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Abstract

To eachimmersed complete space-like hypersurfaedth constant normalized scalar curvature
R inthe de Sitter spac§’ ™', we associate sug2, whereH is the mean curvature 1. It is proved
that the condition sufi* < C,(R), whereR = (R — 1) > 0 andC, (R) is a constant depending
only on R andrn, implies that eithei is totally umbilical orM is a hyperbolic cylinder. It is also
proved the sharpness of this result by showing the existence of a class of new rotation constant
scalar curvature hypersurfacesslffrl such that sugf? > C,(R). © 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Let R’{*Z be the real vector spa&& 2 endowed with the Lorentzian metric) given by
(v, w) = —vowo+viw1+- - -+ V41wy41; that is,RTr2 = L"*2jsthe Lorentz—Minkowski
(n + 2)-dimensional space. We define the de Sitter space as the following hyperquadric of
RyT2: s = {x € RI™2; |x|? = 1). The induced metri¢, ) makess; ™ into a Lorentz
manifold with constant sectional curvature 1.
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In 1977, Goddard [8] conjectured that the only complete space-like hypersurfaces (those
whose induced metric is Riemannian)&iﬁrl with constant mean curvature are the totally
umbilical ones. Montiel [12] proved this conjecture in the compact case and exhibited a
counterexample for the general case. The motivation to the study of space-like hypersurfaces
in space—times comes from its relevance in general relativity. In particular, the de Sitter space
is a space—time model with constant sectional curvature. On the other hand, constant mean
curvature hypersurfaces are relevant for studying propagation of gravitational waves.

It is quite natural to pose a Goddard-like question for constant scalar curvature hypersur-
faces inSi’*l. Partial results were obtained in [5,20,21]. For the constant scalar curvature
compact Riemannian case in spheres, a rigidity theorem is given in [10]. Recently, Li [11]
proved that a compact space-like hypersurface with constant normalized scalar curvature
R > 1lin Si’*l must be totally umbilical (see also [14] for a similar result in a more general
space—time and [1] for related results involving generalean curvatures). On the other
hand, Montiel [13] proved that a complete space-like hypersurface with constant mean cur-
vatureH? = 4(n — 1)/n? in Si‘*l and more than one topological end is isometric to the
hyperbolic cylinder1(1 — coth? r) x §"~1(1 — tant? r).

In this paper, we substitute Montiel hypotheses for constant normalized scalar curvature
R > 1and surH2 < C,(R), whereH is the mean curvature ar@,(R) is a constant
depending only on the dimensian> 3 andR = R — 1. We then classify all hypersurfaces
satisfying these conditions. More precisely, we prove the following theorem (which was
announced in [3]).

Theorem 1.1. Let M" be an n-dimensionalz > 3) complete space-like hypersurface
immersed ins} ™ with constant normalized scalar curvature R aRd= R — 1 > 0.
Suppose also thaupH?2 < C,(R), where

1 R-2 -2
Ca(R) = ((n - 1>2” — T2 -1+~ 2) (1)
Then either
1. supH? = R and M is totally umbilical; or
2. supH? = C,(R) and M is isometric to the hyperbolic cylinder

HY(1 - coti?r) x §" (1 — tant?r).

Theorem 1.1 has the following consequences:

1. The only complete constant normalized scalar curvature space-like hypersurfaces with
R = supH? are the umbilical ones.

2. There are no complete constant normalized scalar curvature space-like hypersurfaces
such thatR < supH? < C,(R).

3. The only complete constant normalized scalar curvature space-like hypersurfaces with
supH? = C,(R) are the hyperbolic cylinders.
We also show that these characterizations are sharp, by proving the existence, for every

numberC > C,(R), of a complete constant normalized scalar curvature space-like hyper-
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surface distinct from the above ones and such that&ug: C. These examples constitute
a class of new rotation hypersurfaces with constant scalar curvatste i In fact, we
prove the following theorem.

Theorem 1.2. Fix an integem > 3and letR € (2/n, +00). Then, for eaclC > C,(R),
there exists a complete immersed space-like hypersurfaﬁ@*ﬂwwith normalized scalar
curvatureR = R + 1 and mean curvature H satisfyirgupH? = C. Moreover, ifC =
C,(R), then the hypersurface is a hyperbolic cylinder

Chern et al. [4] associated to each compact hypersurface in the Euclidean Sphere
with H = 0, the square of the norm of its second fundamental form (or equivalently, its
scalar curvature) and asked if the image of such a function is discrete. A Lorentzian version
dual of this question could be to associate to each complete space-like hypersquLaJrée in
with constant scalar curvature the value #lfpand ask if the image of such a function is
discrete.

The results we obtain give, for eaeh> 3, a detailed picture of the sét, of the complete
constant normalized scalar curvature space-like hypersurfacﬁi nin fact, our results
can be interpreted as follows: givern> 3, we associate to each such a complete constant
normalized scalar curvature space-like hypersurfdéethe coordinate paitR, supH?)
in the first quadrant of a 2-plane, thus obtaining Fig. 1. In this figure, the bisector ray

2
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Fig. 1. The plangR, supH?2), where the curve shown is the graph@f(R) corresponding to the hyperbolic
cylindersH! x $"~1. The region above the graph is associated to the rotation hypersurfaces given by Theorem
1.2, classified in three types by Definition 4.1. The bisector ray represents the umbilical hypersurfaces and,
according to Theorem 1.1, regions marked wtllo not have any associated complete constant scalar curvature
space-like hypersurface.
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corresponds to the umbilical hypersurfaces and the curve shown there corresponds to the
hyperbolic cylinders. We see that for eagh# 1, there is no complete hypersurface of the

kind studied here and such that the corresponding p&insupH2) lies above the bisector

ray and below the curve, thus yielding a gap (see Section 4). Our results also show that
for n and R fixed, the image of the functio6, — R given by M” — supH? is the set

{R} U[C(R), 00), which obviously is not discrete, thus giving an answer to a Lorentzian
version dual to the Chern—do Carmo—Kobayashi’s question.

2. Preliminaries

Let M" be ann-dimensional complete orientable manifold and fet M"* — Si‘” C
RT“z be a space-like immersion &" into the(n + 1)-dimensional de Sitter spaG@”.
Choose a unit normaj along f and denote by : 7,M — T, M the linear map of the
tangent spacé&, M at the pointp € M, associated to the second fundamental forny of
alongn,

(AX.Y) = —(Vx Y., n),

where X andY are tangent vector fields oM andV is the connection orS’l”rl. Let

{e1, ..., ey} be an orthonormal basis which diagonaliZzewith eigenvalueg;, i.e.,Ag =
kiej,i = 1,....,n. |A]? = Zkiz is the square of the norm of the second fundamental
form, H = (1/n) }_ k; is the mean curvature gf andR = R + 1 is the normalized scalar
curvature, where

R =) kikj.

In our case it is convenient to define a linear igap?7, M — T, M by
(X, Y)=(AXY) - H(X,Y).
It is easily checked thatt$) = 0 and that

1
917 = o D (ki —k;)%,

so that|¢|2 = 0 if and only if M" is totally umbilical. Note that the eigenvaluesg@re
given byu; = k; — H, so thatjg|? = Y";u? = |A|? — nH? and

D kP=nH+3HY uZ = ud. )
i i i
We have the Gauss equation relatiRgH and|A|%:

n(n —1)R = n’H? — |A|% (3)

The standard examples of space-like umbilical hypersurfaces with constant mean curvature
in the de Sitter space are given by

M" ={pe S (p.a) =1},
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wherea € Ri "2, a2 = p = 1,0, —1 andz? > p. The corresponding mean curvatuie
of such hypersurfaces satisfies

2
H? =

12— p
(see [12], for instance) and” is isometric to a hyperbolic space, an Euclidean space or a
sphere ifp = 1, 0, —1, respectively.
On the other hand, the hyperbolic cylinders are the hypersurfaces given by

M" = {peS{th —p§+ pi+ - + pf = —sinitr)

with r € Rand 1< k < n — 1. Such hyperbolic cylinders have constant mean curvature
nH = k cothr 4+ (n — k) tanhr. Thus we have
. 4(n — 1)

2
H
n2

3

and the equality is attained féar = 1 and cothr = (n — 1). Their normalized scalar
curvature isR = 1+ (1/n)(2+ (n — 2) tant? ). We point out that these examples have
only two distinct constant principal curvatures at each point and one of them has multiplicity
one. Moreover, they are isometric to the Riemannian pro#ii¢t — cotif r) x s"1(1—
tantf r).

Also, we observe that the cylindetg' ~1(1— coth r) x $1(1— tant? r) have normalized
scalar curvatur® = 1+ (1/n)(2+ (n — 2) coth? r).

The Laplaciam acts on anyC?-function f defined onv as(Af)ij = Afij = X i fikk
and the Laplacian of the second fundamental fagnis given by

Ahjj = Zhijkk-
k
We may write

Ahjj = Z(hijkk — hikjk) + Z(hikjk — hikkj) + Z(hikkj — hkkij)
k k k

so that
Ahjj = nHj + ZhimRmkjk‘f‘ thmRmijks
m,k m,k

whereHj; denotes the second covariant derivativedof
LetT =}, ;Tijo; ® w; be the symmetric tensor defined by

Tij = nHSjj — hjj.

Following Cheng and Yau [6], we introduce the operatqrassociated td@" acting on
C2-functions f on M”" by

Lif =) Tifi = ) (nHSj — ki) fi. (4)

i,J i,j
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Around a given poinpp € M we choose an orthonormal frame fidld, . .. , ¢,} with
dual frame fieldws, ... , w,} so thathj = k;8j at p. Using (3) and (4), we have

Li(nH) = nHA(H) — > & (nH)ji = %A(nH)2 — Y _(H)F = > ki (nH);

1 1
=5n(1— DAR+ EA|A|2 —n?|VH]? - Zki(nH)ii.

4
On the other hand, Simons formula (see [17, p. 320, (3.5)]) implies
1 1
SAIAIP = VAR 40 ki Hi + 53 R (i — k)%,
i i,
From the last two equations, we have
1 1
La(nH) = Sn(n — DAR + IVA? = n®|VH]? + EZRW (ki —kj)2. (5)
iJj
3. Classification of complete constant scalar curvature hypersurfaces with
R < supH?

Here we prove Theorem 1.1; for this we will need the following three lemmas.

Lemma 3.1. Let M" be an immersed space-like hypersurfacé'llﬁ ! with constant nor-
malized scalar curvature. Then

Li(nH) = [VA]> = n®|VH|? + ¢ (n — nH? + |¢[%) — nHY 3. 6)

1

Proof. SinceRr is constant, (3) and (5) imply

1
LynH) = VAP —n?|VH? + 53 A+ kikj) ki — kj)* = VAP = n?|VH?
)

1 1 1 1
+§n2,-:ki2 + En;kf - lzj:kjki + E;k?kj - E;kikf — in:kiszZ-.

Makingi = j, we obtain
Li(nH) = [VA]> = n®|VH|? + n|A|? = n?H? + |A|* = nH) k7.
i

Using (2) in the expression above, we have
Li(nH) = [VA]> = n?|VH|? + n|¢|* + |A|* = nHY i — 3nH|¢|* — nH*.

1

Then
Li(nH) = |VA|? — n?|VH|? + n|¢|? + |¢|* + n?H*
+2nH | |? — 3nH || — n? H* — nHY 1.

1
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This yields
Li(nH) = [VA]? = n?|VH|? + |¢[*(n — nH? + [¢[?) — nHY "2,

which proves the lemma. O

Lemma 3.2 (Okumura [17, p. 210])Let u;, i = 1,...,n be real numbers such that
> ui=0and)_ M_z = B > 0, with B8 constant. Then

_Lﬁ B "2
Jnn—=-1) Hi = nin—1)

and equality holds on the right-hand side, if and only if

B _ _ 1
=== e

Lemma 3.3. Let M" be an n-dimensional complete > 3) space-like hypersurface im-
mersed into the de Sitter spa¢é™*! with constant normalized scalar curvature R and
R = R — 1. Then the following inequalities are equivalent

1.1Z12 <n/((n—2)(nR = 2)[n(n — YR?> + 4(n — HR +n],

2. (n—2/ny(n(n — DR +|Z>)(|Z]2—nR) <n —2(n — HR + (n — 2)/n|Z|?,
where|Z|2 = sudA|2. Equivalence also holds in case of equality

B3,

Proof. We will prove that (2) implies (1). Squaring (2) and simplifying, we get

(” . 2) [(n — 22R — 2(n — 2(n — DR)]|Z]?
<(n=2n-DRZ+ (n—272n— DR,
hence,
(n—2)(nR — 2)|Z|?> < n[n(n — R? — 4(n — DR +n],

which gives (1). The other implication is immediate. O

We will also use the maximum principle at infinity for complete manifolds due to Omori
[16] and Yau [19]:

Let M" be an n-dimensional complete Riemannian manifold whose Ricci curvature is
bounded from below. Let f be @-function bounded from below ai”. Then for each
¢ > Othere exists a poinp, € M such that

IVFfl(pe) <&, Af(pe) > —¢, inf f < f(pe) <inf f 4 ¢.

Proof of Theorem 1.1. Applying Lemma 3.2 to the eigenvaluesdfwe obtain

S =

————(IpH¥>2. 7)

_\/7)
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Using this fact and Lemma 3.1, we get

Li(nH) > [VAP? = n®|VH|? + |$]*Pr (I8]), ®)
where Py is the polynomial ing| given by
p R 2 nn —2) Hilol.
H (@) =n —nH" + || —ml [Pl 9)

SinceR is constant and positive, Lemma 4.1 of [2] implies
IVA|? = n®|VH|? > 0.
Substituting this fact in (8), we obtain

Li(nH) > |92 P (1¢)). (10)
From (3),
912 = |A]2 — nH? = "T_lqm2 —nR). (11)

Thus we may se@y (|¢|) asPz(|A|), where

I
Pr(lAl)=n—2(n— DR + "T|A|2

n—2
n
Hence, we may write (10) as

Joo = DR+ 1APAR = nR). (12)

~1 _
La(nH) > ”T(|A|2 — nR)P(|A)). (13)

We claim thatP;(y/sugA|2) > 0. By hypothesis (see (1)),

1 R-2 _2
Suszan(R)=ﬁ<(n—1)2nn_2 +2(n—1)+n’;é_2>.

We use (3) to write this expression as

1Z|? < [n(n — DR% + 4(n — DR +n],

(n—2)(nR-2)

where againZ|? = supA|2. By Lemma 3.3, this is equivalent to

n—2

\/(n(n —DR+1Z1>(Z12—nR) <n—2n—1R+ ”T_2|Z|2.

In view of (12), this last inequality shows th&;(y/supA|?) > 0, so that our claim is
proved.
On the other hand,

La(nH) =) "(nHg; — nhy)(nH)j = Y~ (nH — nhy)(nH);
i,j i
=nY_H(NH)i —nY ki(nH)i < n(sugH| — C)A(nH), (14)
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where supH | is the sup of the absolute value of the mean curvatline M andC = mink;
the minimum of the principal curvatures M.
From (13) and (14), we have

n—_l(lAlz —nR)P(|A]) < L1(nH) < n(SugH| — C)A(nH). (15)
n

Since R is the second symmetric function of the eigenvaluesApfve have from the
Newton inequalities thak < H?, and henc&® < supH2. Gauss equation implidRicy, >
n—-1) — %nHZ, so that the Ricci curvature is bounded from below. Thus we may apply
Omori and Yau’s result to the function

1
J1+ A2’

which is a positive smooth function avi. Then,

2 1 IV(nH??
VS = 4 (14 (nH))2’ (16)

1 A(nH) 31V(nH)2

A= T 2 T At iRy

17

Let {px}, k € N, be a sequence of points M given by Omori and Yau’s result, such
that

Jm fpo =it Af0 >~ VR0 < 5 (18)
Using (16)—(18) and the fact that

lemoo(nH)(pk) = sup,ep (NH)(p),
we have

1 1  AMH)

1 AmH) 3 3/2

Hence,
A(nH) 2 1 3
TG (m " E) ' e

Evaluating (15) at the pointg,, makingk — oo and using (19), we have

0< n%l(suij2 - nIé)PR (m) < Li(nsugH})

<n(supH| — C)A(nH) < n(sugH| — C)(1 + nH)3/2(pk)§

1 3
——
) (\/71+ 0 k)
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If Kk — oo, we have that the last expression goes to zero, so either

(sugAl> —nR)=0, or P; <,/sup|A|2>=o.

In the first case, Gauss equation implies that
nsupe|? = (n — 1)(sudA|?> — nR) = 0,

so that|¢|2 = 0 andM" is totally umbilical.
In the second case, i.e., M (,/supA|2) =0, then Lemma 3.3 implies that

2_ 0 o\ p2 Ty
SUdA|© = —20k-2 [n(n — )R+ 4(n — DR + n]. (20)
Using (11), we have
SUpH? = izsunA|2 _nzlp (21)
n n

Substituting (20) in (21), we obtain s#? = C,(R) (defined in (1)) and so we have the
following equality:

Li(nsupH) =~ ; L supa? - nR) Py (,/supA|2> .

Thus, equality also holds on the right-hand side of Okumura’s lemma (Lemma 3.2). After

re-enumeration, we havg = ko = --- = k,_1, k1 # k,, wherek; = tanhr andk, =
cothr. ThenM" is isometric toH (1 — coth? r) x $"~1(1 — tanif r), finishing the proof
of the theorem. O

4. Examples of constant scalar curvature hypersurfaces satisfyingupH?2 > C,(R)

To show that the restriction sup? < C,(R) in Theorem 1.1 is sharp, we will give here
for fixedn > 3, R > 2/n and every numbe€ > C,(R), a complete hypersurface with
constant scalar curvatufesuch that sugf? = C. This is the content of Theorem 1.2 which
we will prove here. First we recall the notion of a rotation hypersurface in the context of
the de Sitter space [15] (see [7] for the Riemannian case).

Definition 4.1. Denote byP* a k-dimensional linear subspace &2 and by QP?)

the identity component of the Lorentz groupiOn + 1) which leavesP? pointwise fixed.
ChooseP? andP® such that? ¢ P2, and letC be a space-like curve isf 7N (P2 — P?).
Then the orbit of” under G P?) is a hypersurfac#?” c S’f*l called the rotation hypersur-
face generated by, andC is called the profile curve a¥f. M is spherical (resp. parabolic,
hyperbolic) if the restriction(, )| p2 is a Lorentzian metric (resp. a Riemannian metric, a
degenerate quadratic form).

In [7,15], do Carmo, Dajczer and Mori gave explicit parameterizations of these rotation
hypersurfaces; for completeness, we write down these parameterizatisﬁﬁlilfor the
spherical case and point out what happens in the other two cases.



A. Brasil Jr. et al./ Journal of Geometry and Physics 37 (2001) 237-250 247

Let P3 c S7 be the subspad€yo, y1. 2,0, ... , 0) € Ri 2 y; € R}, and the profile
curveC be given by the functions; = y;(s), i = 0, 1, 2, parameterized by arc-length, so
that the following conditions hold (from now on, we omit the variabfer convenience):

-+ +y=1 g+ =1 (22)
We may describeg, y1 in terms ofy,, as follows. Set

yo = /¥2 — 1coshy, y1=4/y2 — 1sinhg

for a functiong to be defined. Differentiating these equations and substituting into the
second equation in (22), we get

5 ) y2y/2 )
1=(5-Dg?— 22 +y3,
)’2_1
so that
p+y3-1
(p:fz—ds.
)’2_1

Hence, the coordinates of the profile cutvenay be given in terms of; and its derivatives.

In this setting, if we rotate with respect toP? = {(yo, 1,0, ... ,0) € Ri*% y; € R},

we may calculate the principal curvatures of our rotation hypersurface (see [7,15]), which
are given by

R

Ki = , (23)
y2
4
_l’_
Ky = —22 2 (24)
VIF+YE -8
wherei = 1,... ,n—1ands = —1, 0, 1, when the hypersurface is spherical, parabolic or

hyperbolic, respectively.

It is worth noting that the hyperbolic cylindef$(1 — cott? r) x §"~1(1 — tanifr),
r > 0 already mentioned in this paper may be given as rotation hypersurfaces as follows:
if2/n < R < 1, we sety, = coshr, where

nR —2

tantf r = ,
’ n—2

while if R > 1, we usey, = sinhr, where

nR —2

cothfr = .
d n—2

Returning to a general rotation hypersurface, we may use the expressions for the principal
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curvatures to obtain the following formulas f&f and R:

2 2
vz +yp =0 7+
nH=(n—1) y22 2 (25)
y2 /y/22+y22,—3
12 2 /"
_ —s
nR = (n—2)22 ”22 4oY2 12 (26)
Y2 Y2

Now we use the following result (see [9,18]):
If R is constant, the last equation has the first integral given by

G(y2, o) = Yo 2(y% + y5 — 1 — Ry2). (27)

We translate the study of the level curvesin the (y2, y5)-plane into information about
the profile curves of our rotation hypersurfaces; for example, the critical poigt6) of
G, satisfying
n(l—R)y2 —(n—2)8 =0,
or, equivalently,
, (n—2)8
yC =
n(l—R)
correspond exactly to the hyperbolic cylinders
HY(1 - cothfr) x $" 11— tantfr)

(28)

with principal curvature&; = tanhr andk, = cothr. We use (25), (26) and (28) to write
H? in terms ofR, obtaining

g2t (n—l)ZnR_Z—G—Z(n—l)—l— n-23
n2 n—2 nR —2

which is the value ot’, (R) defined in (1) and corresponding to the hyperbolic cylinders,
thus defining a functio® — H?2. Fig. 1 (see Introduction) shows the graph of this function
on a(R, supH?)-plane. We remark that in the vertical axis we plot $ifand notH?2.
Also, if we take an umbilical hypersurface, we have &fo= H?2 = R, so that these
hypersurfaces are represented by the first quadrant bisector ray.

Proof of Theorem 1.2. Regarding Fig. 1, we will show that every point above the graph

of C,(R) has associated a rotation space-like hypersurface suchRhatipH?) are the

coordinates of the given point. As before, we work out the details only in the spherical case.
The level curves of the first integral given in (27) give rise to space-like hypersurfaces

with constant scalar curvature. In particular, we obtain complete space-like hypersurfaces

whenever the level curve stays inside the redgign> 1}. If2/n < R < 1, the critical point

(ye, 0) mentioned above is such that > 1 (this is the reason to consider h&e- 2/x; in

case O< R < 2/n we obtain only non-complete examples). An easy calculation shows that

this critical point(yc, 0) is a minimum, so that the level curves near this point are closed.
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These nearby closed level curves haveytxoordinate bounded between, sayand y*
(these values, of course, depend on the level curve we are considering) and so the profile
curve is contained in a strip given by < y» < y*, containing the critical poingc.

We claim that, if we consider all closed level curves which stay inside the région 1},
then, for the correspondirgpmpletespace-like hypersurfaces (withfixed), the value of
supH?2 varies in [C,(R), 00).

To prove the claim, we first writé/? in terms ofR, y andy,; from (26),

5+ Z+ys—8
Y3+ 35 (n—2) );2
\/y2+y2—8 2\/y2+y2 Y2
nR V2 v )’éz + y% — 38
=7——(n—2)—,
Vg + =0 2
so that

2 2
1 (Y5 +ys—=8
= y2

+R : (29)

Y2 /yéZ_i_y%_S

Fixing the value of the first integrak (y», y5) = k, so that

POF+yE -8Ry =k,

we get

y§2+y§—8 Ryj +k
y2 )’2

Using this last expression in (29), we get

Ry2+k
Ry2+k

It is easy to show thakt/, as a function ofy,, is differentiable, defined in an interval of the
form (1, yz], where

G(y.0)=G(1,0) = —

and thatH is decreasingn its domain. These properties imply that for a closed level curve
G (y2, y,) = k of G, with y,-extreme values, andy*,

SUpPH? = H?(y),

so that sugH? is a differentiable function of,.
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If we makey, — 17T, the valuek of G tends toG (1, 0) = —R and we have

2
_ 1 [Ryn+k - n
lim supH?= lim = TN = oo.
Yo 1t v 1t 4 Vi Ry} +k

On the other hand,

lim supH? = lim H?%(y.) = H?(yc).

Yx—>ye x>y

But asy. corresponds to a hyperbolic cylindéf?(yc) = C,(R), and so the claim and the
theorem are proved. O
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