DSpace About DSpace Software
 

Repositorio Atenea de la Facultad de Ciencias, UNAM >
Repositorio Ciencias >
FACULTAD DE CIENCIAS >
Física >

Please use this identifier to cite or link to this item: http://hdl.handle.net/11154/3348

Title: Quantum statistical derivation of the Ginzburg-Landau equation. Energy gap, condensed pairon density and penetration depth
Authors: Fujita, S
Godoy, S
Issue Date: 1998
Abstract: The Cooper pair (pairon) field operator psi(dagger) (r, t) changes, following Heisenberg's equation of motion. If the Hamiltonian H contains pairon kinetic energies h(0), a condensation energy alpha(< 0) and a repulsive point-like interpairon interaction beta delta(r(1) - r(2)), beta > 0, the evolution equation for psi is nonlinear, from which we obtain the Ginzburg-Landau (GL) equation: h(0)(r -i (h) over bar del)Psi(sigma)(r)+alpha Psi(sigma)(r)+beta \Psi(sigma)(r)\(2) Psi(sigma)(r)=0 for the GL wave function Psi(sigma)(r)drop(r \ n(1/2) \sigma), where a denotes the state of the condensed pairons, and n the density operator. The GL equation with alpha = -epsilon g(T) is shown to hold for all temperatures (T) below T-c, where epsilon(g) is the pairon energy gap. Its equilibrium solution yields that the condensed pairon density n(0)(T) = \Psi(sigma)(r)\(2) is proportional to epsilon(g)(T) The original GL T-dependence of the expansion parameters near T-c : alpha = -b(T-c-T), beta = constant is justified. With the assumption of h(0), a new formula for the penetration depth is obtained.
URI: http://hdl.handle.net/11154/3348
ISSN: 0217-9792
Appears in Collections:Física

Files in This Item:

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback