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PERIODIC-RECURRENT PROPERTY OF SOME CONTINUA

JANUSZ J. CHARATONIK AND WLODZIMIERZ J. CHARATONIK

The equality between the closures of the sets of periodic and of recurrent points
(called the periodic-recurrent property) is extended from mappings of a tree to
mappings defined on a A-dendroid obtained as a compactification of the,comple-
ment of a finite subset of a tree provided that the components of the remainder
have the same finite depth and each has the periodic-recurrent property.

1. INTRODUCTION

Let X be a topological space. Throughout this paper / : X —> X is assumed to be
a continuous mapping of X into itself. We denote by N the set of all positive integers,
and by R the set of reals. For any m € N let fm : X —> X denote the m-th iteration
of / . A point x of X is said to be:

a periodic point of / provided that there is m € N such that fm(x) = x;

a recurrent point of / provided that for every neighbourhood U of x
there is m € N such that fm(x) e U.

The sets of periodic points, and of recurrent points of a mapping / : X —> X will
be denoted by P(f) and R(f) respectively. Thus we have

(i.iy p(f) c R(f) c x.

DEFINITION 1.2: A space X is said to have the periodic-recurrent property (shortly
PR-property) provided that for every mapping / : X —> X the equality

(1.3) clP(f)=c\R(f).

holds.

Coven and Hedlund proved in [3] that the closed unit interval has the PR-property.
The result has been extended to mappings on trees by Ye in [9].
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THEOREM 1 .4 . (Ye) Every tree has the PR-property.

Recently Kato in [7] has shown that this theorem cannot be generalised to den-
drites. Note that dendrites form a class of acyclic curves which are the nearest (in a
sense) to trees because of arcwise connectedness. His method can also be applied to
show that the Cantor fan, that is, the cone over the Cantor set, also does not have the
PR-property, [2, Theorem 3.10]. These facts directed our study of the class of continua
having the PR-property to acyclic but not arcwise connected curves. The simplest
example of such continua is the sin (1 /x) -curve

(1.5) 5 = {(0, y) e R2 : y € [-1,1]} U {(x, sin (l/x)) € K2 : x € (0,1]}.

Thus, a question whether the sin (l/x)-curve S has the PR-property was the
starting point in our efforts to extend the result of Ye (Theorem 1.4) to more general
classes of continua. Other results of Ye concerning dynamics of continuous functions
on continua were also related to this particular curve. Let us recall that if / is a
homeomorphism of a hereditarily decomposable chainable continuum X having finite
depth (in the sense of Iliadis [6]), then equality (1.3) holds (even without taking closures,
that is, P(f) = R(f)), see [10, Corollary 3.5, p.92], where the term "Order" is used in
the sense of depth. Our study goes further in this direction. Namely the PR-property
is shown for each hereditarily decomposable and hereditarily unicoherent continuum
X having finite depth which is obtained from a tree T by replacing a finite number
of its points qi, • • • ,qn of T by some continua Qi, • • •,Qn of the same depth, each of
which also has the PR-property. The replacment is made so that the union lJ{Qi :
i € { 1 , . . . , n}} is the remainder in a compactification of T \ {qi,...,qn}. As a very
particular consequence of this result it follows that the sin (l/x)-curve has the PR-
property.

To present details of the construction of continua X and of the proof of the main
result, that is, of equality (1.3), we have to recall some preliminary concepts and asser-
tions. They are contained in the next section.

2. PRELIMINARIES

All spaces considered in this paper are assumed to be metric and separable. By
a continuum we mean a compact connected space. For a continuum X the symbol
C{X) stands for the family of all (nonempty) subcontinua of X, and F\(X) denotes
the family of singletons of X. A locally connected continuum containing no simple
closed curve is called a dendrite. A tree means a one-dimensional compact connected
acyclic polyhedron. Thus every tree is a dendrite, but not conversely.

Recall that a continuum X is said to be

hereditarily unicoherent provided that the intersection of any two subcon-
tinua of X is connected;
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hereditarily decomposable provided that every subcontinuum of X is the
union of two of its proper subcontinua;
a X-dendroid if it is hereditarily unicoherent and hereditarily decompos-
able.

Given a A-dendroid X we denote by V(X) the family of all subcontinua 5 of
X such that for each finite cover of X the elements of which are subcontinua of X,
the continuum S is contained in a member of the cover. A (transfinite) well-ordered
sequence (indexed with ordinals a) of nondegenerate subcontinua Xa of a A-dendroid
X is said to be normal provided that the following conditions are satisfied:

(2.1) X, = X;

(2.2) Xa+1 € V(Xa);

(2.3) Xp = f]{Xa :a</3} for each limit ordinal /?.

The depth k(X) of a A-dendroid X is defined as the minimum ordinal number r) such
that the order type of each normal sequence of subcontinua of X is not greater than rj.
The reader is referred to [6] and [8] for additional information related to this concept.
The following three important statements concerning the depth will be needed in the
present paper. For their proofs see [6, Theorems 1, 2 and 3, p.94-95].

STATEMENT 2.4. For every two A-dendroids X and Y, if Y C X then k(Y) ^ k{X).

STATEMENT 2.5. A A-dendroid X is locally connected (that is, it is a dendrite) if and
only if k{X) = 1.

STATEMENT 2.6. If a A-dendroid Y is a continuous image of a A-dendroid X, then
k(Y) ^k(X).

3. THE CONSTRUCTION

A subcontinuum Q of a continuum X is said to be terminal provided that for every
subcontinuum K of X, if K f\Q / 0 then either K c Q or Q c K. Aarts and van
Emde Boas have proved [1, Theorem, p.35] that if X is a locally compact, noncompact
metric space, then each continuum is a remainder of X in some compactification of X.
The proof given in [1] let us formulate the result in an even stronger form, needed for
our purposes.

THEOREM 3 . 1 . (Aarts and van Emde Boas) If X is a locally compact, noncom-
pact metric space, then each continuum is a remainder of X in some compactification
of X as a terminal subcontinuum of the compactification.

Let a tree T and points q\,..., qn of T be given for some positive integer n.
Let Qi, • •. ,Qn be continua. Choose in T closed connected and mutually disjoint
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neighbourhoods U\,..., Un of points q\,..., qn. Then for each i S { 1 , . . . , n) the sets
Ui \ {qi} are locally compact and noncompact. Thus applying Theorem 3.1 to each of
them we construct in a standard way a compactification

(3.2) 7 :
such that:

(3.3) X = cl7(T \ {gi, • . . , qn}) is a continuum;
(3.4) the remainder X\j(T \{qi,..., qn}) consists of n components Qx,..., Qn;
(3.5) for each index i 6 { l , . . . , n} the continuum Qi is a terminal subcontin-

uum of X.

The following observation is a consequence of the definitions.

OBSERVATION 3.6. If the inserted continua Qi are A-dendroids, then the resulting

continuum X defined by (3.2)-(3.5) is a A-dendroid, too.

Thus the concept of the depth k(X) is well-defined for such X (and for all sub-

continua of X). The following proposition concerns the depth of some subcontinua of

a continuum X constructed in the above way.

THEOREM 3 . 7 . Let a tree T and points qi, • • • ,qn ofT be given for some n 6 N.
Take a compactification 7 as in (3.2) satisfying conditions (3.3)~(3.5) with some X-

dendroids Qi, • • •, Qn such that

(3.8) the depth k(Qi) is finite for each i € { 1 , . . . , n} .

Define the continuum X as above by (3.2)-(3.5), and let Y be a nondegenerate sub-

continuum of X such that, for some i £ { 1 , . . . , n}

(3.9)

Then

(3.10)

PROOF: Terminally of the subcontinua Qi of X (see condition (3.5)) implies by
(3.9) that Qi C Y. Therefore, for each finite cover of Y whose elements are subcontinua
of Y, the continuum Qi is contained in some element of the cover. Thus the family
V(Y) (see the definition of depth in the previous section) consists of the continua Qj
intersecting Y (thus contained in Y by their terminality) and of their subcontinua;
consequently, for each normal sequence in Y we have Y\ = Y and

Y2 e \J{C(Qj) \ FtiQj) : j € {1,. . . , n} with Qj n Y ± 0},

while each normal sequence in Qi starts with Qi and has its second term in C(Qi) \
(Fi(Qi) U {Qi}), and thus the number of its terms is less by one than that of the
corresponding normal sequence in 7 . So (3.10) follows by (3.8) and by the definition
of the depth. The proof is complete. D
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4. M A P P I N G S

This section plays an auxiliary role for proving main results contained in the next
one. We start with the following proposition.

PROPOSITION 4 . 1 . Let f : X —• X be a mapping of a continuum X into

itself. Then there exists exactly one subcontinuum M(X, f) of X such that

(4.2) f\M(X, / ) : M(X, /) -> M(X, /) is a surjection;

(4.3) P(f) = P(f\M(X,f)) and R(f) = R(f\M(XJ));
(4.4) M(X, f) is a maximal subcontinuum of X satisfying (4.2).

PROOF: Define M(X,f) = f]{fm(X) : m 6 N}. Then M(X,f) is a continuum
as the intersection of an decreasing sequence of continua, and it satisfies conditions
(4.2)-(4.4). D

Therefore, when investigating mappings from a continuum X into itself we see
that the whole dynamics for / is on M(X, f), and thus we have the following corollary
to Proposition 4.1.

COROLLARY 4 . 5 . When studying dynamics of a mapping f : X -> X defined
on a continuum X we can assume without loss of generality that the mapping f is a
surjection.

Given a compact space X, we denote by N(X) the set of points of X at which

X is not locally connected. The following result is known (see [4, (3), p-28]).

THEOREM 4 . 6 . (Engelking and Lelek) If f is a mapping of a compact space X,

then
N(f(X)) c f(N(X)).

Let a tree T and points qi,..., qn of T be given for some n S N. Let Qi,..., Qn

be continua. Take a compactification 7 as in (3.2) satisfying conditions (3.3)-(3.5) and
define the continuum X as previously by (3.2)-(3.5). Note that

(4.7)

Thus Theorem 4.6 implies the following assertion.

PROPOSITION 4 . 8 . If a continuum X is defined by conditions (3.2)-(3.5) and

if a mapping f : X —> X is a surjection, then

(4.9) \JiQi : t e { l , . ...n}} C f(jJ{Qi : i e {1,...,»}}).

PROPOSITION 4 . 1 0 . If the X-dendroid X is defined by conditions (3.2)-(3.5),
if all continua Qi have the same finite depth, that is, if

(4.11) there is d € N such that for each i € { 1 , . . . , n} we have k(Qi) = d,
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and if the mapping f : X —>• X is a, surjection, then

(4.12) there are no indices i,j£{l,...,n} such that f(Qi) tlQj ^ 0 / f(Qi) D

(X\Qj).

Further,

(4.13) there is no index i £ { l , . . . , n} such that f(Qi) C X \ \J{Qj : j £

{1, . . . ,«}} .

PROOF: Suppose on the contrary that there are some indices i and j with (4.12).
Then in applying Theorem 3.7 we can take f(Qi) for Y in (3.9), and we get k(f{Qi)) ^
1 + k(Qj) by (3.10). Since k(Qi) ^ k(f{Qi)) by Statement 2.6, the two inequalities
lead by (4.11) to d > 1 + d, a contradiction. To show the rest of the conclusion we
suppose that there is an index i satisfying (4.13), and without loss of generality we can
take i = l . Then applying Proposition 4.8 we have by (4.9)

\J{Qj : j £ { 1 , . . . , n}} C (J{ / (Q0 : i G {2, • • •, n}}.

So we see that n — 1 continua f(Qi) have to cover n continua Qj , and thus one of the

continua f(Qi) has to intersect at least two distinct continua Qj, which is impossible

by (4.12). The proof is complete. D

COROLLARY 4 . 1 4 . Let the \-dendroid X be defined by conditions (3.2)-(3.5)
with (4.11). If the mapping f : X —> X is a surjection, then

(4.15) for each i £ { 1 , . . . , n} there exists j £ { 1 , . . . , n} such that f(Qi) — Qj .

Furthermore, the correspondence between indices i and j of (4.15) is one-to-one and

it maps { 1 , . . . , n} onto itself.

PROOF: Take arbitrary f(Qi) and observe that it intersects some Qj by (4.13) of
Proposition 4.10, but it cannot intersect the complement of f(Qj) by (4.12). Thus

(4.16) f(Qi) c Qj.

We claim that

(4.17) there are no indices i\, ii £ { 1 , . . . , n} such that

f(Qn) nQj^®^ f(Qi2) n Qj for some j £ {1, . . . , n}.

Indeed, if such indices ii,i2 and j existed, then f{Qi1)Uf(Qi2) C Qj by (4.16),
and since all Qi's have to be covered by their images according to inclusion (4.9)
of Proposition 4.8, we would have \J{Qi : i £ { l , . . . , n} \ {j}} C \J{f(Q,) • i £
{ l , . . . , n} \ {ii,i2}}, so ra — 1 continua Qj have to be covered by n - 2 continua
/(Qj), and consequently one of /(Qi) must intersect at least two distinct continua Qj,
which again is impossible by (4.12). Thus (4.17) is shown. Now (4.16) and (4.17) lead
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to f(Qi) = Qj by (4.9). So (4.15) holds. Finally, (4.9) and (4.17) imply t ha t the

correspondence is bo th surjective and one-to one. The proof is complete. D

Corollary 4.14 can be reformulated in the following form.

4 . 1 8 . COROLLARY. Let the X-dendroid X be defined by conditions (3.2)-

(3.5) with (4.11). Then each surjective mapping f : X —> X permutes the continua Qi

for i G {1,.. . , n} .

Since T\{qi,..., qn} has finitely many components that correspond in a one-to-one
way to components of X\[J{Qi : i € {1 , . . . , n}} (which coincide with arc components),
Corollary 4.18 implies the next one.

COROLLARY 4 . 1 9 . Let the X-dendroid X be defined by conditions (3.2)-(3.5)
with (4.11). Then each surjective mapping f : X —> X permutes the components of
the set X \ \J{Qi : i € { 1 , . . . , n}}, and consequently we have

(4.20) f(x\ \J{Qi : * € { ! , . . . , n}}) - X\ {J{Qi : i e { l n}}.

5. PERIODIC-RECURRENT PROPERTY

As in the previous sections we consider a A-dendroid X obtained from a tree T by
replacing n of its points qi, • • • ,qn by A-dendroids Qi,..., Qn of the same finite depth
d (see condition (4.11)) in such a way that they are components of the remainder under
a compactification 7 (see (3.2)-(3.5)). For shortness, we put

(5.1) H =
Let p : X —> T be the natural projection, that is, a mapping such that p(Qi) = {qi}

for each i £ {l , . . . ,n} and p\H = 7"1 : H -> (T \ {qi,..., qn}) is a one-to-one
mapping. Thus p\H is a homeomorphism. Define a mapping g : T —̂  T as follows. For
each «€{ l , . . . , n} let #(<&) = p{f(p~l{qi))), and g(t) =p(/(p- 1(*))) for each point
t € T\ {q\, •.. ,qn}. Since / permutes the continua Qi according to Corollary 4.18,
g is well-defined, and its continuity is a consequence of the definition. Moreover, also
by the definition of g, we have p(f(x)) = g(p(x)) for each point x € X, that is, the
following diagram commutes.

X —f—\ X

(5.2) p | | p

T —9-^t T

Commutativity of diagram (5.2) implies (using a simple induction argument) that, for
each positive integer m, the diagram below commutes, too.
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(5.3)

m

T ——>• T
Moreover, by Corollaries 4.18 and 4.19 we have

fm(\J{Qi:ie{l,...,n}})=\J{Qi:ie{l,...,n}} and fm(H) = H.

PROPOSITION 5 . 4 . For each point x £ H we have the equivalences:

(5.5) x G P(f) is equivaient to p(x) G P{g);
(5.6) x G R(f) is equivaient to p{x) G R(g).

PROOF: We start by showing (5.6). Let x G R(f), and let U be an open neigh-
bourhood of p(x) in T. Thus there is m e N such that fm{x) G p " 1 ^ ) - So>
p(fm{x)) G p(p~1(f/)) = E/. Since by commutativity of diagram (5.3) we have
p o fm = gm op, it follows that gm(p(x)) G U, which shows one implication. Now
let p(x) G R{g), and let V be an open neighbourhood of x in X. Since H is open
in X by its definition, and since the partial mapping p\H : H -> T \ {gi,.. . , <?„} is a
homeomorphism, p(y n 7/) is an open neighbourhood of p(x). Thus by the assumption
there is m G N such that gm{p(x)) G p(V D i /) . Since gm op = po fm as previously,
we have p(/m(x)) G p(V n i?), whence p " 1 ^ / " 1 ^ ) ) ) e P " H P ( ^

 n #) ) = ^ n ^ C V,
and so fm(x) G V, that is, x G -R(/)- Equivalence (5.6) is shown.

To prove (5.5) we proceed analogously, omitting the consideration of neighbour-
hoods. Details are left to the reader. The proof is complete. D

Now we are ready to show the main result of the paper.

5 . 7 . THEOREM. Let the X-dendroid X be obtained from a tree T by replacing
n of its points q\,...,qn by X-dendroids Qi,..., Qn of the same finite depth (4.11)
using a compactification 7 with (3.2)-(3.5). If

(5.8) all continua Qi have the PR-property,

then X has the PR-property, too.

PROOF: Let the mapping / : X —> X be given. Consider the continuum M(X, f)
as in Proposition 4.1. If M(X, f) is contained in some Qi, then the conclusion follows
from assumption (5.8). Otherwise the continuum M(X, f) satisfies all the assumptions
on X, so we can assume that / is a surjection. According to Definition 1.2 and inclusion
(1.1) we have to show that
(5.9) c l i?( / )CclF(/) .

So, take x G cli?(/) and a sequence of points Xk of R(f) tending to x, and consider
three cases.
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C A S E 1. x £ H. Since H is an open subset of X, we may assume Xk € H for

each k € N . By applying equivalence (5.6) of Proposition 5.4, we get p(xjt) £ R(g)-

Hence p(x) € c l i J (^ ) . Since the tree T has the PR-proper ty (Theorem 1.4) we have

p(x) £ c\P(g). Since x £ H implies p{x) € /y~1(H) = T\{qi,.. .,qn} (which is an open

subset of T), there is a sequence of points tk £ (T \ {qi,..., qn})<^P(g) tending to p{x).
By applying equivalence (5.5) of Proposition 5.4, we see that p~l{tk) £ P(f)- Since
p\H is a homeomorphism, the sequence {p~1{tk)} tends to p~l{p{x)) — x, thereby
x £ c l P ( / ) .

CASE 2. x £ Qi and all Xk £ Qi for some i € { l , . . . , n } . By Corollary 4.18 there
is m £ N such that fm(Qi) = Qi- Since the condition Xk € -R(/) is equivalent
to the condition Xk £ R(fm) for each m € N (see [5, Theorem I, p.126]), we get
xk e -R(/m|Qi) C clR(fm\Qi), which implies that xfc € clP(/m|<5i), by assumption
(5.8). Consequently, x e clP(/m|Qi) C clP(/) .

CASE 3. a; € Qi for some i € { l , . . . , n } , and all xk £ H. As previously we take
m e N such that fm(Qi) = Qi, and again we have xk £ R(fm) by Theorem I of [5,
p.126], whence we infer by (5.6) of Proposition 5.4 that p(xk) € R{gm) C cl.R(#m). By
applying the PR-property for T (Theorem 1.4) we see that p(xk) £ c\P(gm). Thus
for each k £ N there is a sequence {xk{r)\ of points of H such that xk = lim Xfc(r)

r—• ex)

and p(xfc(r)) £ P(gm) • By equivalence (5.5) of Proposition 5.4, we get xk(r) £ P(fm) •
Thus re* € clP(/m) for each k £ N, and consequently x £ clP(/m) C clP(/) .

Therefore inclusion (5.9) is shown, and thus X has the PR-property. The proof is
then complete. D

COROLLARY 5 . 1 0 . The sin (l/x)-curve 5 defined by (1.5) has the PR-property.

QUESTION 5.11. Is the assumption (4.11) that all inserted continua Qi are of the same
(finite) depth essential in Theorem 5.7?

QUESTION 5.12. Can Theorem 5.7 be generalised to A-dendroids X in which the depth
of some inserted continua Qi is infinite?

QUESTION 5.13. Is the condition that the number n of the continua Qi is finite an es-
sential assumption in Theorem 5.7? Under what conditions can the result be generalised
to A-dendroids X in which the number of continua Qi is countable?

As a particular case of the above question we have the following.

QUESTION 5.14. Can Theorem 5.7 be extended to some continua X obtained as com-
pactifications of complements of closed countable subsets of trees?

All of the above questions are very particular cases of more general problems, which
can be treated as a research program in the area, and which (at the present moment)
seem to be rather far from any final solution.
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PROBLEM 5.15. What A-dendroids have the PR-property?

PROBLEM 5.16. Let an upper semicontinuous decomposition V of a continuum X into
continua (possibly degenerate) be given. Consider the following three conditions:
(5.17) the continuum X has the PR-property;
(5.18) all (or some) members of the decomposition T> have the PR-property;
(5.19) the decomposition space X/V has the PR-property.
What are interrelations between these conditions?

In particular, the following question is related to Theorem 5.7 and is especially
interesting.

QUESTION 5.20. Under what assumptions do conditions (5.18) and (5.19) imply (5.17)?
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