DSpace About DSpace Software
 

Repositorio Atenea de la Facultad de Ciencias, UNAM >
Repositorio Ciencias >
FACULTAD DE CIENCIAS >
Ciencias >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11154/1639

Title: Period and phase control in a multioscillatory circadian system (Iguana iguana)
Authors: Bartell, PA
Miranda-Anaya, M
Menaker, M
Issue Date: 2004
Abstract: The circadian system of the lizard Iguana iguana is composed of several independent pacemakers that work in concert: the pineal gland, retinae of the lateral eyes, and a fourth oscillator presumed to be located in the hypothalamus. These pacemakers govern the circadian expression of multiple behaviors and physiological processes, including rhythms in locomotor activity, endogenous body temperature, electroretinogram, and melatonin synthesis. The numerous, easily measurable rhythmic outputs make the iguana an ideal organism for examining the contributions of individual oscillators and their interactions in governing the expression of overt circadian rhythms. The authors have examined the effects of pinealectomy and enucleation on the endogenous body temperature rhythm (BTR) and locomotor activity rhythm (LAR) of juvenile iguanas at constant temperature both in LD cycles and in constant darkness (DID). They measured the periods (tau) of the circadian rhythms of LAR and BTR, the phase relationships between them in DID (Psi(AT)), and the phase relationship between each rhythm and the light cycle (Psi(RL)). Pinealectomy lengthened tau of locomotor activity in all animals tested and abolished the BTR in two-thirds of the animals. In those animals in which the BTR did persist following pinealectomy tau lengthened to the same extent as that of locomotor activity. Pinealectomy also delayed the onset of activity with respect to its normal phase relationship with body temperature in DD. Enucleation alone had no significant effect on tau of LAR or BTR
however, after enucleation, BTR became 180 degrees out of phase from LAR in DID. After both pinealectomy and enucleation, 4 of 16 animals became arrhythmic in both activity and body temperature. Their data suggest that rhythmicity, period, and phase of overt circadian behaviors are regulated through the combined output of multiple endogenous circadian oscillators.
URI: http://hdl.handle.net/11154/1639
ISSN: 0748-7304
Appears in Collections:Ciencias

Files in This Item:

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback