DSpace About DSpace Software
 

Repositorio Atenea de la Facultad de Ciencias, UNAM >
Repositorio Ciencias >
FACULTAD DE CIENCIAS >
Matemáticas >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11154/3052

Title: ANALYSIS OF AN AUTONOMOUS PHASE MODEL FOR NEURONAL PARABOLIC BURSTING
Authors: RINZEL, J
CARRILLO, H
Baer, SM
Issue Date: 1995
Abstract: An understanding of the nonlinear dynamics of bursting is fundamental in unraveling structure-function relations in nerve and secretory tissue. Bursting is characterized by alternations between phases of rapid spiking and slowly varying potential. A simple phase model is developed to study endogenous parabolic bursting, a class of burst activity observed experimentally in excitable membrane. The phase model is motivated by Rinzel and Lee's dissection of a model for neuronal parabolic bursting (J. Math. Biol. 25, 653-675 (1987)). Rapid spiking is represented canonically by a one-variable phase equation that is coupled bi-directionally to a two-variable slow system, The model is analyzed in the slow-variable phase plane? using quasi steady-state assumptions and formal averaging, We derive a reduced system to explore where the full model exhibits bursting, steady-states, continuous and modulated spiking. The relative speed of activation and inactivation of the slow variables strongly influences the burst pattern as well as other dynamics. We find conditions of the bistability of solutions between continuous spiking and bursting. Although the phase model is simple, we demonstrate that it captures many dynamical features of more complex biophysical models.
URI: http://hdl.handle.net/11154/3052
ISSN: 0303-6812
Appears in Collections:Matemáticas

Files in This Item:

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback