DSpace About DSpace Software
 

Repositorio Atenea de la Facultad de Ciencias, UNAM >
Repositorio Ciencias >
FACULTAD DE CIENCIAS >
Ciencias >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11154/2086

Title: Effect of mesophilic microorganisms on the electrochemical behavior of galena
Authors: Blazquez, ML
Ballester-Pérez, A
González-Chavez, JL
González, F
Issue Date: 2000
Abstract: In recent years, the bioleaching of sulfidic raw materials has been of great interest. However, the application of this biotechnology, is now very limited for many different complex reasons. The mechanism of the chemical and electrochemical reactions taking part in the process is not well understood The application of electrochemical techniques is useful in its elucidation. Among the common sulfides, galena has been studied very little with respect to its behavior during bioleaching. Therefore, the electrochemical evolution of massive electrodes of lead sulfide in the presence and absence of a mixed culture of mesophilic microorganisms was investigated by the application of potentiometry, anodic and cathodic polarization and cyclic voltammetry. The agitation rate, the use of pH control and the composition of the nutrient mediums did not have any significant affects on the oxidation of galena. However, the temperature (25 degrees to 45 degrees C), the scan rate (4 to 100 mV/s) and the acid used to adjust the pH were significant variables that influenced sulfide oxidation. Therefore, the peak (600 to 1,000 mV) corresponding to the oxidation of sulfide ions from the mineral was only detected ill the presence of a complexing anion of lead In the presence of bacteria, the peaks corresponding to galena oxidation decreased and, at the same time, new peaks appeared both during the oxidation at -300 mV and during the reduction of the mineral surface at 150 and -300 mV. These signals were more important,when the attack time increased The rest potential of bioleached mineral increased with an increase ill leaching time, which I was related to the electrochemical transformation of the galena surface.
URI: http://hdl.handle.net/11154/2086
ISSN: 0747-9182
Appears in Collections:Ciencias

Files in This Item:

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback