For each ordinal α , having selected \mathcal{F}_{β} for each $\beta < \alpha$ and supposing that $X - \bigcup_{\beta < \alpha} (\bigcup \mathcal{F}_{\beta}) \supseteq C$, we select \mathcal{F}_{α} as follows: \mathcal{F}_{α} is a maximal family of disjoint relatively clopen subsets of $X - \bigcup_{\beta < \alpha} (\bigcup \mathcal{F}_{\beta})$ which are disjoint from C. The existence of such a family is guaranteed by Lemma 3. Let σ be the first ordinal for which $X - \bigcup_{\beta < \sigma} (\bigcup \mathcal{F}_{\beta}) = C$ and let $\mathcal{F}_{\sigma} = C$. Then the family $X_c = \{F: F \in \mathcal{F}_{\alpha} \text{ some } \alpha \leq \sigma\}$ is a partition of X and it is easy to see that each member of this partition is a closed subset of X. If X_c is now given the quotient topology and $q_c: X \to X_c$ denotes the quotient map, then it is clear that X_c becomes a T_1 -space and that if $p \in X - C$, then $q_c(p) \notin \overline{q_c[C]}$; in other words, q_c separates C from any point $p \in X - C$. The necessity follows from [5, Theorem 8.16] if we can show that X_c is dispersed. Let $B \subset X_c$ and $\alpha = \min\{\beta : \{F\} \in B \text{ for } \}$ some $F \in \mathcal{F}_{\beta}$. Now fix $F_0 \in \mathcal{F}_{\alpha}$ such that $\{F_0\} \in B$. It suffices to show that $\{F_0\}$ is an isolated point of $q_c[X - \bigcup_{\gamma < \alpha} (\bigcup \mathcal{F}_{\gamma})]$ since this latter set clearly contains B. Since $\{F_0\}$ is closed in X_c , it is required to show that $\{F_0\}$ is open in $q_c[X - \bigcup_{\gamma < \alpha} (\bigcup \mathcal{F}_{\gamma})]$; thus we need to find an open set U in X_c such that $\{F_0\} = U \cap q_c[X - \bigcup_{\gamma < \alpha} (\bigcup \mathscr{T}_{\gamma})]$. We take $U = q_c[\bigcup_{\gamma < \alpha} (\bigcup \mathscr{T}_{\gamma}) \cup F_0]$ which is open in X_c since $q_c^{-1}[U] = \bigcup_{\gamma < \alpha} (\bigcup \mathcal{F}_{\gamma}) \cup F_0$ which is open in X, and clearly has the desired property.

The theorem now follows from Corollary 3.2.

The space X_c constructed in the above theorem is not in general uniquely determined but will depend on the selection of the families \mathcal{F}_a . If X is a T_2 -space, X_c may or may not be Hausdorff for a fixed C-in fact, if X is nonregular, at least one of the spaces X_c will not be Hausdorff. However, we do not know whether or not every autonomously generated T_2 -space can be embedded in a product of T_2 dispersed spaces.

We now give another characterization of autonomously generated T_1 -spaces.

THEOREM 6. A T_1 -space X is autonomously generated if and only if for each closed set $C \subset X$, there is a T_1 dispersed space Y and a continuous surjection $f: X \to Y$ such that $C = f^{-1}[y]$ for some $y \in Y$.

PROOF. The necessity follows from the construction described in Theorem 5.

For the sufficiency, let $C \subset X$ be closed, Y be a T_1 dispersed space, $f: X \to Y$ continuous and onto such that $C = f^{-1}[y]$ for some $y \in Y$. If $Z \supseteq C$, then it follows that $f[Z] \supseteq f[C]$. But Y is T_1 and dispersed and hence is totally disconnected; thus $f[C] \stackrel{\neq}{=} \{y\}$ is autonomous. Thus there is a relatively clopen subset U of f[Z] disjoint from f[C]. Then $f^{-1}[U]$ is relatively open and closed in $f^{-1}[f[Z]]$ and so $f^{-1}[U] \cap Z$ is relatively open and closed in Z, is disjoint from C and is nonempty.

As a final remark, we note that the category of all autonomously generated T_1 -spaces cannot be simply generated either in TOP or \mathfrak{I}_1 , since the spaces Q_{α} constructed in [2] are all T_2 and dispersed.

BIBLIOGRAPHY

- 1. H. Herrlich, On the concept of reflections in general topology, Contributions to Extension Theory of Topological Structures (Proc. Sympos., Berlin, 1967), Deutsch. Verlag Wissenschaften, Berlin, 1969, pp. 105-114.
- 2. D. W. Hajek and R. G. Wilson, The non-simplicity of certain categories of topological spaces, Math. Z. 131 (1973), 357-359.
- 3. V. Neumann-Lara, Autonomous subsets of topological spaces, An. Inst. Mat. Univ. Nac. Autónoma México 19 (1979).
- 4. P. Roy, A countable connected Urysohn space with a dispersion point, Duke Math. J. 33 (1966), 331-333.
 - 5. S. Willard, General topology, Addison-Wesley, Reading, Mass., 1968.

FACULTAD DE CIENCIAS, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, MÉXICO, D. F.

DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD AUTÓNOMA METROPOLITANA-IZTAPALAPA, MÉXICO, D. F.