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Abstract. In the traditional self-organizing map (SOM) the best match-
ing unit (BMU) affects other neurons, through the learning rule, as a func-
tion of distance. Here, we propose a new parameter in the learning rule so
neurons are not only affected by BMU as a function of distance, but as
a function of the frequency of activation from both, the BMU and input
vectors, to the affected neurons. This frequency parameter allows non ra-
dial neighborhoods and the quality of the formed maps is improved with
respect to those formed by traditional SOM, as we show by comparing
several error measures and five data sets.

1 Introduction

Self-organizing map (SOM) is presented as a model of the self-organization of
neural connections, what is translated in the ability of the algorithm to produce
organization from disorder [1]. One of the main properties of SOM is its ability
to preserve topographical relations present in input data in the output map [2],
which is a desirable property for data visualization and clustering.

One main feature of the SOM is the ability to transform an incoming signal
pattern of arbitrary dimension into a low-dimensional discrete map (usually of di-
mension one or two) and to adaptively transform data in a topologically ordered
fashion [3, 4]. Each input data is mapped to a single neuron in the lattice, that
with the closest weight vector to the input data, or best matching unit (BMU).
The SOM preserves relationships during training through the neighbourhood
function, which establishes the effect of the BMU to any other neuron. Weight
neurons are updated accordingly to:

wn(t + 1) = wn(t) + αn(t)hn(g, t)(xi − wn(t)) (1)

Where α(t) is the learning rate at time t and hn(g, t) is the neighbourhood
function from BMU neuron g to neuron n at time t. In general, neighbourhood
function decreases monotonically as a function of the distance from neuron g to
neuron n. This decreasing property has been reported to be a necessary condition
for convergence [5, 6]. The SOM tries to preserve relationships of input data by
starting with a large neighbourhood and reducing the neighbourhood size during

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 455–463, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



456 A. Neme and P. Miramontes

the course of training [4]. It has been reported as well that the learning factor α
should be a decreasing function [6].

As pointed out by Ritter [7], SOM and related algorithms share the idea of us-
ing a deformable lattice to transform data similarities into spatial relationships.
The lattice is deformed by applying learning equation (1) to the neurons in the
network. In this work, we propose an additional parameter that quantifies the
influence of a BMU n to the neurons in the network as a function of the number
of times n affects them as well as the influence of each data vector m as a func-
tion of the number of times the BMU for m affects the neurons. This frequency
activation parameter allows non radial neighborhood which, as reported in the
results, forms better maps, in terms of three error measures.

2 Related Work

Altough several modifications have been proposed to the SOM learning rule, they
don’t reflect, at least to our knowledge, the frequency of activation from other
neurons. For example, Lee and Verleyen [8] propose the recursive Fisherman’s
rule and some hybrids from it that reflects an attenuation of the adaptation as
the distance from the BMU to the affected neuron grows. The rules show a non
radial neighborhood in the sense that the BMU pulls the direct neighbors and
these neighbors pull farther neurons and so on, in a recursive manner.

Campoy and Vicente [9] proposed a residual activity memory for each neuron,
so the SOM enlarges its temporal analysis capabilities, whereas one of the first
works that incorporated a concept of memory for each neuron was in Chappell
and Taylor [10], in which is defined an activation memory for each neuron, in
order to define the new active neuron, and a modification of the selection mecan-
ism is presented, so if the memory parameter is high, the previous winner neuron
will win again unless another neuron matches very close the input data.

3 Frequency Function in the SOM’s Learning Rule

In the traditional SOM, the BMU equally affects those neurons within its neigh-
borhood. All neurons at the same distance (for the case of gaussian neighbor-
hood) or inside the hypersphere (for the case of bubble neighborhood) are equally
affected. We propose a modification to this scheme that includes a function of
the relative frequency a given neuron n is affected by each BMU k or by each
input vector m.

If during the learning process n is affected by two or more BMU (for one or
more input vectors), it will not be affected the same by them (independently
from the learning factor): the more a neuron n is affected by k, the larger the
strenght of its influence. A new parameter, the activation frequency, ρn(k, m),
that is a function of the number of times a neuron n is affected by BMU k or by
input vector m is incorporated to eq. (1). The weight modification rule is now:

wn(t + 1) = wn(t) + αn(t)hn(g, t)ρn(k, m)(xi − wn(t)) (2)
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In this model, every neuron n maintains a record of the relative frequency by
which it has been affected by each BMU k, Ωn(k), defined as the number of
times BMU k has included n in its neighborhood divided by the number of
times n has been affected by any BMU (

∑|N |
j=1 Ωn(j), where N is the number

of neurons in the network). Also, n has a record of the relative frequency it has
been affected by each input vector m, βn(m), defined as the number of times
vector m has affected, through any BMU, n, divided by the number of times n
has been affected by any BMU (which is the same as the the number of times it
has been affected by any input vector). For the gaussian neighborhood, we have
defined n is influenced by k if hn(g, t) > 0.3

Several frequency functions are proposed based on these two quantities and
in the distance between BMU k and neuron n, d(n, k). The frequency parameter
ρn(k, m) varies as a function of Ωn(k) and βn(m). We have found that ρn(k, m)
should be monotonic decreasing function with respect to Ωn(k), as it is shown
in eq. (3)-(6), so the formed maps present a lower error than the formed maps
by eq (1).

(Rule 1) ρn(k, m) = Ωn(k) × 1
d(n, k)

(3)

(Rule 2) ρn(k, m) = Ωn(k) × βn(m) × 1
d(n, k)

(4)

(Rule 3) ρn(k, m) =
1

1 + e−ψΩn(k)× 1
d(n,k)

(5)

(Rule 4) ρn(k, m) = Ωn(k) (6)

As an example of the behaviour of the rules, fig. (1) shows the case for rules (1)
and (3). Two neurons, i and j, such that d(k, i) = d(k, j) will not be affected
the same unless Ωi(k) = Ωj(k). However, when d(k, i) is large, the difference in
the frequency activation woll be small. For low values of d(k, i) the importance
of Ωi(k) becomes clear.

The proposed activation frequency functions modifies the natural neighbor-
hood of BMU. For example, in fig. (2) it is shown the BMU and the affected
neurons in four different time steps for a single data vector. It is observed that
non radial and discontinuos neighborhoods are formed, which are not present in
the traditiobal scheme. This discontinuity resembles the cortex activity patterns
in mammals during several task processing [13].

4 Topological Preservation Quantization

To measure topological preservation, three metrics were applied. Those are the
topographic error (TE) [11], error quantization (EQ) and preservation of original
neighborhoods (VC) [12]. The first is defined as:

TEt = 1
N

∑N
k=1 η(xk), where η(xk) =

{
1, BMU and 2nd. BMU non adjacent

0, otherwise
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Fig. 1. Activation frequency function for rules 1, 3. For two neurons i, j situated at
the same distance, ρi(Ωi(k)) > ρj(Ωj(k)) if Ωi(k) > Ωj(k).

which is simply the proportion of data vector for which the BMU and second
best matching unit are not first-neighbors. The errror quantization is:

EQ = 1
N

∑N
j=1 ||xj − wj ||2

The third metric is based on the neighbohood preservation quantization, which
establishes that an input data vector i has k neighbors in its neighborhood
Vk in the original space and, if neighborhood preservation is complete, then, the
BMU for i has as its first k active neurons those BMU for the data vectors in Vk.

V C = 1 − 2
Nk(2N−3k−1)

∑N
i=1

∑
xj∈Vk(xi)

(r(xi, xj) − k)

where N is the number of data vectors and r(xi, xj) is the rank of xj when
data vectors are ordered based on their distance from the data vector xi after
projection. The closer VC is to 1, the better the map is. As VC is a function of
k, we set a value for k as 1

10 of the size of each data set.

5 Results

The experiments were done in a 10x10 network. Two groups of experiments were
done. In the first one, in order to test the sensivity of the proposed frequency
functions to the initial values, several thousands of maps were formed(> 10000),
with different initial neighborhood width h0, learning factor α0 and for a different
number of epochs. Sensitivity results are presented in subsection 5.1. The second
group of experiments establishes the ability of the proposed rules as a good
alternative to form maps with a lower error that the traditional learning rule.
In this group, several hundreds maps were formed, all with 1000 epochs, α0 ∈
{0.1, 0.2, 0.5, 0.7, 0.8, 0.9} and h0 ∈ {8, 9}, and with α1000 ∈ {0.01, 0.001}, for the
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Fig. 2. BMU and affected neurons at t = 1, t = 2, t = 3 and t = 9 starting at top left
for a given input vector from the spiral data set. Size of circumference is proportional
to ρi(k). In t = 3, there is a discontinuity in the area on influence for the BMU and
for t = 2 there is a non radial neighborhood.

self-organizing stage, with an exponential decrease of the intermediate values for
those parameters. In the second stage, convergence, the number of epochs was
10000, with initial values of α = 0.05 and h = 3, exponentially decreasing until
the final values α = 0.0001 and h = 0. Subsection 5.2 shows convergence results.

5.1 Sensitivity

To test sensitivity to the initial conditions, SOM with several parameters were
formed. Neighborhood width, h0, was placed between 1 and 10, whereas the
initial learning factor, α0, is in the close interval [0.001, 1.0] and the number of
epochs is situated between 1 and 130. The final values for neighborhood width is
1 and for the learning parameter is 0.001. Altough the number of maps may be
insufficient to cover the whole range of combinations for the former parameters
and the choises may be arbitrary, they cover a wide range of combinations.

For each one of the five data sets and for each set of values (α0 and h0),
a SOM were formed by the traditional SOM rule and by SOMs with the acti-
vation frequency functions described in (3) -(6), for both, bubble and gaussian
neighborhood. Two data sets are bidimensional, one is five- dimensional (iris
data set), one is 34-dimensional (ionosphere data set) and one is 64-dimensional
(codon usage data set).
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Fig. 3. Spiral data set. It is shown the SOM approximation for both, traditional rule
(left) and for rule 1 (right, eq. (3)) after 10 epochs.

Table 1. Average TE, EQ and VC for the spiral and Henón data sets over all formed
maps for the proposed frequency functions. Error is presented in pairs: (bubble neigh-
borhood, gaussian neighborhood).

Rule Spiral Henón

TE EQ VC TE EQ VC

Trad. (0.17, 0.17) (0.019, 0.018) (0.71, 0.6) (0.17, 0.29) (0.044, 0.041) (0.83, 0.73)

Rule 1 (0.107, 0.23) (0.010, 0.011) (0.64, 0.66) (0.21, 0.22) (0.031, 0.03) (0.9, 0.75)

Rule 2 (0.106, .24) (0.013, 0.013) (0.64, 0.63) (0.19, 0.31) (0.028, 0.012) (0.91, 0.89)

Rule 3 (0.104, 0.261) (0.012, 0.011) (0.66, 0.62) (0.173, 0.2) (0.025, 0.016) (0.89, 0.89)

Rule 4 (0.102, 0.21) (0.011, 0.015) (0.67, 0.66) (0.176, 0.21) (0.026, 0.018) (0.89, 0.89)

Table 2. Average TE, EQ and VC for the iris and ionosphere data sets over all
formed maps for the proposed frequency functions. Error is presented in pairs: (bubble
neighborhood, gaussian neighborhood).

Rule Iris Ionosphere

TE EQ VC TE EQ VC

Trad. (0.241, 0.21) (0.0673, 0.08) (0.68, 0.715) (0.17, 0.196) (0.08, 0.061) (0.73, 0.74)

Rule 1 (0.206, 0.282) (0.061, 0.079) (0.83, 0.71) (0.113, 0.195) (0.081, 0.054) (0.83, 0.75)

Rule 2 (0.206, 0.272) (0.062, 0.06) (0.82, 0.84) (0.11, 0.195) (0.082, 0.055) (0.83, 0.91)

Rule 3 (0.235, 0.203) (0.07, 0.053) (0.8, 0.82) (0.165, 0.145) (0.082, 0.058) (0.87, 0.89)

Rule 4 (0.228, 0.21) (0.06, 0.054) (0.82, 0.88) (0.165, 0.169) (0.083, 0.0.69) (0.83, 0.85)
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Table 3. Average TE, EQ and VC for the codon usage data set over all formed maps
for the proposed frequency functions. Error is presented in pairs: (bubble neighborhood,
gaussian neighborhood).

Rule TE EQ VC

Trad. (0.175, 0.12) (0.24, 0.14) (0.72, 0.72)

Rule 1 (0.103, 0.1) (0.22, 0.17) (0.79, 0.77)

Rule 2 (0.1, 0.098) (0.21, 0.17) (0.82, 0.76)

Rule 3 (0.167, 0.256) (0.29, 0.289) (0.83, 0.82)

Rule 4 (0.167, 0.2) (0.19, 0.17) (0.82, 0.71)

As the analysis of data is extensive, only some results are presented (the whole
set is available from the authors). In tables (1) - (3), the average error for all
maps formed by the proposed frequency functions, as well as for those generated
by traditional SOM with both, bubble and gaussian neighborhood, including all
initial conditions for α0, h0 and the number of iterations, are presented, for each
one of the five data sets.

Fig. (4) shows the TE as a function of number of epochs for the traditional
SOM and for SOM’s with the frequency functions proposed in eqs. (3) -(6) for
four of the data sets. It can be seen that the maps formed by the proposed rules
are less sensitive to initial conditions that those formed by eq. (1). From fig. (3),
it is clear that for the spiral data set the proposed functions form maps that
folds more accurately to data than those formed by the traditional SOM.

Fig. 4. TE for rules 1 and 3 and for the traditional learning rules as a function of the
number of iterations for the spiral, Henón, iris and ionosphere data sets
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5.2 Convergence

Once the sensitivity was analyzed, the properties of the proposed rules for maps
suitable for data visualization (low error) were studied. In tables (4) and (5) it is
shown the average error for several maps (> 500) for a larger number of epochs
and two-stages differentiation, in contrast to what was done in the previous
subsection. It is observed that the error measures are, in general, lower for those
maps formed with the proposed rules. Also, a map formed by traditional rule
and another formed by rule 1 are shown in fig.3.

Table 4. Average TE, EQ and VC obtained after two stages of trainning of the SOM,
for the spiral and Henón data sets over all formed maps for the proposed frequency
functions. Error is presented in pairs: (bubble neighborhood, gaussian neighborhood).

Rule Spiral Henón

TE EQ VC TE EQ VC

Trad. (0.01, 0.009) (0.0001, 0.0001) (0.92, 0.93) (0.018, 0.016) (0.0015, 0.0012) (0.91, 0.93)

Rule 1 (0.01, 0.008) (0.00003, 0.00002) (0.94, 0.95) (0.013, 0.005) (0.001, 0.0008) (0.9, 0.91)

Rule 2 (0.02, 0.018) (0.00002, 0.00001) (0.95, 0.96) (0.012, 0.01) (0.001, 0.0004) (0.9, 0.92)

Rule 3 (0.015, 0.019) (0.00001, 0.00001) (0.95, 0.95) (0.013, 0.014) (0.0006, 0.0004) (0.89, 0.92)

Rule 4 (0.018, 0.012) (0.00002, 0.00001) (0.96, 0.96) (0.014, 0.012) (0.001, 0.0003) (0.92, 0.94)

Table 5. Average TE, EQ and VC obtained after two stages of trainning of the SOM,
for the iris and codon usage data sets over all formed maps for the proposed frequency
functions. Error is presented in pairs: (bubble neighborhood, gaussian neighborhood).

Rule Iris Codon usage

TE EQ VC TE EQ VC

Trad. (0.15, 0.105) (0.05, 0.048) (0.85, 0.85) (0.137, 0.231) (0.26, 0.25) (0.79, 0.77)

Rule 1 (0.152, 0.1) (0.035, 0.035) (0.84,0.85) (0.072, 0.045) (0.25, 0.22) (0.72, 0.79)

Rule 2 (0.14, 0.1) (0.04, 0.038) (0.91, 0.91) (0.088, 0.069) (0.27, 0.08) (0.88, 0.87)

Rule 3 (0.129, 0.12) (0.04, 0.038) (0.89, 0.91) (0.085, 0.12) (0.29, 0.29) (0.8, 0.89)

Rule 4 (0.095, 0.114) (0.002, 0.001) (0.93, 0.92) (0.01, 0.012) (0.23, 0.22) (0.94, 0.96)

6 Discussion and Conclusions

An activation frequency parameter for the weight update equation is proposed.
This parameter is a function of the activation frequency from a given BMU as
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well as from the relative frequency of influence of an input vector, through any
BMU, to neurons within its neighborhood. Distance between BMU and neurons
may also important for this parameter. This parameters add some differential
influence between BMU and equally distant neurons, driven by how much those
neurons are being affected by other BMUs.

The fact that the proposed rules form non radial neighborhoods gives biologi-
cal plausibility, due to the fact that a neuron affects differentially other neurons
not only based on their distance but in the frequency with which one of them
affects the other.

Several experiments show that the error measures in the maps formed with
some of the proposed activation frequency functions are lower than those formed
by the traditional SOM, and, for the two-dimensional data sets, it is observed
that the formed maps fold more accurately to data than those formed by the
traditional SOM rule. However, we believe this results could be improved by
identifying other activation frequency schemes, such as simmulated annealing.
It could be of interest to study the mathematical properties of those functions
as they seem to be important for the map formation.
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