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INVARIANT PSEUDOMETRICS ON PALAIS
PROPER G-SPACES

S. ANTONYAN and S. de NEYMET" (México)

Abstract. Let G be a locally compact Hausdorff group. It is proved
that: (1) on each Palais proper G-space X there exists a compatible family of G-
invariant pseudometrics; (2) the existence of a compatible G-invariant metric on
a metrizable proper G-space X is equivalent to the paracompactness of the orbit
space X/G; (3) if in addition G is either almost connected or separable, and X is
locally separable, then there exists a compatible G-invariant metric on X.

1. Introduction and main results

Throughout this paper the letter G will denote a locally compact and
Hausdorff topological group, unless stated otherwise. All topological spaces,
or merely, spaces are assumed to be Tychonoff (= completely regular and
Hausdorff). All equivariant or G-maps are assumed to be continuous. The
basic ideas and facts of the theory of G-spaces or topological transformation
groups can be found in [17], [18] and [21]. Our basic reference on proper
group actions is Palais’ article [18]. Other good sources are two papers of
H. Abels: [1] and [2].

By a G-space we mean a space together with a fixed continuous action
of the group G on it.

The notion of a proper G-space under consideration was introduced in
1961 by R. Palais [18] with the purpose to extend a substantial portion of
the existing theory of compact group actions to the case of locally compact
ones.

A G-space X is called Palais proper [18, Definition 1.2.2] if each point of
X has a neighborhood V such that for every point of X there is a neighbor-
hood U with the property that the set (U,V)={g € G |gU NV # 0} has
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60 S. ANTONYAN and S. de NEYMET

compact closure in G. In such a case the sets V and U are called thin relative
to each other. Clearly, if G is compact every G-space is proper.

Let us mention yet another related notion. A G-space X is Bourbaki
proper [7, Ch. III, §4.4] if any two points of X have relative thin neigh-
borhoods. In the language of topological dynamics, the dynamical sys-
tems (= R-spaces) satisfying this condition are called dispersive [6, Ch. IV].
Note that a G-space is Bourbaki proper iff the map G x X — X x X; (g,x)
— (gz, ) is perfect in the sense that it is closed and the inverse image of
any compact set is compact [7, §4.4].

Clearly, Palais proper implies Bourbaki proper. For X a locally com-
pact G-space the two notions coincide (see e.g., [18, Theorem 1.2.9]); if in
addition G is a discrete group, then we get the classical notion of a properly
discontinuous action here.

In general a G-space is Palais proper iff it is Bourbaki proper and the
orbit space X/G is regular [18, p. 303]. There are Bourbaki proper G-spaces
which are not Palais proper [16, p. 303]. The orbit space of any Palais proper
G-space is a Tychonoff space [18, Proposition 1.2.8].

Important examples of Palais proper G-spaces are the coset spaces G/H
={gH | g € G} with H C G a compact subgroup, letting G act on G/H by
left translations. The reader can find other interesting examples in [1], [2],
[4] and [18].

In the sequel we will use the term “proper G-space” only for Palais proper
G-spaces.

In [18] R. Palais proved that if G is a Lie group then on each separable
metrizable proper G-space X there is a compatible G-invariant metric. The
same holds true for G an arbitrary metrizable group; this was observed by
J. de Vries [20]. J. L. Koszul [14, Ch. 1, Theorem 3] proved the existence
of a compatible G-invariant metric on a locally compact metrizable proper
G-space for an arbitrary G. In the general case of an arbitrary metrizable
proper G-space the problem still remains open (even for G = R). Some im-
portant questions of equivariant theory of retracts also reduce to this problem
(see e.g., [5] and [8]).

One of the purposes of the present paper is to establish the following
uniform analogue of the above mentioned result of Palais:

THEOREM A. On each proper G-space there exists a compatible family
of G-invariant pseudometrics.

Here a pseudometric p on a G-space X is called invariant or G-invariant
if p(gz, gy) = p(z,y) for all g € G; z,y € X. A family {p;} of pseudometrics
is called compatible (or consistent) if the topology generated by {p;} is the
original topology of X, that is to say, the sets of the form {y € X | py(y, z)
< r} constitute a subbase of the topology of X, where pj, € {p;}, z € X and
r > 0.

Acta Mathematica Hungarica 98, 2003



INVARIANT PSEUDOMETRICS 61

In other words Theorem A asserts that each proper action is uniformly
equicontinuous with respect to some compatible uniformity on X (see Propo-
sition 1 below).

It is interesting to compare Theorem A with a result of de Groot [10] (see
also [15]) asserting that if G is a second countable group, then on each metriz-
able (not necessarily proper) G-space there exists a metrizable uniformity p,
compatible with its topology, such that each homeomorphism ¢g: X — X
(g9 € G) is p-uniformly continuous.

It turns out that the existence of a single compatible G-invariant metric
on a metrizable proper G-space is conjugated with the paracompactness of
the orbit space. Namely, we have

THEOREM B. Let X be a metrizable proper G-space. Then the following
are equivalent:
(1) The orbit space X/G is metrizable.
(2) The orbit space X/G is paracompact.
(3) There is a compatible invariant metric on X.

The following corollary of Theorem B slightly generalizes Palais’ theorem
on the existence of invariant metrics [18, Theorem 4.3.4]:

COROLLARY 1. Let G be either almost connected or separable. Then
every metrizable, locally separable, proper G-space X admits a compatible
mvariant metric.

Recall that G is called almost connected if the group of its connected
components is compact. Such a group has a maximal compact subgroup
K, i.e., every compact subgroup of G is conjugate to a subgroup of K [1,
Theorem A.5]. The corresponding theorem on Lie groups can be found in
[12, Ch. XV, Theorem 3.1].

2. Proofs

First of all we recall some necessary definitions.

If X is a G-space, for any z € X we denote G, = {g € G | gz = z}, the
stabilizer (or stationary subgroup) of x.

For a subset S C X and for a subgroup H C G, H(S) denotes the H-
saturation of S, i.e., H(S) = {hs | h € H, s € S}. In particular, G(z) denotes
the orbit {gz € X | g € G} of z. The orbit space is denoted by X/G.

DEFINITION [18, p. 305]. Let G be a topological group, H be a closed
subgroup of G and X be a G-space. An H-invariant subset S C X is called
an H-slice in X if G(S) is open in X and there is a G-map f: G(S) - G/H
such that S = f~!(eH), where e denotes the unity of G. The saturation
G(S) will be said to be a tubular set (more precisely, an H-tube). If G(S)
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= X then we say that S is a global H-slice of X. If H = G, for some x € S
then we say that S is a slice at the point x.

It is useful to notice that the map f: G(S) — G/H is uniquely deter-
mined by S as follows: f(gs) = gH for all gs € G(S) with g € G, s € S.

In [18] Palais established that if G is a Lie group then at each point of
a proper G-space X there exists a slice. Using this result, Abels [2] proved
that each point 2 € X is contained in some H-slice (H depending upon x but
not necessarily equal to G;) even when G is an arbitrary (locally compact)
group. This result will play a central rule in our proofs.

LEMMA. Let H be a compact subgroup of G and X be a proper G-space
admitting a global H-slice S. Then there is o compatible family of invariant
pseudometrics on X.

If in addition X is metrizable then there is a compatible invariant metric
on X.

PROOF. Let f: X — G/H be the G-map with S = f~1(eH). Choose a
neighborhood W of the point e € G/H that has compact closure in G/H.

Then the set U = f~1(W) is a small subset of X, i.e., each point z € X has
a neighborhood, thin relative to U. It then follows that

for any compact subset A C X the set
M) (A,U)={9€ G| gANU # 0} has compact closure in G.

Take a compatible uniformity W on X and let D = {d;} be the family of
all bounded pseudometrics on X that are uniformly continuous with respect
to the product uniformity on X x X. Then the sets of the form V(d;, ¢, x)

= {y € X |di(y,z) < 6} where d; € D, € > 0, x € X, constitute a base for
the original topology of X [13, Ch. 6, Theorem 19].
For every d; € D, we define
ri(z) =di(z, X \U), ze€X.
Then for any z,y € X, we have rj(z) — r;(y) < di(z,y), and hence
ri(z) +ri(2) = diz,y) + ri(y) +ri(z).
Therefore, if we write
/,Lz(lﬁ,y) :mln{dl(x,y), ’I“Z(iﬁ)-{-’f'z(y)}, £E,y€X

then it is obvious that u; is a pseudometric on X. Define
pi(w,y) = sup { pi(gz. gy) | g € G}.
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Clearly, p; is a G-invariant pseudometric on X. Show that the family
P = {p;i} is compatible with the topology of X. For, let {z,} be a net
in X converging to a point zy € X relative to the topology generated by P.
Take an arbitrary basic neighborhood V' (d;, e, zo) of zy in the original topol-
ogy of X. As G(U) = X, there is an element gy € G such that gozg € U. As
the map gal : X — X is continuous, there are d; € D and ¢ > 0 such that
V(d]7 57 90370) CU and gal (V(d]a 5a 90170)) - V(dla €, 270)'

The inclusion V(d;,d, gozo) C U implies that r;(gozg) = 0 > 0. Since
{zq} converges to zg in the topology generated by P, there is an index «p
such that p;(zqa,z0) < /2 for all 2 . As pj(goxa, goxo) S pj(xa,xo), We
see that 11;(go%a, goz) < d/2. Now, as rj(goza) + 7(g020) 2 7j(g0%0) = 9,
we infer that d;(goza,g0z0) < 6/2; so goza € V(dj,6/2,g0x0). Therefore
T € V(d;,e,10) for all @ = ag, showing that {z,} converges to z( relative
to the original topology of X.

Conversely, assume that a net {z,} C X converges to a point zy € X rela-
tive to the original topology of X, while {z, } does not converge to x; relative
to the topology generated by P. Then for some €y > 0 and for some pseudo-
metric p; € P there must be a subnet {y,} C {z,} such that p;(y,,z0) = €o
for all indices . Therefore 11;(g,Y~, gy%0) = €0/2 for a suitable net {g,} C G.
Consequently, r;(gyy,) +7i(g9y70) 2 €0/2, yielding that {g,} C (A,U), where
A={zo} U{y,}. As A is compact, it then follows from (1) that (A,U) has
a compact closure, and hence, {g,} contains a convergent subnet. Without
loss of generality we can assume that {g,} itself converges to a limit, say
g € G. Then by continuity of the action of G on X, the nets {g,z¢} and
{94y, } converge to the same limit gzo, which yields that there is an index
Yo such that d;(g,y,,9,20) < €0/2 whenever v 2 . This contradicts the
condition d;(gyYyy, gyT0) 2 pi(gyYy: 9yT0) 2= €0/2.

The proof of the second claim is still simpler.  [J

PrROOF OF THEOREM A. For each orbit G(a) C X we fix an H,-tubular
neighborhood W, of G(a) where H, is a compact subgroup of G; this is
possible by [2, Theorem 3.3]. Using the complete regularity of the orbit space
X/G [18, pp. 302-303], one can find an invariant neighborhood U, of G(a)
with U, C W,, and an invariant function ¢, : X — [0,1] such that G(a) C
¢z (1) and X \ Us C ¢, (0).

By Lemma, each W, admits a family {p;} of G-invariant pseudometrics,
generating the topology of W,. Without loss of generality one can assume
that all these pseudometrics are bounded by 1.
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Now we extend every pseudometric p; to the whole set X as follows:

sup | o (2)pi(z,t) — wa(y)pi(y, t)], if z,y€Ug;

teUq

pi(T,y) = 4 sup a(2)pi(w,1), if €U y¢Usg;
tel,
0, if 7,y U,.

It is easily seen that p; is a pseudometric on X. Its invariance follows
directly from the invariance of the pseudometric p; and of the function .
We will denote by R the totality of all pseudometrics p;, corresponding to
all the tubular neighborhoods W,,.

Let 7 be the original topology of X and 7 the topology generated by R.
We have to verify that 7 = 7. For the inclusion 7 C 7 it suffices to prove that
for every pseudometric p € R, every point b € X and every € > 0 there is a
neighborhood V' € 7 of b which is contained in the set O = {z € X | p(b, z)
<e}.

For, let p correspond to a tubular neighborhood W,, a € X. First, we as-
sume that b € U,. By continuity of the function ¢, and of the pseudometric
p, one can choose a neighborhood V' € 7 of b such that ‘ wq(b) — tpa(w)‘ <el4d
and p(b,z) < e/4 for all z € V. Then

| a(@)p(2,1) = 0a(b)p(b,1)] = | @a(b) = @a()] p(b,1) +@a ()] p(b,t) = p(z, 1)

Since p(b,t) <1, ¢(x) £ 1 and ‘p(b, t) —p(m,t)‘ < p(b,z), then for every
z € V we will have

| pa(@)p(,t) = @a(®)p(b t)] < |a(b) — pa(z)| + p(b,2) <e/d+e/d=2/2,

which implies that p;(b,z) < e. Hence, V' is as required.
If b € U, then p4(b) = 0. Again, by continuity of ¢, there is a neighbor-
hood S € 7 of b such that p,(z) < € for all x € V. Then

p(b,z) = sup pq(z)p(x,t) < @o(z) <e whenever z € V.
teUq

So, V C O.

Let us pass to the inclusion 7 C 7. For, let ) € 7 and a € () be an ar-
bitrary point. Consider the tubular set W, and its invariant open subset U,
above chosen. As @ NU, € 7, there are pseudometrics pg, k =1,...,n, cor-
responding to W, such that the set T' = {:1: e X |ppla,z) <e, k=1,... ,n}
is contained in ) N U,. Now, we observe that

pi(w,a) = sup | ga(2)pr(z,t) — wala)pr(a, )| 2 gala)pk(w,a) = pr(z, a).
teU,
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Hence the set T = {z € X |pyla,z) <e, k=1,...,n} is contained in T,
and hence, in ). Consequently, ¢ is an inner point of ) with respect of 7.
Thus @ € 7, proving that 7 C 7. O

A useful supplement to Theorem A provides the following standard

PROPOSITION 1. Let G be a group, X be a G-space and VW be a compat-
ible uniformity on X. Then the following are equivalent:
(1) The action of G on X is W-uniformly equicontinuous;
(2) W has a G-invariant base;
(3) W is generated by a family of G-invariant pseudometrics, uniformly
continuous on X x X.
Before passing to the proof, let us recall that if W is a compatible uni-
formity on a G-space X given by means of entourages of the diagonal of X
(see e.g., [13, Ch. 6]), then an action of G is said to be W-uniformly equicon-

tinuous if for every U € W there is a V € W such that (gz, gy) € U for all
(z,y) € V and g € G. A base B of W is said to be G-invariant whenever

V =G(V) for all V € B, where G(V) = { (92, 9y) | (z,y) €V, g€ G}.

PROOF. (1) = (2). For each UeW, let U= {(gz,9y) | (z,y) €U,
g € G}. Then B={U | U € W} is a G-invariant base of W.

(3) = (1) is immediate.

(2) = (3). Let B be a G-invariant base of W and let {d;} be the family
of all bounded pseudometrics, uniformly continuous on X x X. For every
z,y € X we define

di(z,y) = sup {di(g9z,9y) | g € G}.

Clearly, each d; is a G-invariant pseudometric and d;(z,y) < CZ(w,y) for all

z,y € X. So, it remains only to see that each d; is uniformly continuous
on X x X. For, let € >0. As d; is uniformly continuous, the entourage
Ui ={(z,y) € X x X | di(z,y) <e/2} belongs to W (see [13, Ch. 6, The-
orem 11]); hence, there exists a V € B with V' C U;. It then follows from
the G-invariance of V' that d;(gz, gy) < €/2 whenever (z,y) € V and g € G.

Therefore, Ji(x,y) <e/2 < e for all (z,y) € V, implying that the entourage
{(z,y) € X x X | di(z,y) < £} belongs to W. Hence, d; is uniformly con-
tinuous (see [13, Ch. 6, Theorem 11]). O

Consequently, it follows from Theorem A and Proposition 1 the following

COROLLARY 2. On each Palais proper G-space there exists a compatible
uniformity with a G-invariant base.

PROOF OF THEOREM B. The implication (1) = (2) follows from Stone’s
classical theorem on paracompactness of metrizable spaces.
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(3) = (1). If p is an invariant metric on the proper G-space X then the
function

p(G(2),G(y)) =inf{p(a’,y) | 2’ € G(z), ¢ € G(y)}

is a well-defined metric, compatible with the quotient topology of X/G (see
[18, Theorem 4.3.4] for details).

(2) = (3). By [2, Theorem 3.3], each orbit in X has a tubular neigh-
borhood, and hence, one can choose a tubular cover {W;} of X. Using the
paracompactness of the orbit space X/G and the openness of the orbit map
X — X/G, one can choose a partition of unity {¢; : X — [0,1]} such that
each ¢; is an invariant function with ¢, 1((0, 1]) C W;, and that the open
covering {Ui = <p;1 ( (0, 1]) } of X is locally finite. By the Lemma, each W;
and hence each U;, admits a G-invariant metric. According to [3, §3] then
there exists a G-embedding [; : U; — X; into a normed linear G-space Xj,
equipped with a linear and isometric action of G.

Consider the direct sum E; = R @ X; endowed with the norm H (t,z)H
= |t| + ||z||, where (t,2) € R @ X;. We make E; an isometric linear G-space
by letting G act on it according to the rule: g(t,2) = (¢,92); g € G. Now,
the map h; : U; — E; defined by h(z) = (1,5;(2)) /|| (1,4i(z)) ||, = € U; is
an equivariant embedding of U; in the unit sphere of F;. For each index i,
we set

vi(z)hi(z), if ze U,
fi(z) = { .
0, if ©eX\U.

One readily sees that f; is a G-map with X \ U; = f; *(0). Moreover, the
restriction fi|;, is an embedding. Indeed, it is clear that f;|;, is continuous
and injective. Let us check the continuity of the inverse map. For, let g
€ U; be a point, {zx} be a sequence in U; such that f;(zg) ~ fi(zo), ie.,
@i(wp)hi(xr) ~ @i(zo)hi(o). Then || @i(wx)hi(z)|| ~ ||@i(zo)hi(xo)| . But
¢i(zr) = || @i(zr)hi(zr)|| and gi(z0) = || i(o)hi(wo)||, because || hi(zy)|| =
H hi(mo)H = 1; so we get that ¢;(xx) ~ @;i(xo). This, in turn, together with
pi(zk)hi(Tk) ~ @i(zo)hi(zo) implies that h;(zx) ~ hi(zo). Since hily, is an
embedding, we conclude that z; ~» zy. This proves that the map (fz|UZ) -
is continuous as well, and hence, fi|Ui is an embedding.

Denote by E the subset of the product [[E; consisting of all points
v = (v;) such that v; # 0 only for finitely many indices i. Define a norm on
E by the following rule:

ol =Y Jloill, where v = (v;) € E.
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It is easily seen that E becomes a normed linear G-space if we define the
diagonal action of G on it. Furthermore, this action is also isometric.

Next, we consider the map f : X — E defined by f(z) = (f;(z)). Since
{U;} is a locally finite open covering of X, we infer that f is a well-defined
continuous map. Its equivariance follows from the equivariance of the maps
fi- We claim that f is an embedding. Indeed, let z,y € X and z # y. Choose
a tube U; € {U;} with z € U;. If y € U; then fj(z) # fj(y) as fj|Uj is in-
jective. If y € U; then f;(y) = 0, while f;(z) # 0. Thus f(z) # f(y) which
means that f is injective. Check that the map f: X — f(X) is open. For,
let @ be an open subset of X and = € ) be an arbitrary point. As above,
let U; € {U;} be a tube containing the point x. Since the restriction fj|Uj

is an embedding, we see that f;(Q NUj) is open in f;(U;). Choose 0 < ¢
< Hf](m)H such that f;(U;) N O(fj(x),e) C f;(Q NUj), where O(fj(m),e)
denotes the open e-ball in Ej, centered at the point f;(z).

We claim that f(X)NO( f(z),e) C f(Q), where O( f(z),¢) is the open
e-ball in E, centered at f(z). Indeed, let y € X be such that H fly) — f(ac)H

< e. Then Hfj(y) — fj(a:)H < Hf(y) — f(:L‘)H < ¢, and therefore f;(y) # 0,
which is equivalent to y € U;. Hence f;(y) € f;(U;) NO( f;(z),€)), yielding
that f;(y) € fj(Q NUj). Since f; is injective on U;, we conclude that then
y € UjNQ. Consequently f(y) € f(Q), and hence, f(X)nN O(f(a:),e) C
f(Q). This gives that f(z) is an interior point of f(Q) in f(X), and hence,
f(Q) is open in f(X). Thus, f is a homeomorphism of X onto f(X). It re-
mains only to observe that the metric on X induced from E is the required
one. O

PROPOSITION 2. Let G be an almost connected group and X be a lo-
cally Lindeldff, paracompact proper G-space. Then the orbit space X/G is
paracompact.

PrROOF. 1. First, we consider the case of a connected group G. As it is
observed in [11, Proposition 13], X is a discrete sum of its open-closed Lin-
deloff subsets X,. By connectedness of G all the orbits in X are connected;
hence, each X, is invariant in X. Therefore, X/G = @(X,/G), the discrete
sum. Since X, is also a proper G-space, by [18, Proposition 1.2.8] the or-
bit space X, /G is completely regular. Therefore X, /G, being a continuous
image of a Lindeloff space, is itself Lindeloff [9, Theorem 3.8.6]. Since ev-
ery regular Lindel6ff space is paracompact [9, Theorem 5.1.2], the result now
follows from [9, Theorem 5.1.30].

2. Let G be almost connected, i.e., the factor group G /Gy is compact,
where Gy is the connected component of the identity of G. Since X can
be regarded as a proper Gy-space (with the induced action), the orbit space
X/G is paracompact by Case 1. As G/Gy is compact, the G/Gy-orbit map

X/Gy— X/G = g;gg is perfect. Consequently, by Michael’s Theorem the
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X/Gy .
GGy It remains

paracompactness of X /Gy yields the paracompactness of

only to observe that the two orbit spaces X/G and g;gg are naturally home-

omorphic. [l

PROOF OF COROLLARY 1. If GG is almost connected then by Proposition
2, X/@ is paracompact. If G is separable then each orbit G(z) in X, being a
continuous image of G, is itself separable. Since the orbit map X — X/G is
open, it then follows from a result of A. H. Stone [19] that X/G is metrizable.
Thus, in both cases the orbit space X/G is paracompact. The result now
follows from Theorem B.

In connection with Theorem B and Proposition 2, it is worthy to men-
tion here an unsolved conjecture due to O. Hajek [11] (the case G = R) and
H. Abels [1] (the general case) to the effect that the orbit space X/G of any
paracompact proper G-space X is paracompact provided G is connected. In
fact, all the difficulty here lies in the normality of the orbit space. Namely,
we have

PROPOSITION 3. The following are equivalent:
(1) For each paracompact proper G-space X the orbit space X/G is para-
compact.
(2) For each paracompact proper G-space X the orbit space X/G is nor-
mal.

PROOF. One need to prove the implication (2) = (1) only. Let X be
a paracompact proper G-space. By Tamano’s theorem [9, Theorem 5.1.39],
it suffices to show that for every compact space Y, the product (X/G) x Y
is normal. To this end, we consider the G-space X x Y, letting G act on
it by g(z,y) = (9z,y). Then X x Y is a proper G-space [18, Proposition
1.3.3]; besides, it is paracompact [9, Theorem 5.1.36]. Consequently, by the
hypothesis, the orbit space (X x Y)/G is normal. It remains only to observe
that (X/G) xY =(X xY)/G. O
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