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We derive approximate expressions for the dispersion relation of the nonlinear Klein-Gordon equa-
tion in the case of strong nonlinearities using a method based on the linear delta expansion. All the
results obtained in this article are fully analytical, never involve the use of special functions, and
can be used to obtain systematic approximations to the exact results to any desired degree of
accuracy. We compare our findings with similar results in the literature and show that our approach
leads to better and simpler results. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2176393�
he nonlinear Klein-Gordon equation describes a variety
f physical phenomena such as dislocations, ferroelectric
nd ferromagnetic domain walls, DNA dynamics, and Jo-
ephson junctions. The simple sinusoidal solutions to the
inear wave equation, which provide a dispersion relation
ndependent of the amplitude, are lost when nonlinear
erms are considered. As a matter of fact the exact solu-
ions cannot be expressed in a simple form in terms of
heir linear counterparts, although they may still be os-
illatory. Moreover the dispersion relation obtained in
his case turns out to depend upon the amplitude. The
olution of the nonlinear wave equation poses an interest-
ng challenge, especially in the case of strong nonlineari-
ies, where perturbation theory by itself is not applicable:
ndeed in such cases the perturbative series does not con-
erge and no sensible information can be extracted di-
ectly from it. Here we present a variational method
ased on the linear delta expansion to find fully analytical
pproximate dispersion relations for the nonlinear Klein-
ordon and the Sine-Gordon equations for weak and

trong nonlinearities. Our method can be easily general-
zed to other cases and provides a systematic way to
chieve the desired degree of accuracy. The solutions ob-
ained in this paper are fully analytical and never involve
he use of special functions.

. INTRODUCTION

In this article we study the problem of describing the
ropagation of traveling waves obeying the nonlinear Klein-
ordon and the Sine-Gordon equations. Under certain con-
itions the effect of the nonlinearity is to preserve the oscil-
atory behavior of the solutions and, at the same time,
odify the dispersion relation for the traveling waves which
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turns out to depend on the amplitude of oscillation. As a
matter of fact we are considering conservative systems, for
which the dynamics can be mapped to the nonlinear oscilla-
tion of a point mass in a one-dimensional potential. The main
goal of this article is to explore the effects of the nonlinearity
on the solutions, providing simple and efficient approxima-
tions. Although for weak nonlinearities, this task can be ac-
complished by applying perturbative methods �correspond-
ing to performing an expansion in a small parameter which
governs the strength of the nonlinearity itself�, the situation
is more complicated in the presence of strong nonlinearities.
In such a regime perturbation theory cannot be applied, since
the perturbative series do not converge.

Such a problem was studied in Ref. 1, where nonpertur-
bative formulas for the dispersion relations of the traveling
wave in the Klein-Gordon and the Sine-Gordon equations
were derived. The formulas obtained by Lim et al. provide
an accurate approximation to the exact results even when the
nonlinearity is very strong.

In this article we consider the same problems of Ref. 1
and apply to them an approach which has been developed
recently.2–6 Our approach is fully nonperturbative in the
sense that it does not correspond to a polynomial in the non-
linear driving parameter and, when applied to a given order,
allows us to obtain analytical expressions for the dispersion
relations, which never involve special functions, to any de-
sired level of accuracy. It is worth mentioning that in the case
of weak nonlinearities, an expansion of the nonperturbative
results in powers of the nonlinear parameter is sufficient to
recover the perturbative results.

Let us briefly describe the problem that we are interested
in. We consider the nonlinear Klein-Gordon equation:

utt − uxx + V��u� = 0, �1�

where V��u� is a function of u, which we will assume to be

odd, and the prime is the derivative with respect to u. To

© 2006 American Institute of Physics1-1
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etermine the periodic traveling wave, we set

u = u���, � = kx − �t . �2�

fter substituting into Eq. �1� we find

�2ü + V��u� = 0, �3�

here �2= ��2−k2� and u̇�du /d�. u��� is periodic with pe-
iod 2� and fulfills the boundary conditions

u�0� = A, u̇�0� = 0, �4�

ith A being the amplitude of the traveling wave. The solu-
ion of Eq. �3� with the previous boundary conditions oscil-
ates between −A and A. By integrating Eq. �3� and taking
nto account Eq. �4� we obtain

1
2�2u̇2 + V�u� = V�A� . �5�

onsidering �2�0 we observe that

� =
�

�2�0
A�V�A� − V�u��−1/2du

�6�

ives the exact expression for the dispersion relation of the
onlinear Klein-Gordon equation. We neglect the case �2

0 since there is no traveling wave for this configuration.
This article is organized as follows: In Sec. II we de-

cribe the variational nonperturbative approach and apply it
o derive approximate analytical formulas for the nonlinear
lein-Gordon equation; in Sec. III we apply our method to

wo further nonlinear equations; and, finally, in Sec. IV we
raw our conclusions.

I. VARIATIONAL METHOD

An exact solution of Eq. �1� can be accomplished in a
imited number of cases, depending on the form of the po-
ential V�u�. However, when the nonlinearities due to the
otential V�u� are small, it is still possible to find useful
pproximations using perturbation theory. The focus of this
ection will be on the opposite situation, when the nonlin-
arities are not small and a perturbative expansion is not
seful. In such a case one needs to resort to nonperturbative
ethods, capable of providing the solution even in the pres-

nce of strong nonlinearities. One of such methods, which
e will use in the present article, is the linear delta expansion

LDE�.7–10

The LDE is a powerful technique that has been applied
o difficult problems arising in different branches of physics
ike field theory, classical, quantum and statistical mechanics.
he idea behind the LDE is to interpolate a given problem

g with a solvable one Ps, which depends on one or more
rbitrary parameters �. In symbolic form P=Ps���
��Pg−Ps����. � is just a bookkeeping parameter such that

or �=1 we recover the original problem, and for �→0 we
an perform a perturbative expansion of the solutions of P in
. The perturbative solution obtained in this way to a finite
rder shows an artificial dependence upon the arbitrary pa-
ameter, � and would cancel if the calculation were carried

ut to all orders. As such we must regard such dependence as

oaded 06 Feb 2011 to 132.248.9.8. Redistribution subject to AIP licens
unnatural; in order to minimize the spurious effects of � we
then require that any observable O, calculated to a finite
order, be locally independent of �, i.e., that

�O
��

= 0. �7�

This condition is known as the “principle of minimal sensi-
tivity” �PMS�.11 We call �PMS the solution to this equation.
�In the case where the PMS equation has multiple solutions,
the solution with the smallest second derivative is chosen.�
We emphasize that the results that we obtain by applying this
method do not correspond to a polynomial in the parameters
of the model as in the case of perturbative methods.

The procedure that we have illustrated is quite general
and it will be possible to implement it in different ways
depending on the problem that is being considered. In Refs.
2–4 the LDE was used in conjunction with the Lindstedt-
Poincaré technique to solve the corresponding equations of
motion. Our approach here is to apply the LDE directly to
the integral of Eq. �6� as in Refs. 5 and 6. We will consider
the potential

V�u� =
u2

2
+

	u4

4
. �8�

The dispersion relation in this case can be obtained using
Eq. �6� as

� =
��1 − 	A2

2�0
��1 − m sin2 
�−1/2d


, �9�

with m=	A2 /2�1+	A2�.
We consider the following approach to obtain the disper-

sion relation of a periodic traveling wave. This comes from
the equation for the period of oscillations,

T = �
−A

+A �2
�E − V�u�

du , �10�

where the total energy E is conserved and ±A are the classi-
cal turning points.

In the spirit of the LDE we interpolate the nonlinear
potential V�u� with a solvable potential V0�u� and define the
interpolated potential V��u�=V0�u�+��V�u�−V0�u��. Notice
that for �=1, V��u�=V�u� is just the original potential,
whereas for �=0 it reduces to V0�u�. Hence we can write Eq.
�10� as5,6

T� = �
−A

+A �2
�E0 − V0�u�

du
�1 + ���u�

, �11�

where

��u� =
E − E0 − V�u� + V0�u�

E0 − V0�u�
. �12�

Obviously E=V�A� and E0=V0�A�.
We treat the term proportional to � as a perturbation and
expand in powers of �. This allows us to write

e or copyright; see http://chaos.aip.org/about/rights_and_permissions
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T� = 	
n=0

�
�2n − 1�!!

n!2n �− 1�n� n�
−A

+A �2���u��n

�E0 − V0�u�
du . �13�

Observe that the integrals in each order of Eq. �13� have
ntegrable singularities at the turning points because ��±A� is
nite. Assume that 
��u�
��01 for u� �−A ,A�, which
appens if �, the arbitrary variational parameter, is chosen
ppropriately. Then, the series �13� converges uniformly for
�
1/�0, which includes the case �=1.

For the potential given in Eq. �8� we can choose V0�u�
1+�2 /2u2 as the interpolating potential and, hence, we
ave

��u� =
2

1 + �2�	

4
�a2 + u2� −

�2

2
� . �14�

he parameter � should be chosen to be �
�	A2 /2�1+1/	A2 which guarantees the uniform conver-

ence of Eq. �13�.
It is straightforward to check that at first order,

T�
�0� + �T�

�1� =
2�

�1 + �21 −
�

1 + �2�3

8
	A2 −

�2

2
�� . �15�

The PMS �7� with O=T yields

�PMS =
�3	A

2
. �16�
he period is found to be

rror

oaded 06 Feb 2011 to 132.248.9.8. Redistribution subject to AIP licens
TPMS =
4�

�4 + 3	A2
. �17�

Correspondingly,

�LDE�1� = �1 + 3
4	A2. �18�

In Ref. 6 it was found that with this value of �PMS all the
remaining terms of odd order in Eq. �13� vanish. Hence,
retaining only nonvanishing contributions, the expression for
the period at order N is

T�
�N� =

4�

�4 + 3	A2 	
n=0

N

�− 1�n�− 1/2

n
��− 1/2

2n
�� 	A2

4 + 3	A2�2n

,

�19�

and, correspondingly,

�LDE�N� =
2�

T�
�N� . �20�

At second order we have

�LDE�2� =
�4 + 3A2	

2�1 +
3A4	2�1024 + A2	�1536 + 611A2	��

1024�4 + 3A2	�4 � .

�21�
At third order, the dispersion relation is given by
�LDE�3� =
�4 + 3A2	

2�1 +
3A4	2�385A8	4 + 560A4	2�4 + 3A2	�2 + 1024�4 + 3A2	�4�

16384�4 + 3A2	�6 � . �22�
We will compare the results obtained using our method,
qs. �18�, �21�, and �22� with the results obtained in Ref. 1,
here the same problem has been solved using the harmonic
alance technique in combination with the linearization of
he nonlinear Klein-Gordon equation. The findings of Ref. 1
t first order, their expression for the dispersion relation co-
ncides with our Eq. �18�, whereas at the second order they
nd

Lim�2� =�40 + 31	A2 + �1024 + 1472	A2 + 421	2A4

72
.

�23�

In the left-hand panel of Fig. 1 we make a comparison of
he ratios of the dispersion relations obtained from Eqs. �18�
nd �21�–�23� to the exact dispersion relations for 	A20,
nd in the right-hand panel of Fig. 1 we display the relative
� = log10�� − �exact

�exact
� �24�

for 	A2�0. We can appreciate that our variational method at
second order provides a smaller error than the method of
Ref. 1 applied to the same order. The error is further reduced
by using the LDE to the third order and can then be system-
atically reduced using the general formula �19�.

III. FURTHER EXAMPLES

A. Sine-Gordon model

We now consider the Sine-Gordon model, which is gov-
erned by the potential

V�u� = − cos u �25�

and which allows us to write the nonlinear Klein-Gordon
equation, also known as the Sine-Gordon equation as
e or copyright; see http://chaos.aip.org/about/rights_and_permissions
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�2ü + sin u = 0. �26�

he exact dispersion relation in this case can be obtained
rom

� =
�

2�
0

�/2

�1 − m2 sin2 t�−1/2dt

�27�

ith m=sin�A /2�. Observe that in this case

T = 4�
0

�/2

�1 − m2 sin2 t�−1/2dt � 4K�m2� , �28�

ith K�m� being the elliptic integral of the first kind. We take
dvantage of this fact and make use of the nonperturbative
eries for the elliptic integral which was derived using the
DE technique.12 At order N, setting �=−m /2 and �=1, it is
iven by the following expression:

N�m,�� =
�

2 	
k=0

N

	
j=0

k

�
��j + 1/2�

j!2�k − j�!��1/2 − k�
�− m�k

2k−j�1 −
m

2
�k+1/2 . �29�

IG. 1. �Left� Ratio of the dispersion relation from Eqs. �18� and �21�–�23
elations for 	A2�0.
his expression provides a nonperturbative series for the el-

oaded 06 Feb 2011 to 132.248.9.8. Redistribution subject to AIP licens
liptic integral of the first kind since it does not correspond to
a simple polynomial in m.

To further improve this series we can use the Landen
transformation13

K�m� =
1

1 + �m
K� 4�m

�1 + �m�2� �30�

and the inverse relation

K�m� =
2�1 − �1 − m�

m
K� �− 2 + 2�1 − m + m�2

m2 � . �31�

Notice that f�m�=4�m / �1+�m�2 maps a value 0m1
into a new value m�= f�m��m. The inverse transformation
f −1�m�= �−2+2�1−m+m�2 /m2 maps a value m into a
smaller one. Using this transformation we obtain more accu-
rate approximations for the elliptic integrals. For example, at
order 1 we find

KLDE�1��m� =
�

�1 −
m

2
+ 3�1 − m

�32�

and, correspondingly

�LDE�1� =
1

4
�cos�A� + 12�cos�A

2
�� + 3. �33�

tly for 	A20 and �right� relative error � �see Eq. �24�� of the dispersion
At second order we find
�LDE�2� =

16 cos2�A

4
��3 + 12 cos�A

2
� + cos�A��2�2 + 2 cos�A

2
�sec4�A

4
�

2713 + 2520 cos�A

2
� + 2580 cos�A� + 360 cos�3A

2
� + 19 cos�2A�

. �34�
� exac
e or copyright; see http://chaos.aip.org/about/rights_and_permissions
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t is noticeable that �LDE�3�=�LDE�2�. In fact, for the follow-
ng consecutive orders, the same statement holds, i.e.,

LDE�5�=�LDE�4�, �LDE�7�=�LDE�6�, and so on. The same pat-
ern of equal value of the observables for consecutive orders
f approximation was found in Ref. 3 for the Duffing poten-
ial at large n.

For comparison, Lim et al.1 have found the dispersion
elation to be given at first order as

�Lim�1� =�2J1�A�
A

, �35�

nd at second order as

�Lim�2� = �g�A� + �g2�A� − h�A� , �36�

here

g�A� =
�b0 − b2 − b4 + b6�A + 18a1 + 2a3

36A
,

�37�

h�A� =
a1�b0 − b2 − b4 + b6�

18A
,

nd

a1 = 2J1�A�, a3 = − 2J3�A� ,

�38�
b2i = 2�− 1�iJ2i�A�, i = 0,1,2,3.

n�A� being the Bessel function of the first kind.
In the left-hand panel of Fig. 2 we display the ratio of

he dispersion relations from Eqs. �33�–�36� to the exact and
n the right-hand panel the corresponding relative errors.
rom the graphs we see that the LDE curve calculated to
econd order display much smaller errors than the curves
btained with the method of Lim et al. even close to A=�. A

FIG. 2. �Left� Ratio of the dispersion relation from Eqs. �33�–�36� ex
econd observation is that our formulas can be systematically

oaded 06 Feb 2011 to 132.248.9.8. Redistribution subject to AIP licens
improved simply by going to a higher order and that they do
not involve any special function, as in the case of Eq. �35�.

B. Pure quartic potential

Our final example is the Klein-Gordon equation in a
pure quartic potential

V�u� =
u4

4
, �39�

which leads to the equation of motion

ü + u3 = 0. �40�

This is a particular case of the first example where the
contribution of the quadratic term in potential �8� is ne-
glected. As such, the corresponding dispersion relation can
be derived from the expression of the period of oscillations,
Eq. �19�, since the quadratic term contributes with the l in the
square root in the front of the double sum and in the argu-
ment in the sum, and is simply given by

TLDE�N� =
4�

�3	A2 	
n=0

N

�− 1�n�− 1/2

n
��− 1/2

2n
� 1

32n �41�

and correspondingly �LDE�N� can be obtained as in Eq. �20�.
Results for the first three orders are the following:

�LDE�1� =
24�3A

49
, �42�

�LDE�2� =
13 824�3A

28 259
, �43�

�LDE�3� =
1 990 656�3A

4 069 681
. �44�

Lim et al. found, at first and second order of approxima-

and �right� relative error � �see Eq. �24�� of the dispersion relations.
actly
tion, respectively,

e or copyright; see http://chaos.aip.org/about/rights_and_permissions
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�Lim�1� =
�3

2
A ,

�45�

�Lim�2� =
1

12
�62 + 2�421A .

In the left-hand panel of Fig. 3 we display the ratio of
he approximate to the exact dispersion relation and in the
ight-hand panel the relative error from our findings at first,
econd, and third order and those of Ref. 1 given previously.
t first order, our findings perform just as the second order
f Lim et al.,1 and at second and third orders, the perfor-
ance of the variational results is excellent.

V. CONCLUSIONS

We have derived analytical expressions for the disper-
ion relations of the nonlinear Klein-Gordon equation for
ifferent potentials by means of the Linear Delta Expansion.
his technique is implemented by computing the period of
scillations in the given potential. In the particular example
f the Sine-Gordon potential, where the dispersion relation is
iven in terms of elliptic integrals, we have implemented the
DE to compute such an integral and, by means of the
anden transformation, we have obtained an improved series

or the elliptic integral. We have observed that the expression
btained by using the first few terms in this series performs
emarkably well even close to the A=�. We believe that our

IG. 3. �Left� Ratio of the dispersion relation from Eqs. �42�–�44�, and both
elations.
esults are appealing in two respects: first in that they pro-

oaded 06 Feb 2011 to 132.248.9.8. Redistribution subject to AIP licens
vide a systematic way to approximate the exact result with
the desired accuracy, and second in that the expressions that
we obtain never involve special functions, as in the case of
Ref. 1. An aspect that needs to be underlined is that the
method described in Sec. II provides a convergent series rep-
resentation for the dispersion relation, provided that the ar-
bitrary parameter fulfills a simple condition.
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