INVARIANT PSEUDOMETRICS ON PALAIS PROPER G-SPACES

S. ANTONYAN and S. de NEYMET¹ (México)

Abstract. Let G be a locally compact Hausdorff group. It is proved that: (1) on each Palais proper G-space X there exists a compatible family of G-invariant pseudometrics; (2) the existence of a compatible G-invariant metric on a metrizable proper G-space X is equivalent to the paracompactness of the orbit space X/G; (3) if in addition G is either almost connected or separable, and X is locally separable, then there exists a compatible G-invariant metric on X.

1. Introduction and main results

Throughout this paper the letter G will denote a locally compact and Hausdorff topological group, unless stated otherwise. All topological spaces, or merely, spaces are assumed to be Tychonoff (= completely regular and Hausdorff). All equivariant or G-maps are assumed to be continuous. The basic ideas and facts of the theory of G-spaces or topological transformation groups can be found in [17], [18] and [21]. Our basic reference on proper group actions is Palais' article [18]. Other good sources are two papers of H. Abels: [1] and [2].

By a G-space we mean a space together with a fixed continuous action of the group G on it.

The notion of a proper G-space under consideration was introduced in 1961 by R. Palais [18] with the purpose to extend a substantial portion of the existing theory of compact group actions to the case of locally compact ones.

A G-space X is called Palais proper [18, Definition 1.2.2] if each point of X has a neighborhood V such that for every point of X there is a neighborhood U with the property that the set $\langle U, V \rangle = \{g \in G \mid gU \cap V \neq \emptyset\}$ has

 $^{^{1}}$ The authors were supported by PAPIIT grant IN-105800 of UNAM.

 $[\]label{eq:continuous} \textit{Key words and phrases:} \ \text{proper G-space; orbit space; invariant metric; invariant uniformity; paracompactness.}$

 $^{2000\} Mathematics\ Subject\ Classification \hbox{: } 22F05,\ 54H15,\ 54H20.$

compact closure in G. In such a case the sets V and U are called *thin* relative to each other. Clearly, if G is compact every G-space is proper.

Let us mention yet another related notion. A G-space X is Bourbaki proper [7, Ch. III, §4.4] if any two points of X have relative thin neighborhoods. In the language of topological dynamics, the dynamical systems (= \mathbf{R} -spaces) satisfying this condition are called dispersive [6, Ch. IV]. Note that a G-space is Bourbaki proper iff the map $G \times X \to X \times X$; $(g, x) \mapsto (gx, x)$ is perfect in the sense that it is closed and the inverse image of any compact set is compact [7, §4.4].

Clearly, Palais proper implies Bourbaki proper. For X a locally compact G-space the two notions coincide (see e.g., [18, Theorem 1.2.9]); if in addition G is a discrete group, then we get the classical notion of a *properly discontinuous* action here.

In general a G-space is Palais proper iff it is Bourbaki proper and the orbit space X/G is regular [18, p. 303]. There are Bourbaki proper G-spaces which are not Palais proper [16, p. 303]. The orbit space of any Palais proper G-space is a Tychonoff space [18, Proposition 1.2.8].

Important examples of Palais proper G-spaces are the coset spaces $G/H = \{gH \mid g \in G\}$ with $H \subset G$ a compact subgroup, letting G act on G/H by left translations. The reader can find other interesting examples in [1], [2], [4] and [18].

In the sequel we will use the term "proper G-space" only for Palais proper G-spaces.

In [18] R. Palais proved that if G is a Lie group then on each separable metrizable proper G-space X there is a compatible G-invariant metric. The same holds true for G an arbitrary metrizable group; this was observed by J. de Vries [20]. J. L. Koszul [14, Ch. 1, Theorem 3] proved the existence of a compatible G-invariant metric on a locally compact metrizable proper G-space for an arbitrary G. In the general case of an arbitrary metrizable proper G-space the problem still remains open (even for $G = \mathbb{R}$). Some important questions of equivariant theory of retracts also reduce to this problem (see e.g., [5] and [8]).

One of the purposes of the present paper is to establish the following uniform analogue of the above mentioned result of Palais:

Theorem A. On each proper G-space there exists a compatible family of G-invariant pseudometrics.

Here a pseudometric ρ on a G-space X is called invariant or G-invariant if $\rho(gx,gy)=\rho(x,y)$ for all $g\in G$; $x,y\in X$. A family $\{\rho_i\}$ of pseudometrics is called compatible (or consistent) if the topology generated by $\{\rho_i\}$ is the original topology of X, that is to say, the sets of the form $\{y\in X\mid \rho_k(y,x)<< r\}$ constitute a subbase of the topology of X, where $\rho_k\in\{\rho_i\}$, $x\in X$ and r>0.

In other words Theorem A asserts that each proper action is uniformly equicontinuous with respect to some compatible uniformity on X (see Proposition 1 below).

It is interesting to compare Theorem A with a result of de Groot [10] (see also [15]) asserting that if G is a second countable group, then on each metrizable (not necessarily proper) G-space there exists a metrizable uniformity μ , compatible with its topology, such that each homeomorphism $g: X \to X$ $(g \in G)$ is μ -uniformly continuous.

It turns out that the existence of a single compatible G-invariant metric on a metrizable proper G-space is conjugated with the paracompactness of the orbit space. Namely, we have

Theorem B. Let X be a metrizable proper G-space. Then the following are equivalent:

- (1) The orbit space X/G is metrizable.
- (2) The orbit space X/G is paracompact.
- (3) There is a compatible invariant metric on X.

The following corollary of Theorem B slightly generalizes Palais' theorem on the existence of invariant metrics [18, Theorem 4.3.4]:

Corollary 1. Let G be either almost connected or separable. Then every metrizable, locally separable, proper G-space X admits a compatible invariant metric.

Recall that G is called almost connected if the group of its connected components is compact. Such a group has a maximal compact subgroup K, i.e., every compact subgroup of G is conjugate to a subgroup of K [1, Theorem A.5]. The corresponding theorem on Lie groups can be found in [12, Ch. XV, Theorem 3.1].

2. Proofs

First of all we recall some necessary definitions.

If X is a G-space, for any $x \in X$ we denote $G_x = \{g \in G \mid gx = x\}$, the stabilizer (or stationary subgroup) of x.

For a subset $S \subset X$ and for a subgroup $H \subset G$, H(S) denotes the H-saturation of S, i.e., $H(S) = \{hs \mid h \in H, s \in S\}$. In particular, G(x) denotes the orbit $\{gx \in X \mid g \in G\}$ of x. The orbit space is denoted by X/G.

DEFINITION [18, p. 305]. Let G be a topological group, H be a closed subgroup of G and X be a G-space. An H-invariant subset $S \subset X$ is called an H-slice in X if G(S) is open in X and there is a G-map $f: G(S) \to G/H$ such that $S = f^{-1}(eH)$, where e denotes the unity of G. The saturation G(S) will be said to be a tubular set (more precisely, an H-tube). If G(S)

= X then we say that S is a global H-slice of X. If $H = G_x$ for some $x \in S$ then we say that S is a slice at the point x.

It is useful to notice that the map $f: G(S) \to G/H$ is uniquely determined by S as follows: f(gs) = gH for all $gs \in G(S)$ with $g \in G$, $s \in S$.

In [18] Palais established that if G is a Lie group then at each point of a proper G-space X there exists a slice. Using this result, Abels [2] proved that each point $x \in X$ is contained in some H-slice (H depending upon x but not necessarily equal to G_x) even when G is an arbitrary (locally compact) group. This result will play a central rule in our proofs.

Lemma. Let H be a compact subgroup of G and X be a proper G-space admitting a global H-slice S. Then there is a compatible family of invariant pseudometrics on X.

If in addition X is metrizable then there is a compatible invariant metric on X.

PROOF. Let $f: X \to G/H$ be the G-map with $S = f^{-1}(eH)$. Choose a neighborhood W of the point $eH \in G/H$ that has compact closure in G/H. Then the set $U = f^{-1}(W)$ is a small subset of X, i.e., each point $x \in X$ has a neighborhood, thin relative to U. It then follows that

$$\begin{cases} \text{for any compact subset } A \subset X \text{ the set} \\ \langle A, U \rangle = \{g \in G \mid gA \cap U \neq \emptyset\} \text{ has compact closure in } G. \end{cases}$$

Take a compatible uniformity \mathcal{W} on X and let $\mathcal{D} = \{d_i\}$ be the family of all bounded pseudometrics on X that are uniformly continuous with respect to the product uniformity on $X \times X$. Then the sets of the form $V(d_i, \varepsilon, x) = \{y \in X \mid d_i(y, x) < \varepsilon\}$ where $d_i \in \mathcal{D}, \ \varepsilon > 0, \ x \in X$, constitute a base for the original topology of X [13, Ch. 6, Theorem 19].

For every $d_i \in \mathcal{D}$, we define

$$r_i(x) = d_i(x, X \setminus U), \quad x \in X.$$

Then for any $x, y \in X$, we have $r_i(x) - r_i(y) \le d_i(x, y)$, and hence

$$r_i(x) + r_i(z) \le d_i(x, y) + r_i(y) + r_i(z).$$

Therefore, if we write

$$\mu_i(x, y) = \min \{ d_i(x, y), r_i(x) + r_i(y) \}, x, y \in X$$

then it is obvious that μ_i is a pseudometric on X. Define

$$\rho_i(x, y) = \sup \left\{ \mu_i(gx, gy) \mid g \in G \right\}.$$

 $Acta\ Mathematica\ Hungarica\ 98,\ 2003$

Clearly, ρ_i is a G-invariant pseudometric on X. Show that the family $\mathcal{P} = \{\rho_i\}$ is compatible with the topology of X. For, let $\{x_\alpha\}$ be a net in X converging to a point $x_0 \in X$ relative to the topology generated by \mathcal{P} . Take an arbitrary basic neighborhood $V(d_i, \varepsilon, x_0)$ of x_0 in the original topology of X. As G(U) = X, there is an element $g_0 \in G$ such that $g_0 x_0 \in U$. As the map $g_0^{-1}: X \to X$ is continuous, there are $d_j \in \mathcal{D}$ and $\delta > 0$ such that $V(d_j, \delta, g_0 x_0) \subset U$ and $g_0^{-1}(V(d_j, \delta, g_0 x_0)) \subset V(d_i, \varepsilon, x_0)$.

The inclusion $V(d_j, \delta, g_0x_0) \subset U$ implies that $r_j(g_0x_0) \geq \delta > 0$. Since $\{x_{\alpha}\}$ converges to x_0 in the topology generated by \mathcal{P} , there is an index α_0 such that $\rho_j(x_{\alpha}, x_0) < \delta/2$ for all $\alpha \geq \alpha_0$. As $\mu_j(g_0x_{\alpha}, g_0x_0) \leq \rho_j(x_{\alpha}, x_0)$, we see that $\mu_j(g_0x_{\alpha}, g_0x) < \delta/2$. Now, as $r_j(g_0x_{\alpha}) + r_j(g_0x_0) \geq r_j(g_0x_0) \geq \delta$, we infer that $d_j(g_0x_{\alpha}, g_0x_0) < \delta/2$; so $g_0x_{\alpha} \in V(d_j, \delta/2, g_0x_0)$. Therefore $x_{\alpha} \in V(d_i, \varepsilon, x_0)$ for all $\alpha \geq \alpha_0$, showing that $\{x_{\alpha}\}$ converges to x_0 relative to the original topology of X.

Conversely, assume that a net $\{x_{\alpha}\} \subset X$ converges to a point $x_0 \in X$ relative to the original topology of X, while $\{x_{\alpha}\}$ does not converge to x_0 relative to the topology generated by \mathcal{P} . Then for some $\varepsilon_0 > 0$ and for some pseudometric $\rho_i \in \mathcal{P}$ there must be a subnet $\{y_{\gamma}\} \subset \{x_{\alpha}\}$ such that $\rho_i(y_{\gamma}, x_0) \geq \varepsilon_0$ for all indices γ . Therefore $\mu_i(g_{\gamma}y_{\gamma}, g_{\gamma}x_0) \geq \varepsilon_0/2$ for a suitable net $\{g_{\gamma}\} \subset G$. Consequently, $r_i(g_{\gamma}y_{\gamma}) + r_i(g_{\gamma}x_0) \geq \varepsilon_0/2$, yielding that $\{g_{\gamma}\} \subset \langle A, U \rangle$, where $A = \{x_0\} \cup \{y_{\gamma}\}$. As A is compact, it then follows from (1) that $\langle A, U \rangle$ has a compact closure, and hence, $\{g_{\gamma}\}$ contains a convergent subnet. Without loss of generality we can assume that $\{g_{\gamma}\}$ itself converges to a limit, say $g \in G$. Then by continuity of the action of G on X, the nets $\{g_{\gamma}x_0\}$ and $\{g_{\gamma}y_{\gamma}\}$ converge to the same limit gx_0 , which yields that there is an index γ_0 such that $d_i(g_{\gamma}y_{\gamma}, g_{\gamma}x_0) < \varepsilon_0/2$ whenever $\gamma \geq \gamma_0$. This contradicts the condition $d_i(g_{\gamma}y_{\gamma}, g_{\gamma}x_0) \geq \mu_i(g_{\gamma}y_{\gamma}, g_{\gamma}x_0) \geq \varepsilon_0/2$.

The proof of the second claim is still simpler. \Box

PROOF OF THEOREM A. For each orbit $G(a) \subset X$ we fix an H_a -tubular neighborhood W_a of G(a) where H_a is a compact subgroup of G; this is possible by [2, Theorem 3.3]. Using the complete regularity of the orbit space X/G [18, pp. 302–303], one can find an invariant neighborhood U_a of G(a) with $\overline{U}_a \subset W_a$, and an invariant function $\varphi_a : X \to [0,1]$ such that $G(a) \subset \varphi_a^{-1}(1)$ and $X \setminus U_a \subset \varphi_a^{-1}(0)$.

By Lemma, each W_a admits a family $\{\rho_i\}$ of G-invariant pseudometrics, generating the topology of W_a . Without loss of generality one can assume that all these pseudometrics are bounded by 1.

Now we extend every pseudometric ρ_i to the whole set X as follows:

$$\widetilde{\rho_i}(x,y) = \begin{cases} \sup_{t \in \overline{U}_a} |\varphi_a(x)\rho_i(x,t) - \varphi_a(y)\rho_i(y,t)|, & \text{if } x,y \in \overline{U}_a; \\ \sup_{t \in \overline{U}_a} \varphi_a(x)\rho_i(x,t), & \text{if } x \in \overline{U}_a, y \notin \overline{U}_a; \\ 0, & \text{if } x,y \notin \overline{U}_a. \end{cases}$$

It is easily seen that $\widetilde{\rho_i}$ is a pseudometric on X. Its invariance follows directly from the invariance of the pseudometric ρ_i and of the function φ_a . We will denote by \mathcal{R} the totality of all pseudometrics $\widetilde{\rho_i}$, corresponding to all the tubular neighborhoods W_a .

Let τ be the original topology of X and $\widetilde{\tau}$ the topology generated by \mathcal{R} . We have to verify that $\tau = \widetilde{\tau}$. For the inclusion $\widetilde{\tau} \subset \tau$ it suffices to prove that for every pseudometric $\widetilde{\rho} \in \mathcal{R}$, every point $b \in X$ and every $\varepsilon > 0$ there is a neighborhood $V \in \tau$ of b which is contained in the set $O = \{x \in X \mid \widetilde{\rho}(b, x) < \varepsilon\}$.

For, let $\widetilde{\rho}$ correspond to a tubular neighborhood W_a , $a \in X$. First, we assume that $b \in \overline{U}_a$. By continuity of the function φ_a and of the pseudometric ρ , one can choose a neighborhood $V \in \tau$ of b such that $|\varphi_a(b) - \varphi_a(x)| < \varepsilon/4$ and $\rho(b, x) < \varepsilon/4$ for all $x \in V$. Then

$$\left| \varphi_a(x)\rho(x,t) - \varphi_a(b)\rho(b,t) \right| \leq \left| \varphi_a(b) - \varphi_a(x) \right| \rho(b,t) + \varphi_a(x) \left| \rho(b,t) - \rho(x,t) \right|.$$

Since $\rho(b,t) \leq 1$, $\varphi(x) \leq 1$ and $|\rho(b,t) - \rho(x,t)| \leq \rho(b,x)$, then for every $x \in V$ we will have

$$\left|\varphi_a(x)\rho(x,t)-\varphi_a(b)\rho(b,t)\right| \leq \left|\varphi_a(b)-\varphi_a(x)\right| + \rho(b,x) < \varepsilon/4 + \varepsilon/4 = \varepsilon/2,$$

which implies that $\widetilde{\rho_i}(b,x) < \varepsilon$. Hence, V is as required.

If $b \notin \overline{U}_a$ then $\varphi_a(b) = 0$. Again, by continuity of φ_a there is a neighborhood $S \in \tau$ of b such that $\varphi_a(x) < \varepsilon$ for all $x \in V$. Then

$$\widetilde{\rho}(b,x) = \sup_{t \in \overline{U}_a} \varphi_a(x) \rho(x,t) \leq \varphi_a(x) < \varepsilon \quad \text{whenever} \quad x \in V.$$

So, $V \subset O$.

Let us pass to the inclusion $\tau \subset \widetilde{\tau}$. For, let $Q \in \tau$ and $a \in Q$ be an arbitrary point. Consider the tubular set W_a and its invariant open subset U_a above chosen. As $Q \cap U_a \in \tau$, there are pseudometrics ρ_k , $k = 1, \ldots, n$, corresponding to W_a such that the set $T = \{x \in X \mid \rho_k(a, x) < \varepsilon, k = 1, \ldots, n\}$ is contained in $Q \cap U_a$. Now, we observe that

$$\widetilde{
ho}_k(x,a) = \sup_{t \in \overline{U}_a} \left| \varphi_a(x)
ho_k(x,t) - \varphi_a(a)
ho_k(a,t) \right| \geqq \varphi_a(a)
ho_k(x,a) =
ho_k(x,a).$$

Acta Mathematica Hungarica 98, 2003

Hence the set $\widetilde{T} = \{ x \in X \mid \widetilde{\rho}_k(a, x) < \varepsilon, \ k = 1, \dots, n \}$ is contained in T, and hence, in Q. Consequently, a is an inner point of Q with respect of $\widetilde{\tau}$. Thus $Q \in \widetilde{\tau}$, proving that $\tau \subset \widetilde{\tau}$.

A useful supplement to Theorem A provides the following standard

PROPOSITION 1. Let G be a group, X be a G-space and W be a compatible uniformity on X. Then the following are equivalent:

- (1) The action of G on X is W-uniformly equicontinuous;
- (2) W has a G-invariant base:
- (3) W is generated by a family of G-invariant pseudometrics, uniformly continuous on $X \times X$.

Before passing to the proof, let us recall that if \mathcal{W} is a compatible uniformity on a G-space X given by means of entourages of the diagonal of X (see e.g., [13, Ch. 6]), then an action of G is said to be \mathcal{W} -uniformly equicontinuous if for every $U \in \mathcal{W}$ there is a $V \in \mathcal{W}$ such that $(gx, gy) \in U$ for all $(x, y) \in V$ and $g \in G$. A base \mathcal{B} of \mathcal{W} is said to be G-invariant whenever V = G(V) for all $V \in \mathcal{B}$, where $G(V) = \{(gx, gy) \mid (x, y) \in V, g \in G\}$.

PROOF. (1) \Rightarrow (2). For each $U \in \mathcal{W}$, let $\widetilde{U} = \{(gx, gy) \mid (x, y) \in U, g \in G\}$. Then $\mathcal{B} = \{\widetilde{U} \mid U \in \mathcal{W}\}$ is a G-invariant base of \mathcal{W} .

- $(3) \Rightarrow (1)$ is immediate.
- $(2) \Rightarrow (3)$. Let \mathcal{B} be a G-invariant base of \mathcal{W} and let $\{d_i\}$ be the family of all bounded pseudometrics, uniformly continuous on $X \times X$. For every $x, y \in X$ we define

$$\widetilde{d}_i(x, y) = \sup \{ d_i(gx, gy) \mid g \in G \}.$$

Clearly, each \widetilde{d}_i is a G-invariant pseudometric and $d_i(x,y) \leqq \widetilde{d}_i(x,y)$ for all $x,y \in X$. So, it remains only to see that each \widetilde{d}_i is uniformly continuous on $X \times X$. For, let $\varepsilon > 0$. As d_i is uniformly continuous, the entourage $U_i = \{(x,y) \in X \times X \mid d_i(x,y) < \varepsilon/2\}$ belongs to \mathcal{W} (see [13, Ch. 6, Theorem 11]); hence, there exists a $V \in \mathcal{B}$ with $V \subset U_i$. It then follows from the G-invariance of V that $d_i(gx,gy) < \varepsilon/2$ whenever $(x,y) \in V$ and $g \in G$. Therefore, $\widetilde{d}_i(x,y) \leqq \varepsilon/2 < \varepsilon$ for all $(x,y) \in V$, implying that the entourage $\{(x,y) \in X \times X \mid \widetilde{d}_i(x,y) < \varepsilon\}$ belongs to \mathcal{W} . Hence, \widetilde{d}_i is uniformly continuous (see [13, Ch. 6, Theorem 11]). \square

Consequently, it follows from Theorem A and Proposition 1 the following

COROLLARY 2. On each Palais proper G-space there exists a compatible uniformity with a G-invariant base.

PROOF OF THEOREM B. The implication $(1) \Rightarrow (2)$ follows from Stone's classical theorem on paracompactness of metrizable spaces.

 $(3) \Rightarrow (1)$. If ρ is an invariant metric on the proper G-space X then the function

$$\widetilde{\rho}(G(x), G(y)) = \inf\{\rho(x', y') \mid x' \in G(x), \ y' \in G(y)\}\$$

is a well-defined metric, compatible with the quotient topology of X/G (see [18, Theorem 4.3.4] for details).

 $(2) \Rightarrow (3)$. By [2, Theorem 3.3], each orbit in X has a tubular neighborhood, and hence, one can choose a tubular cover $\{W_i\}$ of X. Using the paracompactness of the orbit space X/G and the openness of the orbit map $X \to X/G$, one can choose a partition of unity $\{\varphi_i : X \to [0,1]\}$ such that each φ_i is an invariant function with $\varphi_i^{-1}((0,1]) \subset W_i$, and that the open covering $\{U_i = \varphi_i^{-1}((0,1])\}$ of X is locally finite. By the Lemma, each W_i and hence each U_i , admits a G-invariant metric. According to $[3, \S 3]$ then there exists a G-embedding $l_i : U_i \to X_i$ into a normed linear G-space X_i , equipped with a linear and isometric action of G.

Consider the direct sum $E_i = \mathbf{R} \oplus X_i$ endowed with the norm $\|(t,z)\|$ $= |t| + \|z\|$, where $(t,z) \in \mathbf{R} \oplus X_i$. We make E_i an isometric linear G-space by letting G act on it according to the rule: g(t,z) = (t,gz); $g \in G$. Now, the map $h_i: U_i \to E_i$ defined by $h_i(x) = (1,l_i(x)) / \|(1,l_i(x))\|$, $x \in U_i$ is an equivariant embedding of U_i in the unit sphere of E_i . For each index i, we set

$$f_i(x) = \begin{cases} \varphi_i(x)h_i(x), & \text{if } x \in U_i, \\ 0, & \text{if } x \in X \setminus U_i. \end{cases}$$

One readily sees that f_i is a G-map with $X \setminus U_i = f_i^{-1}(0)$. Moreover, the restriction $f_i|_{U_i}$ is an embedding. Indeed, it is clear that $f_i|_{U_i}$ is continuous and injective. Let us check the continuity of the inverse map. For, let $x_0 \in U_i$ be a point, $\{x_k\}$ be a sequence in U_i such that $f_i(x_k) \leadsto f_i(x_0)$, i.e., $\varphi_i(x_k)h_i(x_k) \leadsto \varphi_i(x_0)h_i(x_0)$. Then $\|\varphi_i(x_k)h_i(x_k)\| \leadsto \|\varphi_i(x_0)h_i(x_0)\|$. But $\varphi_i(x_k) = \|\varphi_i(x_k)h_i(x_k)\|$ and $\varphi_i(x_0) = \|\varphi_i(x_0)h_i(x_0)\|$, because $\|h_i(x_k)\| = \|h_i(x_0)\| = 1$; so we get that $\varphi_i(x_k) \leadsto \varphi_i(x_0)$. This, in turn, together with $\varphi_i(x_k)h_i(x_k) \leadsto \varphi_i(x_0)h_i(x_0)$ implies that $h_i(x_k) \leadsto h_i(x_0)$. Since $h_i|_{U_i}$ is an embedding, we conclude that $x_k \leadsto x_0$. This proves that the map $(f_i|_{U_i})^{-1}$ is continuous as well, and hence, $f_i|_{U_i}$ is an embedding.

Denote by E the subset of the product $\prod E_i$ consisting of all points $v = (v_i)$ such that $v_i \neq 0$ only for finitely many indices i. Define a norm on E by the following rule:

$$||v|| = \sum ||v_i||$$
, where $v = (v_i) \in E$.

Acta Mathematica Hungarica 98, 2003

It is easily seen that E becomes a normed linear G-space if we define the diagonal action of G on it. Furthermore, this action is also isometric.

Next, we consider the map $f: X \to E$ defined by $f(x) = (f_i(x))$. Since $\{U_i\}$ is a locally finite open covering of X, we infer that f is a well-defined continuous map. Its equivariance follows from the equivariance of the maps f_i . We claim that f is an embedding. Indeed, let $x, y \in X$ and $x \neq y$. Choose a tube $U_j \in \{U_i\}$ with $x \in U_j$. If $y \in U_j$ then $f_j(x) \neq f_j(y)$ as $f_j|_{U_j}$ is injective. If $y \notin U_j$ then $f_j(y) = 0$, while $f_j(x) \neq 0$. Thus $f(x) \neq f(y)$ which means that f is injective. Check that the map $f: X \to f(X)$ is open. For, let Q be an open subset of X and $x \in Q$ be an arbitrary point. As above, let $U_j \in \{U_i\}$ be a tube containing the point x. Since the restriction $f_j|_{U_j}$ is an embedding, we see that $f_j(Q \cap U_j)$ is open in $f_j(U_j)$. Choose $0 < \varepsilon < \|f_j(x)\|$ such that $f_j(U_j) \cap O(f_j(x), \varepsilon) \subset f_j(Q \cap U_j)$, where $O(f_j(x), \varepsilon)$ denotes the open ε -ball in E_j , centered at the point $f_j(x)$.

We claim that $f(X) \cap O(f(x), \varepsilon) \subset f(Q)$, where $O(f(x), \varepsilon)$ is the open ε -ball in E, centered at f(x). Indeed, let $y \in X$ be such that $||f(y) - f(x)|| < \varepsilon$. Then $||f_j(y) - f_j(x)|| \leq ||f(y) - f(x)|| < \varepsilon$, and therefore $f_j(y) \neq 0$, which is equivalent to $y \in U_j$. Hence $f_j(y) \in f_j(U_j) \cap O(f_j(x), \varepsilon)$, yielding that $f_j(y) \in f_j(Q \cap U_j)$. Since f_j is injective on U_j , we conclude that then $y \in U_j \cap Q$. Consequently $f(y) \in f(Q)$, and hence, $f(X) \cap O(f(x), \varepsilon) \subset f(Q)$. This gives that f(x) is an interior point of f(Q) in f(X), and hence, f(Q) is open in f(X). Thus, f is a homeomorphism of X onto f(X). It remains only to observe that the metric on X induced from E is the required one. \square

Proposition 2. Let G be an almost connected group and X be a locally Lindelöff, paracompact proper G-space. Then the orbit space X/G is paracompact.

PROOF. 1. First, we consider the case of a connected group G. As it is observed in [11, Proposition 13], X is a discrete sum of its open-closed Lindelöff subsets X_{α} . By connectedness of G all the orbits in X are connected; hence, each X_{α} is invariant in X. Therefore, $X/G = \bigoplus (X_{\alpha}/G)$, the discrete sum. Since X_{α} is also a proper G-space, by [18, Proposition 1.2.8] the orbit space X_{α}/G is completely regular. Therefore X_{α}/G , being a continuous image of a Lindelöff space, is itself Lindelöff [9, Theorem 3.8.6]. Since every regular Lindelöff space is paracompact [9, Theorem 5.1.2], the result now follows from [9, Theorem 5.1.30].

2. Let G be almost connected, i.e., the factor group G/G_0 is compact, where G_0 is the connected component of the identity of G. Since X can be regarded as a proper G_0 -space (with the induced action), the orbit space X/G_0 is paracompact by Case 1. As G/G_0 is compact, the G/G_0 -orbit map $X/G_0 \to X/G = \frac{X/G_0}{G/G_0}$ is perfect. Consequently, by Michael's Theorem the

paracompactness of X/G_0 yields the paracompactness of $\frac{X/G_0}{G/G_0}$. It remains only to observe that the two orbit spaces X/G and $\frac{X/G_0}{G/G_0}$ are naturally homeomorphic. \square

PROOF OF COROLLARY 1. If G is almost connected then by Proposition 2, X/G is paracompact. If G is separable then each orbit G(x) in X, being a continuous image of G, is itself separable. Since the orbit map $X \to X/G$ is open, it then follows from a result of A. H. Stone [19] that X/G is metrizable. Thus, in both cases the orbit space X/G is paracompact. The result now follows from Theorem B.

In connection with Theorem B and Proposition 2, it is worthy to mention here an unsolved conjecture due to O. Hájek [11] (the case $G = \mathbf{R}$) and H. Abels [1] (the general case) to the effect that the orbit space X/G of any paracompact proper G-space X is paracompact provided G is connected. In fact, all the difficulty here lies in the normality of the orbit space. Namely, we have

PROPOSITION 3. The following are equivalent:

- (1) For each paracompact proper G-space X the orbit space X/G is paracompact.
- (2) For each paracompact proper G-space X the orbit space X/G is normal.

PROOF. One need to prove the implication $(2) \Rightarrow (1)$ only. Let X be a paracompact proper G-space. By Tamano's theorem [9, Theorem 5.1.39], it suffices to show that for every compact space Y, the product $(X/G) \times Y$ is normal. To this end, we consider the G-space $X \times Y$, letting G act on it by g(x,y)=(gx,y). Then $X \times Y$ is a proper G-space [18, Proposition 1.3.3]; besides, it is paracompact [9, Theorem 5.1.36]. Consequently, by the hypothesis, the orbit space $(X \times Y)/G$ is normal. It remains only to observe that $(X/G) \times Y = (X \times Y)/G$. \square

References

- [1] H. Abels, Parallelizability of proper actions, global K-slices and maximal compact subgroups, Math. Ann., 212 (1974), 1–19.
- [2] H. Abels, Universal proper G-spaces, Math. Z., 159 (1978), 143–158.
- [3] S. A. Antonian, Equivariant embeddings into G-AR's, Glasnik Matematički, 22 (42) (1987), 503-533.
- [4] S. A. Antonyan, The Banach-Mazur compacta are absolute retracts, Bull. Acad. Polon. Sci. Ser. Math., 46 (1998), 113-119.
- [5] S. A. Antonyan, Extensorial properties of orbit spaces of proper group actions, *Topol. Appl.*, 98 (1999), 35–46.
- [6] N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems, Springer Verlag (1970).

- [7] N. Bourbaki, General Topology, Chapters I-IV, Springer Verlag (1989).
- [8] E. Elfving, The G-homotopy type of proper locally linear G-manifolds, Ann. Acad. Sci. Fenn., Math. Diss., vol. 108, Suomalainen Tiedeakademia (1996).
- [9] R. Engelking, General Topology, PWN (Warszawa, 1977).
- [10] J. de Groot, The action of a locally compact group on a metric space, Nieuw Ark. Wisk., 7 (1959), 70–74.
- [11] O. Hájek, Parallelizability revisited, Proc. Amer. Math. Soc., 27 (1971), 77-84.
- [12] G. Hochshild, The Structure of Lie Groups, Holden-Day Inc. (1965).
- [13] J. L. Kelley, General Topology, Van Nostrand (Princeton, N.J., 1957).
- [14] J. L. Koszul, Lectures on Groups of Transformations, Tata Inst. Fund. Research (Bombay, 1965).
- [15] M. G. Megrelishvili (Levy), Equivariant completions, Comm. Math. Univ. Carol., 35 (1994), 539-547.
- [16] V. V. Nemytski, Topological problems of the theory of dynamical systems, Amer. Math. Soc. Transl., 1(5) (1962), 414–497.
- [17] R. Palais, The Classification of G-spaces, Memoirs AMS, 36 (1960).
- [18] R. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. Math., 73 (1961), 295–323.
- [19] A. H. Stone, Metrizability of decomposition spaces, Proc. Amer. Math. Soc., 7 (1956), 690-700.
- [20] J. de Vries, Linearization of actions of locally compact groups, Proc. Steklov Inst. Math., 4 (1984), 57–74.
- [21] J. de Vries, Elements of Topological Dynamics, Mathematics and its Applications, Kluwer Academic Publ. (Dordrecht-Boston-London, 1993).

(Received April 6, 2001)

DEPARTAMENTO DE MATEMATICAS
FACULTAD DE CIENCIAS UN AM
CIRCUITO EXTERIOR C.U.
04510 MÉXICO D. F.
MÉXICO
E-MAIL: ANTON YAN@SERVIDOR.UNAM.MX

E-MAIL: ANION IAN@BERVIDOR.UNAM.P

DEPARTAMENTO DE MATEMATICAS FACULTAD DE CIENCIAS UN AM CIRCUITO EXTERIOR C.U. 04510 MÉXICO D.F. MÉXICO E-MAIL: CHRIST@SERVIDOR.UN AM.MX