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Abstract

The basic tenet of the heterotrophic theory of the origin of life is that the maintenance and reproductio
first living systems depended primarily on prebiotically synthesized organic molecules. It is unlikely that a
gle mechanism can account for the wide range of organic compounds that may have accumulated on the
Earth, suggesting that the prebiotic soup was formed by contributions from endogenous syntheses in reduc
ronments, metal sulphide-mediated synthesis in deep-sea vents, and exogenous sources such as comets
and interplanetary dust. The wide range of experimental conditions under which amino acids and nucleob
be synthesized suggests that the abiotic syntheses of these monomers did not take place under a narrow
fined by highly selective reaction conditions, but rather under a wide variety of settings. The robustness of t
of chemistry is supported by the occurrence of most of these biochemical compounds in the Murchison m
These results lend strong credence to the hypothesis that the emergence of life was the outcome of a lon
necessarily slow, evolutionary processes. The origin of life may be best understood in terms of the dynam
evolution of sets of chemical replicating entities. Whether such entities were enclosed within membranes i
clear, but given the prebiotic availability of amphiphilic compounds this may have well been the case. This
is not at odds with the theoretical models of self-organized emerging systems, but what is known of biology
that the essential traits of living systems could have not emerged in the absence of genetic material able
express and, upon replication, transmit to its progeny information capable of undergoing evolutionary chan
such genetic polymer first evolved is a central issue in origin-of-life studies.
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1. Introduction

During a memorable 1939 lecture at the Royal Institution in London, wrote Max Perutz, the fa
John D. Bernal stated that “all protein that we know now have been made by other proteins, an
in turn by others”. How did such process got started? When Bernal repeated the same argum
later discussion, Perutz[67] adds, “the physicist W. H. Bragg asked him where the first protein had c
form. Instead of replying ‘I do not know’, Bernal skillfully sidestepped Bragg’s awkward question”

Perutz does not writes how Bernal avoided the issue raised by Bragg, but the story reveals th
scientific appeal that issues related to the nature of life and the origin of biological systems that h
brewing among physicists since the pre-DNA double helix times. Such trend, which was high
by Schrödinger’s 1945 seminal bookWhat is Life?, continues to this day, as shown by the manif
attempts to describe the emergence of life in terms of non-linear interactions and non-equilibriu
straints, the thermodynamics of irreversible processes, pattern formation, chaos, attractors, frac
more recently, complexity theory. Such approaches should be seen as open invitations to develo
disciplinary research programs but, as noted by Fenchel[16], in some cases invocations to spontane
generation appear to be lurking behind appeals to undefined “emergent properties” or “self-org
principles” that are used as the basis for what many life scientists see as grand, sweeping genera
with little relationship to actual biological phenomena.

The proposal of an heterotrophic origin of life is strongly supported by a number of rather succ
prebiotic simulation experiments, as well as by the characterization of organic molecules of bioch
significance in meteorites and other extraterrestrial minor bodies rich in organic material. These
lend strong credence to the hypothesis that the emergence of life was the outcome of a long,
necessarily slow, evolutionary processes. This conclusion is not at odds with the theoretical mo
highly complex functionally organized systems favored nowadays by some physicists, but as o
none of these have provided manageable descriptions of the origin of life. Mainstream evolu
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biologists and prebiotic chemists tend to be wary of explanations that assume that the emerg
life was the outcome of timeless mathematical or physical principles in which replication, selectio
adaptation play no role. Such lack of interest does not implies, of course, a belief that the natural pr
that led to the first life forms were exempt from the constraints imposed by physics, or that expla
on the appearance of life should reduce themselves to the issue of the emergence of nucleic acid
precursors. However, in spite of a number of mesmerizing theoretical and experimental analogs[39,94]
what is known of biology suggest that the essential traits of living systems could have not em
in the absence of genetic material able to store, express and, upon replication, transmit to its
information capable of undergoing evolutionary change. How such genetic polymer first evolved
of the most basic questions in origin-of-life studies. Those involved in this field know they have
to be modest about, and they tend to be. For most life scientists, research on the origin of life
be addressed conjecturally, in an attempt to construct a coherent, non-teleological historical n
with and inquiring and explanatory character[36]. How the current information on the distribution
abiotically synthesized organic compounds both in extraterrestrial environments and under sim
laboratory conditions can be combined with the idea of an RNA world is discussed in this review.

2. The physical setting of the origin of life

It is unlikely that the paleontological record will provide direct data on how life first appeared. T
is no geological evidence of the environmental conditions on the Earth at the time of the origin
nor any fossil register of the evolutionary processes that preceded the appearance of the first cel
information is lacking not only on the composition of the terrestrial atmosphere during the period
origin of life, but also on the temperature, ocean pH values, and other general and local environ
conditions which may or may not have been important for the emergence of life. Moreover, the att
of the first living organisms are unknown. They were probably simpler than any cell now alive, an
have lacked not only protein-based catalysis, but perhaps even the familiar genetic macromolecu
their ribose-phosphate backbones. It is possible that the only property they shared with extant or
was the structural complementarity between monomeric subunits of replicative genetic polymers
transmit to its progeny information capable of undergoing evolutionary change. Hence, caution m
exercised in extrapolating molecular phylogenies back into primordial times. Comparative geno
a blooming field that has an extraordinary potential for our understanding early cellular evolutio
it cannot be applied to events prior to the evolution of protein biosynthesis. Older stages are
amenable to this type of analysis, and the organisms at the base of universal phylogenies are
species, not primitive unmodified microbes.

However, the traits shared by all known living beings are far to numerous and complex to assu
they evolved independently. Minor differences in the basic molecular processes of the three m
lines can be distinguished, but all known organisms share the same genetic code and the sam
tial features of genome replication, gene expression, basic anabolic reactions, and membrane-a
ATPase mediated energy production. The molecular details of these universal processes provi
evidence of the monophyletic origin of all known forms of life, while their variations can be e
explained as the outcome of divergent processes from an ancestral lifeform,fons et origo of all contem-
porary organisms. When and how did such ancestral form arise?
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It is not possible to assign a precise chronology to the appearance of life. However, in the p
years estimates of the available time for this to occur have been considerable reduced. As shown
debates, determination of the biological origin of what have been considered the earliest traces
a rather contentious issue, an outcome of a scarce Archaean geological record with very few roc
than 3.5 billion years. Those that remain have been so extensively altered by metamorphic proce
any direct life evidence of life predating this limit has apparently been largely obliterated, and m
the rocks which have been preserved have been metamorphosed to a considerable extent[89].

Nevertheless, there is evidence that life emerged on Earth as soon as it was possible to do so. It
argued that the microstructures interpreted as cyanobacterial remnants in the 3.5 billion years-o
sediments of the Australian Warrawoona formation[78] could be the outcome of abiotic hydrotherm
processes[6,24]. However, recent analysis of 3.4 billion years-old South African cherts indicate
existence of photosynthetic microbial mats in ancient marine environments[87]. Such rapid developmen
speaks for the relatively short timescale required for the origin and early evolution of life on Eart
suggests that the critical factor may have been the presence of liquid water, which became po
soon as the planet’s surface finally cooled down.

Water provides the medium for chemical reactions to take place, and the polymers required
out the central biological functions of replication and catalysis. How did it accumulate on the pri
Earth? The depletion of rare gases in the Earth’s atmosphere compared to cosmic abundanc
that any primary atmosphere, if the planet ever had one, was rapidly lost[38]. Moreover, it is unlikely
that water made its first appearance on Earth as a liquid. Soon after the Earth was formed, the
of the volatiles trapped within the accreting planetesimals very likely lead to a secondary atmo
Since current evidence suggests that the Earth’s core formed when accretion was taking place,
of metallic iron from the upper mantle must have lead to a highly reduced atmosphere of volcanic
containing chemical species such as CH4, NH3 and H2. Due to the high surface temperature, however,
bulk of the atmosphere would have consisted of superheated steam[38]. However, large impact even
such as the one that lead to the Moon’s formation would have eroded this primitive atmosphere
would have been replaced by further outgassing events.

Moon-forming impacts must have been relatively rare, but it is generally accepted that duri
latter stages of the accretion process the influx of comet-like bodies that originated from further
the Solar System impacting the primitive Earth must have been considerable and could have le
accumulation of significant amounts of water and other volatiles[64]. Cometary nuclei, which appea
to be the most pristine materials surviving from the formation of the Solar System, may have su
organic compounds that could played a role in the origin of life on Earth[1,7,8,64].

One reason for proposing an extraterrestrial origin of the components of the prebiotic soup
CO2-rich model of the primitive Earth’s atmosphere[38]. Of course, the presence of an extraordina
complex array of organic molecules in meteorites, comets, interplanetary dust and interstellar mo
argues for the robustness of organic chemistry in the Universe, but also raises the issue of their
role in the origin of life. As noted below, it is likely that exogenous sources of organic compo
contributed to the synthesis of the primitive soup. The major sources of exogenous compound
appear to be comets and dust, with asteroids and meteorites being minor contributors. Asteroid
have impacted the Earth frequently during the Hadean and early Archean, but the amount of
material brought in would seem to be small, even if the asteroids are assumed to be Murchison m
type object. Carbonaceous chondrites, a class of stony meteorites, are among the most primitive
in the Solar System in terms of their elemental composition. The most extensively analyzed me
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for organic compounds include the Murchison and Murray meteorites, as well as the CI class
meteorite. The Murchison meteorite contains approximately 1.8% organic carbon, but most of
a polymer, and there are only about 100 parts per million of amino acids (which represents, as
a void volume of 10% and a density of approximately 2.0, 0.10 gm/kg meteorite, or 2.0 × 10−2 M
of amino acids). The majority (up to 80%) of the soluble organic matter in meteorites is made
polycyclic aromatic hydrocarbons (PAHs), followed by the carboxylic acids, the fullerenes and
acids, which are about an order of magnitude less abundant[5]. The purines adenine, guanine, xanth
and hypoxanthine have also been detected, as well as the pyrimidine uracil in concentrations of 2
parts per billion in the CM chondrites Murchison and Murray and in the CI chondrite Orgueil[84,85,
90]. In addition, a variety of other nitrogen-heterocyclic compounds including pyridines, quinoline
isoquinolines were also identified in the Murchison meteorite[86], as well as sugar acids (polyols)[10]
and membrane-forming lipidic compounds[12].

Comets are the most promising source of exogenous compounds[66]. At summarized elsewhere[3],
it is reasonable to assume that the atmosphere that developed on the Earth over the period 4.4–3
years ago was essentially a mix of volatiles delivered by bodies such as cometary nuclei, co
with the products of outgassing processes from the interior of an already differentiated plane
atmosphere was probably dominated by water steam until the surface temperatures dropped to∼100◦C
(depending on the pressure), at which point water condensed out to form early oceans[93]. As the
Earth had cooled down and the influx of myriads of comets and asteroids had settled down, the
chemical species, which were mainly supplied by volcanic outgassing and are very sensitive
radiation that penetrated through the atmosphere due to the lack of a protective ozone layer, were
destroyed by photodissociation, although there might have been steady state equilibrium betwe
two processes that allowed a significant amount of these reduced species to be present in the atm

3. Primordial heterotrophy and the emergence of life

It is generally believed that after Louis Pasteur had disproved the spontaneous generation of m
using his famous swam-necked flasks experiments, the discussion of life beginning’s had been v
to the realm of useless speculation. However, scientific literature of the first part of the 20th c
shows the many attempts by major scientists to solve this problem. The list covers a rather wid
of explanations that go from the ideas of Pflüger on the role of hydrogen cyanide on the origin
to those of Svante Arrhenius on panspermia, and includes Leonard Troland’s hypothesis of a pri
enzyme formed by chance events in the primitive ocean, Alfonso L. Herrera’s sulfocyanic theory
origin of cells, Harvey’s 1924 suggestion of an heterotrophic origin in a high-temperature environ
and the provocative 1926 paper that Hermann J. Muller wrote on the abrupt, random formatio
single, mutable gene endowed with catalytic and autoreplicative properties[43].

In spite of their diversity, most of these explanations went unnoticed, in part because they w
complete, speculative schemes largely devoid of direct evidence and not subject to fruitful exper
testing. Although some of these hypotheses considered life as an emergent feature of nature and a
to understand its origin by introducing principles of historical explanation, the dominant view was th
first forms of life had been photosynthetic microbes endowed with the ability fix atmospheric CO2 and to
use it with water to synthesize organic compounds. A major scientific breakthrough occurred, ho



52 L. Delaye, A. Lazcano / Physics of Life Reviews 2 (2005) 47–64

nce of
broth.
also by
ine, and
cker and
al, slow
idea of
trophic
uity of
been
t in the

not
des, i.e.,
eading
cetone).
f
oteins
ive book
e-
origin
hydes,
sulting

gate to
d. Like
ecause
l genetic
rops he

logi-
ork of

talytic
oluble
vatives,

rance of
n took
or the
at
uctive
when Oparin[60] suggested a hetrototrophic origin of life that assumed that prior to the emerge
the first cells a prebiotic synthesis of organic compounds led to the accumulation of the primitive

Such ideas were supported not only by the evidence of organic compounds in meteorites, but
the striking 19th experimental demonstrations that biochemical compounds such as urea, alan
sugars could be formed under laboratory conditions, as had been demonstrated by Wöhler, Stre
Butlerow, respectively. Oparin’s proposal, which was based on his Darwinian credence in a gradu
evolution from the simple to the complex, stood in stood in sharp contrast with the then prevalent
an autotrophic origin of life. Since a heterotrophic anaerobe is metabolically simpler than an auto
one, the former would necessarily have evolved first. Thus, based on the simplicity and ubiq
fermentative reactions, Oparin[60] suggested in a small booklet that the first organisms must have
heterotrophic bacteria that could not make their own food but obtained organic material presen
primitive milieu.

Careful reading of Oparin’s[60] pamphlet shows that, in contrast to common belief, at first he did
assume an anoxic primitive atmosphere. In his original scenario he argued that while some carbi
carbon-metal compounds, extruded from the young Earth’s interior would react with water vapor l
to hydrocarbons, others would be oxidized to form aldehydes, alcohols, and ketones (such as a
These molecules would then react among themselves and with NH3 originating from the hydrolysis o
nitrides (nitrogen-metals), to form “very complicated compounds”, as Oparin wrote, from which pr
and carbohidrates would form. These ideas were further elaborated and refined in a more extens
whose English translation was published in 1938[61]. In this book Oparin’s original proposal was r
vised, leading to the assumption of a highly reducing milieu in which iron carbides of geological
would react with steam to form hydrocarbons. Their oxidation would yield alcohols, ketones, alde
etc., that would then react with ammonia to form amines, amides and ammonium salts. The re
protein-like compounds and other molecules would form a hot dilute soup, in which would aggre
form colloidal systems such as coacervates, from which the first heterotrophic microbes evolve
many others at the time, Oparin did not address in his 1938 book the origin of nucleic acids, b
their role in genetic processes was not even suspected. Because of this, inheritance of primordia
information was assumed by Oparin to be the result of growth and division in the coacervate d
advocated as models of precellular systems.

4. Pyrite and the origin of life

Although by the late 19th century an autotrophic origin of life was part of mainstream bio
cal thought, currently the best known alternative to the heterotrophic theory stems from the w
Wächtershäuser[92]. According to this hypothesis, life began with the appearance of an autoca
two-dimensional chemolithotrophic metabolic system based on the formation of the highly ins
mineral pyrite. The synthesis in activated form of organic compounds such as amino acid deri
thioesters and keto acids is assumed to have taken place on the surface of FeS and FeS2 in envi-
ronments that resemble those of deep-sea hydrothermal vents. Replication followed the appea
non-organismal iron sulfide-based two-dimensional life, in which chemoautotrophic carbon fixatio
place by a reductive citric acid cycle, or reverse Krebs cycle, of the type originally described f
photosynthetic green sulphur bacteriumChlorobium limicola. Molecular phylogenetic trees show th
this mode of carbon fixation and its modifications (such as the reductive acetyl-CoA or the red
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malonyl-CoA pathways) are found in anaerobic archaea and the most deeply divergent eubacteri
has been interpreted as evidence of its primitive character[51]. This assumes, however, that the root
molecular phylogenetic trees can be extrapolated down to the very origin of life which, as argued
is a rather contentious issue.

The reaction FeS+ H2S= FeS2 + H2 is a very favourable one. It has an irreversible, highly exerg
character with a standard free energy change�G0 = −9.23 kcal/mol, which corresponds to a reductio
potentialE0 = −620 mV. Thus, the FeS/H2S combination is a strong reducing agent, and has b
shown to provide an efficient source of electrons for the reduction of organic compounds unde
conditions. Although pyrite-mediated CO2 reduction to amino acids, purines and pyrimidines is yet to
achieved, the FeS/H2S combination is a strong reducing agent that has been shown to reduce nitra
acetylene, as well as to induce peptide-bonds that result from the activation of amino acids with
monoxide and (Ni, Fe)S[34,51]. Acetic acid and pyruvic acid have been synthesized from CO u
simulated hydrothermal conditions in the presence of sulfide minerals[9,33]. However, the empirica
support for Wächtershäuser’s central tenets is meager. Life does not consist solely of metabolic
and none of these experiments proves that enzymes and nucleic acids are the evolutionary ou
multistep autocatalytic metabolic cycles surface-bounded to FeS/FeS2 or some other mineral. As argue
elsewhere[3], experiments using the FeS/H2S combination are also compatible with a more gene
modified model of the primitive soup in which pyrite formation is recognized as an important sou
electrons for the reduction of organic compounds.

5. Prebiotic syntheses of amino acids and nucleobases: an optimistic assessment

The hypothesis that the first organisms were anaerobic heterotrophs is based on the assump
abiotic organic compounds were a necessary precursor for the appearance of life. Experimental
in support of Oparin’s proposal of chemical evolution came first from Harold C. Urey’s laboratory, w
had been involved with the study of the origin of the Solar System and the chemical events ass
with this process. Urey had also considered the origin of life in the context of his proposal of a
reducing terrestrial atmosphere[88]. The first successful prebiotic amino acids synthesis was ca
out with an electric discharge and a strongly reducing model atmosphere of CH4, NH3, H2O, and H2

[52]. The result of this experiment was a large yield of a racemic mixture of amino acids, togethe
hydroxy acids, short aliphatic acids, and urea. One of the surprising results of this experiment w
the products were not a random mixture of organic compounds; rather, a relatively small num
compounds were produced in substantial yield. Moreover, with a few exceptions, the compound
of biochemical significance.

The mechanism of synthesis of the amino and hydroxy acids formed in the spark discharge exp
was investigated[52,53]. The presence of large quantities of hydrogen cyanide, aldehydes and k
in the water flask, which were clearly derived from the methane, ammonia, and hydrogen origin
cluded in the apparatus, showed not only that the amino acids were not formed directly in the
discharge, but were the outcome of a Strecker-like synthesis that involved aqueous phase rea
highly reactive intermediates. Detailed studies of the equilibrium and rate constants of these re
demonstrated that both amino- and hydroxy acids can be synthesized at high dilutions of HCN an
hydes in a simulated primitive ocean. The reaction rates depend on temperature, pH, HCN, N3, and
aldehyde concentrations, and are rapid on a geological time scale; the half-lives for the hydro
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the intermediate products in the reactions, amino- and hydroxy nitriles, are less than a thousand
0 ◦C, and there are no known slow steps[56].

A few years after the Miller experiment, Juan Oró, who had been studying the synthesis of amin
from an aqueous solution of HCN and NH3, reported the abiotic formation of adenine[63]. The synthesis
is indeed remarkable. If concentrated solutions of ammonium cyanide are refluxed for a few day
nine is obtained in up to 0.5% yield along with 4-aminoimidazole-5 carboxamide and the usual c
polymer[63,65]. This reaction, proceeds through the self-condensation of HCN to give diamino
onitrile, which according to[65], then reacts with formamidine to give adenine. Although in princ
adenine may be consider as a mere pentamer of HCN, under dilute aqueous solutions adenine
involves the formation and rearrangement of other precursors such as 2-cyano and 8-cyano aden[91].

In the scheme suggested by Oró[63], the limiting step is the reaction of diaminomaleonitrile w
formamidine, but as demonstrated by Ferris and Orgel[18], this can be bypassed by a two photon p
tochemical rearrangement of diaminomaleonitrile that proceeds readily with sunlight to give high
of amino imidazole carbonitrile. An additional possibility is that tetramer formation may have occ
in the primitive Earth in an eutectic solution of HCN–H2O, which could have existed in the polar regio
of an Earth of the present average temperature. High yields of the HCN tetramer have been r
by cooling dilute cyanide solutions to temperatures between−10 and−30◦C for a few months[74].
Production of adenine by HCN polymerization is accelerated by the presence of formaldehyde an
aldehydes, which could have also been available on the prebiotic environment[91].

The prebiotic synthesis of guanine, the other major purine present in extant living systems, w
studied in an experimental setting involving high concentrations of a number of precursors, inc
ammonia[75]. It has been proposed that together with guanine, other purines including hypoxa
xanthine, and diaminopurine could have been produced in the primitive environment by variation
adenine synthesis using aminoimidazole carbonitrile and aminoimidazole carboxamide[76]. A reexam-
ination of the polymerization of concentrated NH4CN solutions has shown that in addition to adeni
guanine is also produced at both−80 and−20◦C [47]. It is probable that most of the guanine obtain
from the polymerization of NH4CN is the product of diaminopurine, which reacts readily with water
undergoes a hydrolytic deamination to give guanine and some isoguanine. The yields of guanin
“one-pot” reaction synthesis of purines yields are 10–40 less than those of adenine, guanine, and
set of amino acids dominated by glycine have also been detected in dilute solutions of NH4CN which
were kept frozen for 25 years at−20 and−78◦C, as well as in the aqueous products of spark disch
experiments from a reducing experiment frozen for 5 years at−20◦C [48]. Moreover, formamide, which
is an hydrolytic product of HCN and is formed abundantly from the pyrolytic decomposition of
polymers, has been shown to react with HCN to produce adenine and formylpurine derivatives[72]. This
reaction, which is enhanced in the presence of mineral catalyst, including silica, alumina, zeoli
kaolin, is also known to yield cytosine and 4-hydroxypyrimidine[71,73].

The abiotic synthesis of cytosine in an aqueous phase from cyanoacetylene (HCC–CN) and
(NCO−) has been described[19,74]. Cyanoacetylene is abundantly produced by the action of a s
discharge on a mixture of methane and nitrogen, and cyanate can come from cyanogen (NCCN)
the decomposition of urea (H2N–CO–NH2) However, since it is rapidly hydrolyzed to CO2 and NH3, the
high concentrations of cyanate (>0.1 M) required in this reaction may be unrealistic.

Orotic acid, which is a biosynthetic precursor of uracil, was identified, albeit in low yields, amon
hydrolytic products of hydrogen cyanide polymers[21]. On the other hand, the reaction of cyanoaceta
hyde, which is produced in high yields from the hydrolysis of cyanoacetylene, with urea, first s
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by Ferris et al.[20], produces no detectable levels of cytosine. However, when the same non-v
compounds are concentrated in the laboratory modelling of “evaporating pond” conditions sim
primitive evaporating lagoons or pools on drying beaches on the early Earth, surprisingly high a
of cytosine (>50%) are observed[68]. A related synthesis under evaporating conditions uses cyan
etaldehyde with guanidine, which produce diaminopyrimidine[20] with very high yields[69]. Although
it is unlikely that high amounts of diaminopyrimidine were present in the primitive Earth, both urac
very low yields of cytosine result from its hydrolysis. The effectiveness of formamide as a prebiot
cursor of a mixture of both purines and pyrimidines in the presence of TiO2 [71,73]suggest that in suc
environments simple minerals could have also promoted the synthesis of nucleobases in the p
environment from hydrolytic products of HCN and other reactants that may have been easily ava

It is unlikely that high amounts of diaminopyrimidine were present in the prebiotic environment.
ever, a wide variety of other modified nucleic acid bases may have been available in the early Ea
list includes isoguanine, which is a hydrolytic product of diaminopurine[47], as well as other modifie
purines which are the outcome of side reactions of both adenine and guanine with a number of d
amines under the concentrated conditions of a drying pond[46], including a number of methylated base

6. How did organic compounds accumulate in the prebiotic soup?

The easiness of formation under reducing conditions (CH4 + N2, NH3 + H2O, or CO2 + H2 + N2) in
one-pot reactions of amino acids, purines, and pyrimidines strongly suggest these molecules wer
in the prebiotic broth. Experimental evidence suggests that urea, alcohols, sugars formed by t
enzymatic condensation of formaldehyde, a wide variety of aliphatic and aromatic hydrocarbon
carboxylic acids, and branched and straight fatty acids, including some which are membrane-
compounds, were also components of the primitive soup. The remarkable coincidence between t
cular constituents of living organisms and those synthesized in simulation experiments is too str
be fortuitous, and the robustness of this type of chemistry is supported by the occurrence of most
biochemical compounds in the 4.5×109 years-old Murchison carbonaceous meteorite, which also y
evidence of liquid water in its parent body[14].

These results are extremely encouraging, but it should be emphasized that the atmospheric c
tion that formed the basis of the Miller–Urey experiment is not considered today to be plausible by
researchers. Although it is generally agreed that free oxygen was absent from the primitive Eart
is no agreement on the composition of the primitive atmosphere; opinions vary from strongly re
(CH4 + N2, NH3 + H2O, or CO2 + H2 + N2) to neutral (CO2 + N2 + H2O). In general, non-reducin
atmospheric models are favoured by planetary scientists, while prebiotic chemists lean toward
reducing conditions, under which the abiotic syntheses of amino acids, purines, pyrimidines, an
compounds are very efficient.

Although Miller and Urey originally rejected the idea of nonreducing conditions for the primitiv
mosphere, a number of experiments were later on carried out in his laboratory using CO and CO2 model
atmospheres[77]. It was found that not only were the yields of the amino acids reduced, but that as
mosphere became less reducing and more neutral, the yields of synthesized organic compounds d
drastically and glycine was basically the only amino acid synthesized[56]. The presence of methane a
ammonia appeared to be especially important for the formation of a diverse mixture of amino aci
main problem in the synthesis of amino acids and other biologically relevant organic compound
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nonreducing atmospheres is the formation of hydrogen cyanide (HCN), which is an intermediate
Strecker pathway and an important precursor compound for the synthesis of nucleobases[21,63]. How-
ever, localized high concentrations of reduced gases may have existed around volcanic eruption
these localized environments reagents such as HCN, aldehydes and ketones could have been
which after dissolving into the primitive oceans could have taken part in the prebiotic synthesis of o
molecules.

Because of problems associated with the direct Miller–Urey type syntheses on the early Ea
ferent hypotheses for the abiotic synthesis of organic compounds has been proposed. One p
that has been suggested resulted from the discovery of hydrothermal vents, which have been p
as the site where prebiotic synthesis took place and life originated[11,32]. A further refinement of this
hypothesis has led Everett Shock and his coworkers to argue, based on calculations of thermod
based equilibria, that such environments favor the formation of compounds such as amino acids
temperatures[81], especially in vents associated with off-axis systems[40].

As recognized long ago by Harvey[29], a major advantage of high temperatures is that the chem
reactions would go faster, and the primitive enzymes, once they appeared, could have been less
However, the price paid is manifold: such high-temperature regimes would lead to (a) reduced c
trations of volatile intermediates, such as HCN, H2CO and NH3; (b) lower steady-state concentratio
of prebiotic precursors like HCN, which at temperatures a little above 100◦C undergoes hydrolysis t
formamide and formic acid and, in the presence of ammonia, to NH4HCO2; (c) instability of reactive
chemical intermediates like amino nitriles (RCHO(NH2)CN), which play a central role in the Streck
synthesis of amino acids; and (d) loss of organic compounds by thermal decomposition and dim
stability of genetic polymers[4,54,55].

Survival of nucleic acids is limited by the hydrolysis of phosphodiester bonds[50], and the stability
of Watson–Crick helices (or their pre-RNA equivalents) is strongly diminished by high-tempera
For an RNA-based biosphere the reduced thermal stability on the geologic timescale of ribose a
sugars is the worst problem[42], but the situation is equally bad for pyrimidines, purines and some a
acids. As reviewed elsewhere[55], the half-life of ribose at 100◦C and pH 7 is only 73 min, and othe
sugars (2-deoxyribose, ribose-5-phosphate, and ribose 2,4-biphosphate) have comparable half-l[42].
The half-life for hydrolytic deamination of cytosine at 100◦C lies between 19 and 21 days[25,45,80],
although at 100◦C the half-life of uracil is approximately 12 years[45]. At 100◦C the thermal stability
of purines is also reduced: between 204 to 365 days for adenine[23,45,79], with comparable values fo
guanine[45]. These results imply that if the origin of life was sufficiently long, all the complex org
compounds in the ocean, whether derived from home-grown synthesis or from exogenous delivery
be destroyed by passage through the hydrothermal vents. It is thus possible that hydrothermal v
much more effective in regulating the concentration of critical organic molecules in the oceans
than playing a significant role in their direct synthesis.

The difficulties involved with the endogenous synthesis of amino acids and nucleobases have le
development of alternatives. It is likely, for instance, that geological sources of hydrogen, such as
may have been available; in the presence of ferrous iron, a sulfide ion (SH−) would have been converte
to a disulfide ion (S2−), thereby releasing molecular hydrogen[51]. In addition, an analysis of Oro’
1961 suggestion on the role of cometary nuclei as sources of volatiles to the primitive Earth, h
to the reassessment of the proposal that the exogenous delivery of organic matter by asteroids
and interplanetary dust particles (IDPs) could have played a significant role in the prebiotic accum
of the compounds necessary for the origin of life[8]. If this idea is correct, impacts on the early Ea
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could have led to devastating conditions which made it difficult for life to originate, but also deli
the raw material necessary for setting the stage for the origin of life. It is also possible that the imp
iron-rich asteroids enhanced the reducing conditions, and that cometary collisions led to localize
ronments favouring organic synthesis. Based on what is known about prebiotic chemistry and m
composition, if the primitive Earth was non-reducing, then the organic compounds required mu
been brought in by interplanetary dust particles, comets, and meteorites, a hypothesis that requ
a significant percentage of meteoritic amino acids and nucleobases could survive the high temp
associated frictional heating during atmospheric entry, and become part of the primitive broth.

This eclectic view in which the prebiotic soup is formed by contributions from endogenous synt
extraterrestrial organic compounds delivered by comets and meteorites, and pyrite-mediated CO
tion does not contradict the heterotrophic theory. Even if the ultimate source of the organic mo
required for the origin of life turns out to be comets and meteorites, recognition of their extraterr
origin is not a rehabilitation of panspermia (e.g., the hypothesis that life existed elsewhere in th
verse and had been transferred from planet to planet, eventually gaining a foothold on the Earth
acknowledgement of the role of collisions in shaping the primitive terrestrial environment.

7. Prebiotic polymers and the RNA world

Regardless of its ultimate sources, the organic material that may have accumulated on the ea
before life existed very likely consisted of a wide array of different types of compounds, including
of the simple compounds that play a major role in biochemistry today. How these abiotic organ
stituents were assembled into polymers and then into the first living entities is currently one th
challenging areas of research in the study of the origin of life. There is no evidence of abiotical
duced oligopeptides or oligonucleotides in the Murchison meteorite, but condensation reactions
took place in the primitive Earth. Synonymous terms like ‘primitive soup’, ‘primordial broth’, or ‘D
win’s warm little pond’ have led in some cases to major misunderstandings, including the sim
image of a worldwide ocean, rich in self-replicating molecules and accompanied by all sorts
chemical monomers. The term ‘warm little pond’, which has long been used for convenience, re
parts of the hydrosphere where the accumulation and interaction of the products of prebiotic sy
may have taken place. These include not only membrane-bound systems, but also oceanic se
intertidal zones, shallow ponds, fresh water lakes, lagoons undergoing wet-and-dry cycles, and
environments (e.g., glacial ponds), where evaporation or other physicochemical mechanisms
the adherence of biochemical monomers to active surfaces) could have raised local concentrat
promoted polymerization[3].

Simple organic compounds dissolved in the primitive oceans or other bodies of water woul
to be concentrated by some mechanism. Selective adsorption of molecules onto mineral surfac
have promoted their polymerization, as suggested by laboratory simulations using a variety of
compounds and activated monomers[17,30,31]. The potential importance of mineral assisted catal
is demonstrated by the montmorillonite promoted polymerization of activated adenosine and
derivatives producing 25–50-mer oligonucleotides[17], the general length range considered neces
for primitive biochemical functions.

Since absorption onto surfaces involves weak non-covalent van der Waals interactions, the
based concentration process and subsequent polymerization would be most efficient at cool temp
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[49,82]. However, as the length of polymers formed on mineral surfaces increases, they becom
firmly bound to the mineral[22,62]. In order for these polymers to be involved in subsequent interac
with other polymers or monomers they would need to be released. This could be accomplished b
ing the mineral although this would also tend to hydrolyze the absorbed polymers, or by concentra
solutions[30], a process that could take place in tidal regions during evaporation or freezing of se
and that would have led to the release of polymers.

As summarized elsewhere[2], direct concentration of dilute solutions of monomers could also
accomplished by evaporation and by eutectic freezing of dilute aqueous solutions. The evapor
tidal regions and the subsequent concentration of their organic constituents has been propos
synthesis of a variety simple organic molecules[57]. Salty brines may have also been important in
formation of peptides and perhaps other important biopolymers as well. As summarized by Rod[70],
salt-induced peptide formation reaction may provide an abiotic route for the formation of peptid
rectly from amino acids in concentrated NaCl solutions containing Cu(II). Yields of di- and tripeptid
the 0.4–4% range have been reported using starting amino acid concentrations in the 40–50 mM
Clay minerals such as montmorillonite apparently promote the reaction, which could have taken p
evaporating tidal pools and where the required concentrated salty brines would have been eas
able. It has been shown that the freezing of dilute solutions of activated amino acids at−20◦C yields
peptides at higher yields than in experiments with highly concentrated solutions at 0 and 25◦C [49], and
recent studies have shown that eutectic freezing is especially effective in the non-enzymatic synt
oligonucleotides[37].

It is very unlikely, however, that the RNA world would have arisen from such process. How the u
tous nucleic acid-based genetic system of extant life originated is one of the major unsolved prob
contemporary biology. The discovery of catalytically active RNA molecules gave considerable cr
ity to prior suggestions of that the first living organisms were largely based on ribozymes, an hypo
stage called the RNA world[27,35]. This possibility is now widely accepted, but the chemical labi
of RNA components suggests that this molecule was not a direct outcome of prebiotic evoluti
may have been one of the evolutionary outcomes of what are now referred to as pre-RNA worlds
ever, the chemical nature of the first genetic polymers and the catalytic agents that may have for
pre-RNA worlds that bridged the gap between the prebiotic broth and the RNA world are com
unknown and can only be surmised. Modified nucleic acid backbones have been synthesized
either incorporate a different version of ribose or lack it altogether. Experiments on nucleic aci
hexoses instead of pentoses, and on pyranoses instead of furanose[15], suggests that a wide variety
informational polymers is possible, even when restricted to sugar phosphate backbones. One po
that has not been explored is that the backbone of the original informational macromolecules m
been atactic (e.g., disordered) kerogen-like polymers such as those formed in some prebiotic sim
There are other possible substitutes for ribose, including open chain, flexible molecules that lac
metric carbons. One of the most interesting chemical models for a possible precursor to RNA in
the so-called peptide nucleic acids (PNAs), which have a polypeptide-like backbone of achiral 2-
ethyl-glycine, to which nucleic acid bases are attached by an acetic acid[58]. Such molecules form ver
stable complementary duplexes, both with themselves and with nucleic acids. Although they lack
their functional groups are basically the same as in RNA, so they may also be endowed with c
activity.

Identification of adenine, guanine, uracil and other nucleobases in the Murchison meteorite s
the idea that these bases were present in the primitive environment. However, it is likely that other
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cycles capable of forming hydrogen bonding were also available. The Watson–Crick base-pair ge
permits more than the four usual nucleobases, and simpler genetic polymers may not only hav
the sugar-phosphate backbones, but may also have depended on alternative non-standard hydro
ing patterns. The search for experimental models of pre-RNA polymers will be rewarding but di
it requires the identification of potentially prebiotic components and the demonstration of thei
enzymatic template-dependent polymerization, as well as coherent hypothesis of how they m
catalyzed the transition to an RNA world.

8. The transition towards a DNA/RNA/protein world

RNA molecules adsorbed onto clays such as montmorillonite, which can catalyze the forma
RNA oligomers, can be encapsulated into fatty acid vesicles whose formation in turn is acceler
the clay. By incorporating additional fatty acid micelles, these vesicles can grow and divide whi
retaining a portion of their contents needed to support RNA replication. In this manner, some of th
machinery needed for RNA self-replication could have been compartmentized into proto-type cel[28].

As hypothesized elsewhere[2], it is possible that by the time RNA-based life appeared on E
the supplies of simple abiotic organic compounds derived from the sources discussed above h
greatly diminished. Many of the components of the primordial soup may have been extensive
verted into polymers including those associated with living entities, and the raw materials nee
sustain life may have been largely exhausted. This implies that the origin of simple metabolic-like
ways must have been in place in order ensure a supply in the ingredients needed to sustain the
of the primitive living entities. In this case, some metabolic pathways needed to produce essenti
ponents required by primitive living entities were perhaps originally non-enzymatic or semi-enzy
autocatalytic processes that later became fine tuned as ribozyme-mediated and protein-based e
processed began to dominate[44].

All known organisms share the same essential features of genome replication, gene expressi
anabolic reactions, and membrane-associated ATPase mediated energy production. The molecu
of these universal processes not only provide direct evidence of the monophyletic origin of all
forms of life, but also imply that the sets of genes encoding the components of these complex tra
frozen a long time ago, i.e., major changes in them are very strongly selected against and ar
No ancient incipient stages or evolutionary intermediate of these molecular structures are known
discussed below, in some cases the existence of graded intermediates can be deduced.

It is possible that the invention of protein synthesis and the encapsulation of reaction machinery
for replication may have taken place during the RNA world[2]. The fact that RNA molecules are capab
of performing by themselves all the reactions involved in peptide-bond formation suggests that
biosynthesis evolved in an RNA world[95], i.e., that the first ribosome lacked proteins and was form
only by RNA. This possibility is supported by the crystallographic data that has shown that ribo
catalytic site where peptide bond formation takes place is composed solely of RNA[59]. As underlined
by Kumar and Yarus[41], four of the central reactions involved in protein biosynthesis are catal
by ribozymes, and their complementary nature suggests suggestive that they may have first app
the RNA world. If this was the case, then the origin of a primitive nucleobase code used for p
biosynthesis had its origin in the RNA world although the bases used in the early code could ha
different from the ones used today[68].
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Clues to the genetic organization of primitive forms of translation are also provided by para
genes, which are sequences that diverge not through speciation but after a duplication event. For
the presence in all known cells of pairs of homologous genes encoding two elongation factors, wh
GTP-dependent enzymes that assist in protein biosynthesis, provide evidence of the existence o
primitive, less-regulated version of protein synthesis took place with only one elongation factor. I
the experimental evidence of in vitro translation systems with modified cationic concentrations l
both elongation factors and other proteinic components[26,83] strongly supports the possibility of a
older ancestral protein synthesis apparatus prior to the emergence of elongation factors.

The same is true of other enzymes. The high levels of genetic redundancy detected in all se
genomes imply not only that duplication has played a major role in the accretion of the complex ge
found in extant cells, but also that prior to the early duplication events revealed by the large
families, simpler living systems existed which lacked the large sets of enzymes and the sophi
regulatory abilities of contemporary organisms. The variations of traits common to extant spec
be easily explained as the outcome of divergent processes from an ancestral lifeform that exist
to the separation of the Bacteria, the Archaea and the Eucarya, i.e., the last common ancestor (
cenancestor. Universal gene-based phylogenies ultimately reach such single universal entity, wh
likely was part of a population of similar entities existed throughout the same period. They may ha
survived, but some of their genes did if they became integrated via lateral transfer into the LCA g
As reviewed elsewhere[13], the cenancestor should be seen as one of the last evolutionary outco
a series of ancestral events including lateral gene transfer, gene losses, and paralogous duplica
took place before the separation of the three major cell lineages. Recognition that cellular geno
historical documents recording at least part of past evolutionary events has allowed important
into simpler biological systems that appear to have lacked DNA genomes, but that can be consid
sically RNA/proteins cells far removed, if not time, at in complexity with respect the first living syst

9. Conclusions

The understanding of the origin of life requires, wrote John D. Bernal several decades ago, re
scientist with a deep knowledge in geology, chemistry, biology, astrophysics, theoretical physics,
tology and philosophy. Since such polymaths are rare, we must either work in multidisciplinary te
focus our attention in a particular issue within the framework and methodologies of one of these fi
is true that physical and biological sciences should be seen as conceptual allies. However, Darwin
successfully resisted reduction to physics, and the development of complex system systems d
advocated by many theoreticians has failed to provide manageable descriptions of the origin of l
emergence of life may be best understood in terms of the dynamics and evolution of sets of c
replicating entities. Whether such entities were enclosed within membranes is not yet clear, but g
prebiotic availability of amphiphilic compounds this may have well been the case.

As implied here, the most successful applications of physical sciences in the understanding
biotic evolution have resulted from those areas directly related to the reconstruction of the pr
environment, i.e., astrophysics, planetary sciences, and the like, as well as those pertaining the fo
and stability of monomers and polymers of biochemical significance, including the physicochemi
membrane-forming compounds. As emphasized in this review, the study of the emergence of life
a chemical problem in which the transition from the results of purely physical and chemical pro
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still poorly understood processes to replicative systems capable of undergoing natural selection.

It is likely that no single mechanism can account for the wide range of organic compounds th
have accumulated on the primitive Earth, and that the prebiotic soup was formed by contribution
endogenous syntheses in a reducing atmosphere, metal sulfide-mediated synthesis in deep-sea
exogenous sources such as comets, meteorites and interplanetary dust. Of course, not all prebi
ways are equally efficient, but the wide range of experimental conditions under which organic com
can be synthesized demonstrates that prebiotic syntheses of the building blocks of life are robust
abiotic reactions leading to them do not take place under a narrow range defined by highly s
reaction conditions, but rather under a wide variety of experimental settings. Our ideas on the p
synthesis of organic compounds are based largely on experiments in model systems. The robu
this type of chemistry is supported by the occurrence of most of these biochemical compound
Murchison meteorite. This makes it plausible, but does not proves, that similar synthesis took p
the primitive Earth. For all the uncertainties surrounding the emergence of life, it appears to us
formation of the prebiotic soup is one of the most firmly established events that took place in the pr
Earth.

Thus, if convincing processes can be demonstrated for the origin of life on Earth, then it is reas
to conclude that life is the natural outcome of an evolutionary process, and that it may have ap
elsewhere in the Universe. Although we do not know how the transition from the non-living to the
took place, most of the modern scenarios start out with relative simple organic molecules, now kn
be widely distributed, which are readily synthesized, and hypothesized to undergo further evolu
changes leading into self-maintaining, self-replicative systems from which the current DNA/pr
based biology resulted.
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