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Abstract

We characterize the Radon–Nikodým property of a Banach space X in terms of the existence of non-
tangential limits of X -valued harmonic functions u defined in a domain D ⊂ R

n, n > 2, with Lipschitz
boundary and belonging to maximal Hardy spaces. This extends the same result previously known for the
unit disk of C. We also prove an atomic decomposition of the Borel X -valued measures in ∂D that arise as
boundary limits of X -valued harmonic functions whose non-tangential maximal function is integrable with
respect to harmonic measure of ∂D.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we study some aspects of the theory of Hardy spaces of harmonic functions on
Lipschitz domains taking values in a Banach space. We first consider the existence of boundary
values of harmonic functions taking values in the Banach space X , and relate this property with
the geometry of X . More precisely, if we consider Hardy spaces H

p

X (D) of harmonic functions
u :D → X defined on a starlike Lipschitz domain D ⊂ R

n, n > 2, with center Ξ and surface
measure σ (the definition will be given in the next section), we want to relate the existence of
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non-tangential pointwise limits of u with the Radon–Nikodým property of X . This generalizes
well-known results in [1,3,11] when D is the unit disk in C. The second part of this paper is
devoted to prove an atomic decomposition of the boundary ‘distributions’ of functions u in the
class H 1

X (D). This decomposition is proved under no assumption on the underlying Banach
space X , and in particular is a more general result than the one in [2], where it is assumed that X
has the Radon–Nykodým property. In fact, under this assumption on X , the atoms we consider
here are reduced to those in [2].

A technical difference is that, since we consider n-dimensional Lipschitz domains D, with
n > 2, we rely on tools to represent harmonic functions, different to those used in the mentioned
papers (e.g. Poisson integrals or Fourier series). One way to represent real-valued harmonic func-
tions is by means of the harmonic measure. This is really a family of probability measures ωX

for X ∈ D, that may be obtained via the Riesz representation theorem applied to the operator
f �→ uf (X), where uf is the Perron–Wiener–Brelot solution of the Dirichlet problem{

Δuf = 0 on D,

uf = f on ∂D,
(1)

and where f is continuous on ∂D. This leads to the representation

u(X) =
∫

∂D

f (Y )dωX(Y ).

It is well known from Harnack’s principle, that all the measures ωX,X ∈ D, are absolutely
continuous with respect to ω ≡ ωΞ , where Ξ is the center of D. We will call ω the harmonic
measure of ∂D. By fundamental results from [6] and [7], the measures ω and σ are mutually
absolutely continuous in the A∞ sense (see e.g. [10]). The above representation can be replaced
by the following equivalent expression

uf (X) =
∫

∂D

f (Y )K(X,Y )dω(Y ),

where K(X,Y ) is the Radon–Nikodým derivative (dωX/dω)(Y ), and it is called the kernel func-
tion. We refer the reader to [4,13,15,16] for its basic properties, some extensions and its use in
the scalar theory.

The first theorem of this paper extends a well-known characterization of the Radon–Nikodým
property of the Banach space X (cf. [3]) which we describe now. A Banach space X has the
Radon–Nikodým property (X ∈ RNP), if for every probability space (Ω,Σ,λ), and every λ-
continuous measure μ defined on Σ with values in X , one can find a Bochner λ-integrable func-
tion f : Ω → X , such that μ(E) = ∫

E
f dλ for every E ∈ Σ . We recall that μ is λ-continuous

if μ(E) = 0 whenever λ(E) = 0, E ⊆ ∂D a Borel set. Also recall that the Radon–Nikodým
property is independent of the (non-atomic) probability space (Ω,Σ,λ) [5, Theorem 2], so we
may consider the Radon–Nikodým property with respect to ω in the Borel σ -algebra of ∂D. We
refer the reader to [8] or [9] for the terminology of vector measures and further results on the
Radon–Nikodým property.

The non-tangential maximal function of u :D → X is defined as u∗(Q) = sup{u(X):
x ∈ 
α(Q)}. Here, the non-tangential region 
α(P ) at P ∈ ∂D is defined as the cone with ver-
tex P , aperture α > 0, with principal axis pointing in the radial direction, and truncated at height
|P − Ξ |. The aperture α > 0 depends only on the Lipschitz character of D, and it is chosen



390 S. Pérez-Esteva, J. Rivera-Noriega / J. Math. Anal. Appl. 330 (2007) 388–405
so that 
α(P ) is always properly contained in D. Given a positive Borel measure λ and p � 1,

L
p

X (λ) will denote the space of all Bochner integrable functions with norm

‖f ‖L
p

X (λ) =
( ∫

∂D

∥∥f (Q)
∥∥p

X dλ(Q)

)1/p

< ∞.

The notation Lp(λ) is reserved for Lebesgue spaces of scalar-valued functions. For 1 � p � ∞,
we define H

p

X (D) as the Banach space of all harmonic functions u :D → X with u∗ ∈ Lp(ω).
As in the scalar theory, we endow H

p

X (D) with the norm

‖u‖H
p

X
= ∥∥u∗∥∥

L
p

X (ω)
.

Theorem 1.1. Let X be a Banach space. Then X ∈ RNP if and only if for some 1 � p � ∞ and
all u ∈ H

p

X (D), the limit

lim
X→P

X∈
(P )

u(X) = u(P )

exists for σ -almost every P ∈ ∂D. This is equivalent to the same statement for all 1 � p � ∞.

A consequence of the proof of this theorem is that we can solve an analogue of what is called
the Lp-Dirichlet problem on Lipschitz domains (in the sense of [7]), when the boundary data is
in the Bochner class L

p

X (σ ).

Theorem 1.2. Suppose X ∈ RNP. Then for 2 < p < ∞ and f ∈ L
p

X (σ ) there exists a harmonic
function u :D → X such that

lim
X→P

X∈
(P )

u(X) = f (P )

for σ -almost every P ∈ ∂D, and such that

‖u∗‖Lp(σ) � C‖f ‖Lp(σ) (2)

for an appropriate constant C not depending on f .

Remark 1.3. In this theorem the same conclusion holds for 1 < p < ∞ if we assume the domain
D has C1 boundary. This will be apparent from the proof by the results of [7].

In Section 3 we study a characterization of functions in H 1
X (D) through its boundary lim-

its. More precisely, we provide a one-to-one correspondence between functions in H 1
X (D) and

a subspace denoted by H1
X (∂D,dω) of the space of all Borel X -valued measures on ∂D of

bounded variation.
We say that a Borel X -valued measure defined on ∂D is an atom if the following three condi-

tions hold:

(1) μ(∂D) = 0,
(2) there exists a ball B centered at a point in ∂D, such that suppμ ⊂ Δ ≡ B ∩ ∂D,
(3) ‖μ‖V ∞ ≡ sup{‖μ(E)‖X /ω(E): E ⊂ ∂D is a Borel set with ω(E) > 0} � 1/ω(Δ).
X
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Observe that by definition every atom is ω-continuous. We define the atomic space H1
X (∂D,dω)

as the set of ω-continuous X -valued measures μ that can be represented as μ = ∑∞
i=1 λiμi ,

where μi are all atoms and
∑∞

i=1 |λi | < ∞.

Theorem 1.4. A function u belongs to H 1
X (D) if and only if there exists μ ∈ H1

X (∂D,dω) such
that

u(X) =
∫

∂D

K(X,Q)dμ(Q).

This result is a refinement to Lipschitz domains of R
n of the result in the unit disc of C.

Indeed, when X ∈ RNP and D is the unit disk of C one recovers results in [2].
Theorems 1.1 and 1.2 will be proved in the next section. In Section 3 we will prove The-

orem 1.4 combining ideas from [15,18,20]. To accomplish this, we give a characterization of
H 1
X (D) in terms of a ‘grand maximal function’ and prove an ad hoc Calderon–Zygmund de-

composition for measures.

2. Non-tangential limits and the Radon–Nikodým property

We will keep the notations from the previous section and will introduce new terminology and
definitions as needed. An open set D ⊂ R

n is a starlike Lipschitz domain centered at the origin
with character M if, letting Sn−1 = {x ∈ R

n: |x| = 1}, there is a function ϕ :Sn−1 → R with
|ϕ(t) − ϕ(s)| � M|t − s| and ϕ(t) � δ > 0, and such that in polar coordinates D = {(ρ, s): 0 �
ρ � ϕ(s), s ∈ Sn−1}. For 0 < r < 1 set Dr = {(ρ, s): 0 � ρ � rϕ(s)}, and for Q ∈ ∂D, Q =
ϕ(s0), we let rQ ∈ Dr be the point rQ = (rϕ(s0), s0). We will keep the notation of Ξ for the
center of D.

We will say that a countably additive X -valued function ν defined on the Borel sets of ∂D

has bounded variation if

‖ν‖MX (∂D) = sup
∑
A∈π

∥∥ν(A)
∥∥
X ,

where the supremum is taken over all the partitions π by measurable sets of ∂D. The space of
Borel X -valued measures of bounded variation is denoted by MX (∂D). If ν ∈ MX (∂D) there
exists a finite positive measure denoted by |ν| such that∥∥ν(A)

∥∥ � |ν|(A)

for all Borel sets A and |ν| is minimal with this property (see [8, Chapter 1]).
The space of X -valued continuous functions defined on ∂D is denoted by CX (∂D). For 1 �

p < ∞ we define H
p

X (D) as the space of X -valued harmonic functions u such that u∗ ∈ Lp(ω),
while H∞

X (D) denotes the space of all bounded (with respect to the norm ‖ · ‖X of X ) harmonic
functions on D. For the scalar-valued case we will keep standard notations for the analogous
spaces.

The next two basic lemmas prepare the ground for the proof of Theorem 1.1, which will be
explained afterwards.

Lemma 2.1. If f ∈ CX (∂D) then

v(X) =
∫

f (Y )dωX(Y )
∂D
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is a vector-valued harmonic function with

lim
X→P

X∈
(P )

v(X) = f (P )

for every P ∈ ∂D.

Proof. Since ω(·)(Y ) is a harmonic function, the first part of the lemma is immediate. On the
other hand, we have the representation

v(X) =
∫

∂D

K(X,Y )f (Y )dω(Y ). (3)

Given ε > 0 choose δ > 0 such that |f (P ) − f (Q)| < ε provided that |Q − P | < δ with
P,Q ∈ ∂D and ess sup{Y∈∂D: |Y−P |>δ} |K(X,Y )| < ε whenever |X − P | < δ, X ∈ D and
P ∈ ∂D (see [13, p. 316]). Let Δ be the ball centered at P and radius δ. Then∥∥v(X) − f (P )

∥∥
X �

∫
∂D

K(X,Y )
∥∥f (Y ) − f (P )

∥∥
X dω(Y )

=
[∫

Δ

+
∫

∂D\Δ

]
K(X,Y )

∥∥f (Y ) − f (P )
∥∥
X dω(Y )

� ε

(
1 +

∫
∂D

∥∥f (P ) − f (Y )
∥∥
X dω(Y )

)
� (1 + 2M)ε,

where for every X ∈ D we have ‖f (X)‖X � M . �
Lemma 2.2. Let u ∈ H 1

X (D). Then there exists an ω-continuous X -valued measure μ ∈
MX (∂D) such that

u(X) =
∫

∂D

K(X,Q)dμ(Q).

Proof. For 0 < r < 1 the family ur forms a bounded set on L1
X (ω) ⊂ MX ∗∗(∂D) and by Singer’s

theorem (see e.g. [12]) MX ∗∗(∂D) = CX ∗(∂D)∗. Lemma 2.1 applied to ur and a standard weak∗
argument give us a vector measure μ ∈ MX ∗∗(∂D) such that

u(X) =
∫

∂D

K(X,Q)dμ(Q).

Consider the Lebesgue decomposition μ = μc + μs of μ with respect to ω, that is, μc is ω-
continuous and μs is singular with respect to ω (cf. [8, Theorem 3.5.9]). Let � be any continuous
functional on X ∗∗. Then the function v = � ◦ u belongs to the space of scalar-valued functions
H 1(D) and there exists a unique measure ν ∈ M(∂D) such that

v(X) =
∫

∂D

K(X,Q)dν(Q)

(compare with [15, Theorem 5.11]). The fact that v ∈ H 1(D) implies that ν is ω-continuous.
Since we obviously have ν = � ◦ μc + � ◦ μs , it follows that � ◦ μs = 0, hence μs = 0 and
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∫
∂D

K(X,Q)dμs(Q) = 0. Now we prove that μc takes all its values in X arguing by contradic-
tion.

Assume that there exists a Borel set A such that μc(A) /∈ X . By the Hahn–Banach theorem,
we can choose � ∈ (X ∗∗)∗ such that � = 0 on X and �(μc(A)) = 1. Since the scalar function
v = � ◦ u is such that v∗ ∈ L1(ω), then by [15, Theorem 8.3]

v(X) =
∫

∂D

K(X,Q)f�(Q)dω(Q)

where f� is the Radon–Nikodým derivative d(� ◦ μc)/dω. As usual, denoting vr(Q) = v(rQ),

Q ∈ ∂D we have the vr → f� in L1(ω) as r → 1. Hence

0 =
∫

∂D

vr(Q)dω(Q) →
∫

∂D

f�(Q)dω(Q) = 1.

This contradiction yields the lemma. �
Now we provide the two main blocks to construct the proof of Theorem 1.1.

Lemma 2.3. If X ∈ RNP then every function u ∈ H 1
X (D) has non-tangential limits for ω-almost

every Q ∈ ∂D.

Proof. According to Lemma 2.2 and by the Radon–Nikodým property of X , we can represent
u ∈ H 1

X (D) as

u(X) =
∫
X

K(X,Q)f (Q)dω(Q),

with f ∈ L1
X (ω). Then we claim that the non-tangential limits exist in every Lebesgue point of f .

To prove this assertion, and also that f is the function of non-tangential (ω almost everywhere)
limits of u, let P ∈ ∂D be a Lebesgue point of f and ε > 0. Choose δ > 0 such that whenever
|Q − P | < δ one has

1

ω(Δ)

∫
Δ

∥∥f (Q) − f (P )
∥∥
X dω(Q) < ε,

where Δ ≡ Δδ(P ). Choose now δ′ > 0 such that ess sup{Y∈∂D\Δ} |K(X,Y )| < ε provided that
|X − P | < δ′. For X ∈ 
(P ), since

∫
K(X,Q)dω(Q) = 1,

u(X) − f (P ) =
∫

∂D

K(X,Q)
[
f (Q) − f (P )

]
dω(Q)

�
[∫

Δ

+
∫

∂D\Δ

]
K(X,Q)

[
f (Q) − f (P )

]
dω(Q).

But it is well known (see e.g. [14] or [15]) that for Q ∈ Δ and X as above, K(X,Q) � C/ω(Δ),
for a constant C > 0. This already implies that∥∥u(X) − f (P )

∥∥ � (1 + M)ε
X
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whenever |X −P | < min{δ, δ′}, where again M is an upper bound for ‖f ‖X on D. Since almost
every P ∈ ∂D is a Lebesgue point of f (cf. [8]), the proof is complete. �
Lemma 2.4. If every function in H∞

X (D) has non-tangential limits ω-a.e. then X ∈ RNP.

Proof. We will prove that every continuous linear operator T : L1(ω) → X is representable by
a function f ∈ L∞

X (ω), namely

T (g) =
∫

∂D

f (Q)g(Q)dω(Q)

(cf. [8, Chapter III, Section 1, Theorem 5]). Define for X ∈ D,v(X) = T (K(X, ·)) so that v is
harmonic and∥∥v(X)

∥∥
X � ‖T ‖∥∥K(X, ·)∥∥

L1(ω)
= ‖T ‖,

that is, v ∈ H∞
X (D). Let f ∈ L∞

X (ω) be the non-tangential limit of v. We claim that f represents
the operator T . By a standard density argument it suffices to prove that

T (χA) =
∫
A

f dω

for every Borel set A in ∂D, where χA denotes the characteristic function of A. Now,∫
A

f dω = lim
r→1

∫
A

v(rP )dω(P ) = lim
r→1

∫
∂D

T
(
K(rP, ·))χA(P )dω(P )

= lim
r→1

∫
∂D

T
(
K(rP, ·)χA(P )

)
dω(P ), (4)

where the integral
∫
∂D

T (K(rP, ·)χA(P )) dω(P ) is interpreted as a Bochner integral. The con-
tinuity of K on D × ∂D implies that∫

∂D

T
(
K(rP, ·)χA(P )

)
dω(P ) = T

( ∫
∂D

K(rP, ·)χA(P )dω(P )

)
.

We now claim that

lim
r→1

∫
∂D

K(rP, ·)χA(P )dω(P ) = χA

in the weak topology of L1
X (ω). In fact, for every g ∈ L∞

X (ω), we have∫
∂D

(∫
A

K(rP,Q)dω(P )

)
g(Q)dω(Q) =

∫
A

( ∫
∂D

K(rP,Q)g(Q)dω(Q)

)
dω(P ).

But
∫
∂D

K(r(·),Q)g(Q)dω(Q) is uniformly bounded and converges almost everywhere to g.
Then

lim
r→1

∫ ( ∫
K(rP,Q)dω(P )

)
g(P )dω(Q) =

∫
g dω
∂D A A
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and our claim follows. The continuity of T implies that T is continuous when L1(ω) and X are
endowed with the weak topology (see e.g. [19, Theorem 2.5.11]). It follows that for every � ∈ X ∗
we have〈

T (χA), �
〉 = lim

r→1

〈
T

( ∫
∂D

K(rP, ·)χA(P )dω(P )

)
, �

〉
. (5)

From (4) and (5) we conclude that

〈
T (χA), �

〉 = 〈∫
A

f dω,�

〉

for all � ∈ X ∗ and therefore T (χA) = ∫
A

f dω. The theorem follows. �
Notice that Lemmas 2.3 and 2.4 imply Theorem 1.1. We observe that the proof did not rely at

all on Fourier series as the original proof of [11], since we do not have an explicit representation
of the Poisson kernel, as in the unit disk of C.

Proof of Theorem 1.2. As observed above, one may use Lemma 2.1 and the Lebesgue points
argument of Lemma 2.2 to prove that the function

u(X) =
∫

∂D

K(X,Q)f (Q)dω(Q)

has non-tangential limits equal to f (Q) for ω-almost every Q ∈ ∂D, whenever f ∈ L
p

X (dσ ),
2 < p. To obtain the Lp bound for u∗ recall first that the Radon–Nikodým derivative
(dσ/dω)(Q) ≡ k(Q) belongs to the reverse Hölder class of weights Bq(∂D), for all 1 < q < 2
(cf. [7]). This means that for every surface ball Δ ⊂ ∂D one has(

1

σ(Δ)

∫
Δ

k(Q)q dω(Q)

)1/q

� bq

(
1

σ(Δ)

∫
∂D

k(Q)dω(Q)

)

with a uniform constant bq which depends on n, q and the Lipschitz character of ∂D. It is well
known (see e.g. [10]) that k ∈ Bq(∂D) implies that the Hardy–Littlewood maximal function

Mωg(Q) = sup

{
1

ω(Δ)

∫
Δ

∣∣g(Q)
∣∣dω(Q): Δ is a surface ball with Q ∈ Δ

}

satisfies the weighted inequality

‖Mωg‖L
p

X (kdω) � C‖g‖L
p

X (kdω) (6)

with a constant C not depending on g, and with 1/p + 1/q = 1, 2 < p < ∞. However, notice
that the norm ‖ · ‖Lp(kdω) is exactly the norm ‖ · ‖Lp(dσ).

Now, given P ∈ ∂D and X ∈ 
α(P ), the argument of [16, p. 14] yields∥∥u(X)
∥∥
X � CMω

(∥∥f (·)∥∥X )
(P ),

which by the above notes and (6) implies the theorem. �
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3. Atomic decomposition for H1
X (∂D,dω)

We start this section recalling some concepts of vector measures and referring the reader to
[9] for more details. For 1 < q � ∞, the space V

q

X consists of all the measures ν ∈ MX (∂D),
such that

‖ν‖V
q

X
< ∞,

where ‖ν‖V ∞
X

was given in the definition of atoms in Section 1, and for 1 < q < ∞,

‖ν‖V
q

X
= sup

( ∑
A∈π

‖ν(A)‖q

X
ω(A)q−1

)1/q

,

where the supremum is taken over all the partitions π by measurable sets of ∂D. For ν ∈ V
q

X ,
q > 1, |ν| is absolutely continuous with respect to ω, with d|ν|/dω ∈ Lq(ω). Moreover, if ν ∈
V

q

X has a density f then f ∈ L
q

X (ω) and

‖ν‖V
q

X
= ‖f ‖L

q

X (ω).

In case ϕ ∈ C(∂D) then one has

‖ϕ dν‖V
q

X
� ‖ϕf ‖L

q

X (ω). (7)

Lemma 3.1. If μ ∈ MX (∂D) is an atom then

u(X) =
∫

∂D

K(X,Q)dμ(Q)

belongs to H 1
X (D) with ‖u‖H 1

X
bounded by an absolute constant C > 0.

Proof. Suppose for definiteness that μ is supported in the surface ball Δ ≡ Δr(Q0) of radius r

centered at Q0. Since μ is an atom we have ‖μ(E)‖ � ω(E)
ω(Δ)

for every Borel set E, which implies

that |μ|(E) � ω(E)
ω(Δ)

and d|μ|
dω

� 1
ω(Δ)

.
Then for all X ∈ D,∥∥u(X)

∥∥
X �

∫
∂D

K(X,Q)d|μ|(Q) �
∫

∂D

K(X,Q)
d|μ|
dω

(Q)dω(Q) � 1

ω(Δ)
. (8)

Estimate (8) gives an upper bound for u∗(P ) for P ∈ Δ. Also notice that since σ � ω, estimate
(8) implies a uniform bound of ‖u(X)‖X independent of μ provided r > r0 for a fixed number r0.

According to [15, Lemma 4.11], we can choose r0 > 0 such that if r < r0, Δ′ = Δs(Q0) ⊂
Δr/2(Q0) and |Y − Q0| � 2r then

ωA(Δ′) ≈ ωY (Δ′)
ωY (Δ)

, (9)

where A = Ar(Q0) is any point D such that |Y − Q0| ≈ r ≈ dist(A, ∂D). Here A ≈ B means
that the ratio A/B is bounded above and below by constants depending at most on n and the
Lipschitz character of D.

Assume that r � r0 and let P /∈ Δ, then for some j ∈ N, P ∈ Δj\Δj−1, with Δj = 2jΔ. It is
readily seen that if X ∈ 
α(P ) then |X − Q0| � Cα2j r. Then by [15, Theorem 7.1] we have∣∣K(X,Q) − K(X,Q0)

∣∣ � C2−jK(X,Q0)
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for all Q ∈ Δ. The cancellation property of the atoms implies that∥∥u(X)
∥∥
X �

∫
Δ

∣∣K(X,Q) − K(X,Q0)
∣∣d|μ|

dω
(Q)dω(Q)

� 1

ω(Δ)

∫
Δ

∣∣K(X,Q) − K(X,Q0)
∣∣dω(Q)

� C

2j
K(X,Q0),

where the constant C depends on the Lipschitz character of D.
Since for almost all Q0 ∈ ∂D (see [15])

K(X,Q0) = lim
s→0

ωX(Δs(Q0))

ω(Δs(Q0))
,

then for s small we apply (9) with A = X and Y = Ξ , to obtain

K(X,Q0) � C

ω(Δj )
,

provided 2j r < r0.

Hence for these values of j we have∫
Δj

u∗(Q)dω(Q) � C

2j
. (10)

The set J consisting of all j ∈ N such that 2j r � r0 and Δj �= ∅, has at most a finite number of
elements depending on D only. Since |X − Q0| � Cα2j r, then K(X,Q0) is uniformly bounded
for all j ∈ J. It follows that∑

j∈J

∫
Δj

u∗(Q)dω(Q) � C. (11)

Finally from (10) and (11) we conclude that there exists C > 0 independent of μ such that∫
∂D

u∗(Q)dω(Q) � C. �

Remark 3.2. Notice that from Lemma 3.1 it follows that u ∈ H 1
X (D) whenever

u(X) =
∫

∂D

K(X,Q)dμ(Q)

with μ ∈H1
X (∂D,dω).

To prove the converse of Theorem 1.4 we start with u ∈ H 1
X (∂D). Lemma 2.2 guarantees the

existence of an ω-continuous vector measure μ ∈ MX (∂D) such that

u(X) =
∫

K(X,Q)dμ(Q). (12)
∂D
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To complete the proof it remains to prove that μ ∈ H1
X (∂D,dω). First we introduce some nota-

tion and definitions from the theory of spaces of homogeneous type, as it can be readily checked
that ∂D endowed with ω and the Euclidean distance is indeed a space of homogeneous type. For
Q1,Q2 ∈ ∂D define the measure distance

m(P,Q) = inf
{
ω(Δ): x, y ∈ Δ, and Δ is any surface ball

}
.

The balls with respect to the measure distance are denoted by Δm
r (P ) = {Q ∈ ∂D: m(P,Q) < r}

and will be called metric balls. An important well-known property is that we then have
ω(Δm

r ) ≈ r . In [17], it is proved that m can be modified to an equivalent quasi-distance m′
defined on ∂D satisfying the additional property that for some 0 < α < 1,

∣∣m′(P,Q1) − m′(P,Q2)
∣∣ � r

(
m′(Q1,Q2)

r

)α

(13)

whenever m′(P,Q1) < r and m′(P,Q2) < r . (A quasi-distance satisfies by definition the
properties of a metric except for the triangle inequality which is replaced by m′(P,Q) �
κ(m′(P,R) + m′(R,Q)) for all P,Q,R ∈ ∂D.) Then we may assume that the quasi-distance
m satisfies (13).

According to [15], from arguments in [17] one can see that atoms with respect to Euclidean
balls are the same as atoms with respect to metric balls, except for constant factors. For com-
pleteness we provide a short argument, specialized to ∂D with the harmonic measure.

Lemma 3.3. Given an Euclidean ball Δ, there exists a metric ball Δm such that Δ ⊆ Δm and
ω(Δm)/ω(Δ) ≈ 1. This statement can be reversed and the constants involved may depend on the
doubling property of ω.

Proof. We can assume that the radius of Δ is small. We recall [16, p. 11] that if Δ ≡ Δr(Q) is
an Euclidean ball of radius 0 < r < r0 centered at Q ∈ ∂D, then ω(Δ) ≈ rn−2G(Ξ,Ar), where
Ar ∈ D is a point whose distance to Q is proportional to r , and G(X,Y ) denotes the Green’s
function on D. Since the Green’s function is uniformly bounded far from the diagonal and Ar

is always far from Ξ , this implies that ω(Δ) ≈ rn−2 with constants that may also depend on the
diameter of D.

Now notice that from the definitions, Δ ⊆ Δm ≡ Δm
Crn−2(Q) and ω(Δm) ≈ rn−2 which by

the above remark implies the first claim. On the other hand, the Euclidean diameter of Δm
r (Q)

is always less than Cr1/(n−2), as it can be verified from the definition of metric distance. This
already implies that Δm

r (Q) ⊆ ΔCr1/(n−2) (Q) ≡ Δ′, and since ω(Δ′) ≈ r(n−2)/(n−2) = r , with
constants that may depend on the doubling property of ω, the proof is complete. �

For α > 0 the class Lipm(α) will denote the class of functions f in ∂D for which

L(f,α,m) ≡ sup

{ |f (P ) − f (Q)|
m(P,Q)α

: P,Q ∈ ∂D, P �= Q

}
< ∞.

Let K(r,P,Q) � 0 be the continuous function defined on (0,1]× ∂D × ∂D and such that for
some 0 < γ < 1 and A > 0:

(i) K(r,P,Q) � (1 + m(x,y)/r)−1−γ ,
(ii) K(r,P,P ) � A−1,
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(iii) |K(r,P,Q) − K(r,P,Q0)| � (m(Q,Q0)/r)γ ((1 + m(P,Q))/r)−1−2γ whenever
m(Q,Q0) � (r + m(P,Q))/4A.

In [15, Lemma 8.11] it is given the construction of K(r,P,Q) for some γ > 0. A computation
shows that for γ ′ < γ , the three properties defining K remain true with γ ′ replacing γ , so we
will fix γ < α, with α as in (13). With these in mind we will refer to results and techniques from
the references [18,20] with no restriction, and in particular our aim is to generalize some of their
results to the vector-valued setting.

For the function K(r,P,Q) and μ ∈ MX (∂D) define

μ+(P ) = sup
0<r�1

∥∥∥∥1

r

∫
∂D

K(r,P,Q)dμ(Q)

∥∥∥∥
X

.

This function, as in the scalar case, satisfies

μ+(P ) � u∗(P ) (14)

for every P ∈ ∂D, with u as in (12).
Define now the grand maximal function for P ∈ ∂D

Mμ(P ) = sup
0<r�1

∥∥∥∥1

r

∫
∂D

ϕ(P )dμ(P )

∥∥∥∥
X

,

where the supremum is taken for r > 0 over ϕ supported on Δm
r (P ) and satisfying L(ϕ,γ,m) �

r−γ and ‖ϕ‖∞ � 1, with γ as above (in this case we write ϕ ∈ T (P )).

Lemma 3.4. There exists p1 < 1, independent of γ , such that for every μ ∈ MX (∂D) and every
p > p1 one has ‖Mμ‖L

p

X (ω) � C‖μ+‖L
p

X (ω) with a constant C depending on p and ∂D.

Proof. We can adapt arguments in [20, Theorem 1] whose proof relies on the structure of the
subset T (P ) of the scalar space Lipm(γ ). That argument is based on the following (see [20,
Lemma 3]):

There exist p1 < 1 and C (only depending on ∂D) such that∥∥∥∥ 1

r0

∫
∂D

ϕ(Q)dμ(Q)

∥∥∥∥
X

� C4

(
1

r0

∫
Δm

r0
(P0)

(
μ+(Q)

)p1 dω(Q)

)1/p1

whenever ϕ is supported on Δm
r0

(P0) and satisfying L(ϕ,γ,m) � r
−γ

0 and ‖ϕ‖∞ � 1.

With this result in hand we observe that if we define for p > 0 and f ∈ L1(ω)

Mp(f )(P ) = sup
r>0

(
1

r

∫
Δm

r

∣∣f (Q)
∣∣p dω(Q)

)1/p

then the following holds:

‖Mμ‖L
p

X (ω) � Mp1

(
μ+)

� C
∥∥M1

([
μ+]p1

)∥∥1/p1

L
p/p1
X (ω)

� C(p,p1)
∥∥μ+∥∥

L
p

X (ω)

for p > p1, where the last inequality is the continuity of the Hardy–Littlewood maximal function
with respect to metric balls in L

p/p1(ω). This clearly implies the lemma. �
X
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We conclude that Mμ ∈ L1
X (ω) for every u ∈ H 1

X (∂D,dω) provided that we choose
K(r,P,Q) as above. This is the basis of the atomic decomposition we describe next, which
is based on arguments from [18]. For convenience we quote the following unified adaptation of
Lemmas 2.9 and 2.16 of [18].

Lemma 3.5 (Partition of unity). Let Ω be a proper open subset of ∂D and let d(P ) =
inf{m(P,Q): Q ∈ ∂D \ Ω} and C = 5κ, with κ the constant of the quasi-distance m. Then
there exist constants M ∈ N , c0 > 0, c1 > 1, a sequence of positive functions {ϕn}, a sequence
{Δm

n ≡ Δm
rn

(Pn)} of metric balls with the following properties:

(1) the balls Δm
(4κ)−1rn

(Pn) are pairwise disjoints and
⋃

Δm
n = ⋃

Δm
Crn

(Pn) = Ω ,

(2) c1rn < diamD/2, and the number of balls Δm
Crk

(Pk) that intersect a fixed Δm
Crn

(Pn) is at
most M ,

(3) if P ∈ Δm
n then Crn � d(P ) � 3Cκ2rn, and there exists Qn /∈ Ω such that m(Pn,Qn) <

3Cκrn,
(4) ϕn is supported in Δm

2rn
(Pn) and ϕn > 1/M over Δm

n ,
(5) ϕn ∈ Lip(α) with ‖ϕ‖α � c0/rα

n and∑
n

ϕn(X) = χΩ(X).

Next we prove a Calderón–Zygmund type decomposition adapted to our situation.

Lemma 3.6 (Calderón–Zygmund type Lemma). Let 1 < q < ∞ and μ ∈ V
q

X (∂D) such that
Mμ ∈ L1

X (ω). Let t >
∫
Mμ(P )dω(P ) and for Ω = {P : Mμ(P ) > t}, we consider the cover

{Δm
rn

(Pn)} of Ω and the partition of the unity {ϕn} given by the previous lemma. For every n ∈ N

define

dbn = ϕn dμ − mnϕn dω with mn =
( ∫

∂D

ϕn dω

)−1 ∫
∂D

ϕn dμ (15)

and

dG = χΩc dμ +
∑

mnϕn dω. (16)

Then there exists a constant c > 0 such that

Mbn(P ) � ct

[
rn

m(P,Pn) + rn

]1+γ

χ(Δm
4κrn

(Pn))c (P ) + cMμ(P )χΔm
4κrn

(Pn)(P ). (17)

Also dB ≡ ∑
dbn converges in V

q

X , and the following estimates hold:

MG(P ) � ct
∑
n

[
rn

d(P,Pn) + rn

]1+γ

+ cMμ(P )χΩc(P ), (18)

∫
∂D

MGdω � c

∫
Ω

Mμdω, (19)

‖G‖V ∞
X

� ct, (20)

where γ is as in the definition of K(r,P,Q), and the constant c depends on n, the Lipschitz
character of D and the doubling property of ω.
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Proof. First notice that for ψ ∈ C(∂D),∫
∂D

ψ dbn =
∫

∂D

Snψ dμ,

where the operator Sn is defined as

Sn(ψ)(P ) = φn(P )

∫
∂D

[ψ(P ) − ψ(z)]φn(z) dω(z)∫
∂D

φn(z) dω(z)
.

The proof of (17) is the same as that of the scalar version of this statement included in [18,
Lemma 3.2]. We first note that the following estimate holds (compare with [18, Lemma 3.36])

‖mn‖X � ct. (21)

Then the convergence in V
q

X (∂D) of
∑

n dbn is a consequence of estimates (7) and (21), while
(18) and (19) follow as in the scalar case [18, pp. 283–284]. Finally, to prove (20) we start with
the estimate∥∥∥∥

∫
∂D

ψ dμ

∥∥∥∥
X

� C

∫
∂D

|ψ |Mμdω (22)

valid for ψ ∈ Lip(α), α > γ . This inequality can be proved following [18, Theorem 3.25] whose
proof is based on the construction of a Lipschitz approximate identity ρ = ρ(P,Q, s) on ∂D,
which by definition satisfies:

• ρ � 0,
• for fixed s > 0, suppρ ⊂ {(P,Q): m(P,Q) < 2s},
• for Q and s fixed, ρ(·,Q, s) ∈ Lip(α) and sρ(P,Q, s) is uniformly bounded,
• ∫

∂D
ρ(P,Q, s) dω(Q) = 1.

For a given f ∈ L1
X (ω), let

ψs(P ) =
∫

∂D

ρ(P,Q, s)f (Q)dω(Q).

We claim that for every measurable set E ⊂ ∂D,∥∥μ(E)
∥∥
X � C

∫
E

Mμdω. (23)

To see this, notice first that the weak (1,1) estimate for Hardy–Littlewood maximal function
implies that almost every P ∈ ∂D is a Lebesgue point for f ∈ L1

X (ω). For such point P we have
that ψs(P ) converges to f (P ) as s → 0. Applying this regularization to χE, and using (22) we
conclude (23).

To prove (20) let E ⊂ Ωc . We have by (23) that∥∥μ(E)
∥∥ � ctω(E),

in other words,

‖χΩc dμ‖V ∞
X

� ct.

This together with (21) implies (20). �
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From (14) and Lemma 3.4, the next theorem completes the ‘only if’ part of Theorem 1.4.

Theorem 3.7. Let μ ∈ MX (∂D) such that Mμ ∈ L1(ω). Then there exists a sequence of
atoms Ak , and a sequence {λk} in �1 such that

μ =
∞∑

k=1

λkAk

and

C

∞∑
k=1

|λk| � ‖Mμ‖L1
X (ω) � C−1

∞∑
k=1

|λk|

for a constant C independent of μ.

As in the scalar case, the proof of this theorem is based on the following lemma.

Lemma 3.8. Let μ ∈ MX (∂D) such that ‖μ‖V ∞
X

� 1 and Mμ ∈ L
q

X (ω) for some (1 + γ )−1 <

q < 1. Then there exists a sequence of atoms Ak ∈ V ∞
X and a sequence {λk} in �1 such that

μ =
∞∑

k=1

λkAk

and

C

∞∑
k=1

|λk| �
∫

∂D

(Mμ)q dω.

Proof. The argument goes parallel to that of [18, Lemma 4.2], so we just outline the proof. For
fixed ε > 0 we construct inductively a (possibly finite) sequence {Gk} of measures such that:

(i) G0 = μ,
(ii) Gk and Bk are respectively the “good part” and “bad part” in the Calderon–Zygmund de-

composition described in Lemma 3.6, for the measure Gk−1 at t = εk ,
(iii)

∫
∂D

MGk−1 dω < ε.

If condition (iii) is violated, we stop the construction and obtain a finite sequence. For each
permissible k, we define measures {bk,n}n, balls {Δm

rk,n
(Pk,n)}n and a partition of unity{φk,n}n

for Ek = {Q ∈ ∂D: MGk−1(Q) > εk}, according to Lemmas 3.5 and 3.6, so we have

Gk−1 − Gk =
∑
n

bk,n,

‖Gk‖V ∞
X

� cεk. (24)

As the scalar case, one can prove that

MGk(P ) � Mμ(P ) + c

k∑
εi

∑[
ri,n

m(P,Pi,n) + ri,n

]1+γ

. (25)

i=1 n
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If the sequence {Gk}k is infinite, (24) implies that we have the representation

μ =
∞∑

k=1

∑
n

bk,n,

with convergence in V ∞
X . We let λk,n = 2Cεk−1ω(Δm

rk,n
(Pk,n)) and Ak,n = (λk,n)

−1bk,n. Con-
sidering the expression

dbk,n = φk,n(dBk−1 − mk,n dω),

where mk,n = (
∫
∂D

φk,n dω)−1
∫
∂D

φk,n dω, as in Lemma 3.6, it follows that Ak,n is an atom with
respect to the quasi-distance m.

Let Ek = {P ∈ ∂D: MGk−1 > εk}. Then∑
n

|λk,n| � cε−1Mεkω(Ek).

By (25) and [18, Lemma 2.2]

εkqω(Ek) �
∫

∂D

MG
q

k−1 dω

�
∫

∂D

Mμq dω + cq
k−1∑
i=1

εiq
∑
n

∫
∂D

[
ri,n

m(P,Pi,n) + ri,n

](1+γ )q

dω(p)

� c

( ∫
∂D

Mμq dω +
k−1∑
i=1

εiqω(Ei)

)
.

Then by Gronwall’s inequality we have

εkqω(Ek) � (c + 2)i
∫

∂D

Mμq dω.

Choosing ε such that ε(c + 2) < 1 we have∑
k,n

|λk,n| � C

∫
∂D

Mμq dω.

The case when the sequence of Gk is finite can be obtained in a similar way. �
Proof of Theorem 3.7. For every k ∈ N, consider the Calderón–Zygmund decomposition

μ = Gk + Bk

corresponding to Ωk = {P ∈ ∂D: Mμ(P ) > 2k} and with covering Δm
rn

(Pn) as in Lemma 3.5.
Let Hk = Gk+1 − Gk = Bk − Bk+1. We have

‖Hk‖V ∞
X

� C2k,

hence

‖MHk‖L∞(ω) � C2k,
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moreover (see [18, p. 300]),

MHk(P ) � C2k

k+1∑
j=k

∑
i

[
ri,j /

(
ri.j + m(P,Pi,j )

)]1+γ
,

implying∫
∂D

MHk
q dω � C2kqω(Ωk),

for (1 + γ )−1 < q � 1.
From the identity

μ −
m∑

k=−m

Hk = Bm+1 + G−m

we see by (19) and (20) that M(μ − ∑m
k=−m Hk) converges to zero in L1(ω). Then by (22) we

have ∫
∂D

ψ dμ =
∞∑

k=−∞

∫
∂D

ψ dHk, (26)

for all ψ ∈ Lip(γ ).
Next, ‖C−12−kHk‖V ∞

X
� 1 and for any (1 + γ )−1 < q < 1,∫

∂D

M
(
C−12−kHk

)
dω � Cω(Ωk).

From Lemma 3.8 we have the representation

C−12−kHk =
∑

i

λk,iAk,i ,

where Ak,i is an atom and
∑

i |λk,i | � Cω(Ωk). If we let ρk,i = C2kλk,i , the series μ′ =∑
k

∑
i ρk,iAk,i converges in MX (∂D) since

∑
k

∑
i

ρk,i ∼
∫

∂D

Mμdω.

Finally, from (26), it follows that
∫
∂D

ψ dμ = ∫
∂D

ψ dμ′, for all ψ ∈ Lip(γ ). Since Lip(γ ) is
dense in C(∂D) we conclude that μ = μ′. �
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