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Parsimony analysis of endemicity (PAE) was used to analyse the distributional patterns of 124 species of Mexican
gymnosperms, using two different sample units: grid-cells and biogeographical provinces. PAE analyses were based
on distributional data from herbarium specimens and specialized literature. Two data matrices were constructed
for 60 grid-cells of 2° and 14 biogeographical provinces. The analysis of the 2° grid-cell matrix led to 7084
cladograms. The strict consensus cladogram showed several clades equivalent to the results obtained with the
biogeographical provinces. Three clades agree with some principal regions of distribution of Mexican pines,
previously identified by several authors, located at the northern portion of the Baja California peninsula, the Sierra
Madre Occidental, and the Sierra Madre Oriental. These areas represent important centres of species diversity and
endemism for Mexican gymnosperms. The analysis of the province matrix led to two most parsimonious cla-
dograms, which only differed in the position of the Sierra Madre Occidental province. The iterative procedure PAE
with progressive character elimination was applied to identify generalized tracks, where clades of provinces were
considered equivalent to generalized tracks, and each time a cladogram was obtained, species defining its clades
were deleted and a new run was undertaken. We found five generalized tracks, mainly located in montane
provinces. The distribution patterns of gymnosperms agree with the existence of several Mexican biogeographical
provinces, and a different historical biogeography of the Mexican peninsulas from the rest of the country is
evident. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 92, 405–417.
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INTRODUCTION

Gymnosperms are woody plants mainly distributed
in temperate forests and arid scrubs, which inhabit
temperate zones of both hemispheres and have been
important elements in fossil and extant plant com-
munities (Contreras-Medina & Luna, 2002). Presence
of gymnosperms in the fossil record of Mexico that
can be related to extant genera are traced back to
the Eocene (Martínez-Hernández & Ramírez, 1996).

These plants deserve special attention from the
historical biogeographical viewpoint due to their
antiquity, and because tectonic events and climatic
change have been important to shape their distribu-
tional patterns. Studies on the geographical distribu-
tion of these plants in Mexico are imperative not only
theoretically, but also practically, especially for some
groups with great economic value and some threat-
ened taxa included in some risk category.

Gymnosperms represent approximately 2% of
the Mexican plant species diversity, in contrast to
angiosperms and pteridophytes (Contreras-Medina,
2004). Mexico is the richest country in species of
Ceratozamia, Dioon, and Pinus (Contreras-Medina,*Corresponding author. E-mail: ilv@hp.fciencias.unam.mx
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2004) and represents an important centre of diversity
and endemism at worldwide level (Osborne, 1995;
Farjon & Styles, 1997).

Parsimony analysis of endemicity (PAE) was devel-
oped by Rosen (1984, 1988) and Rosen & Smith (1988)
to address the shortcomings of phenetic approaches
used to assess area relationships of fossil or recent
assemblages from different areas (Porzecanski &
Cracraft, 2005). It takes as starting point the
presence/absence of data for a set of sample localities
and a particular taxon (Rosen & Smith, 1988). With
this information, a data matrix of areas ¥ taxa is
constructed and analysed (Luna et al., 2001). Shared
presences are analogous to synapomorphies in phylo-
genetic systematics, and areas are grouped according
to the most parsimonious cladogram, which represent
nested sets of areas. The cladogram is rooted with a
hypothetical area or locality coded with all zeros, and
represents a sample area or locality without any of
the taxa from the remaining localities or areas.
Compared to cladistic biogeography, PAE can be
applied to taxa whose phylogenetic relationships are
unknown. Notwithstanding that phylogenies com-
prising Mexican species of Ceratozamia (González &
Vovides, 2002), Dioon (Moretti et al., 1993), Ephedra
(Huang, Giannasi & Price, 2005), and Pinus (Ger-
nandt et al., 2005) are available, other taxa, namely
Taxus, Taxodium, Cupressus, Juniperus, and Podo-
carpus, among others, do not have these analyses.
Thus, we run a PAE to include all the Mexican species
of gymnosperms, which led us generate hypotheses
about the biogeography of these seed plants.

PAE was originally applied using localities as units
(Rosen & Smith, 1988; Rosen, 1988). Other authors
have used this method to assess relationships among
predetermined areas of endemism (Craw, 1988;
Cracraft, 1991; Morrone, 1994b; Morrone et al., 1999;
Espinosa et al., 2000; Ron, 2000; Aguilar-Aguilar
et al., 2003), grid-cells (Morrone, 1994a; Cavieres
et al., 2002; Morrone & Escalante, 2002; Rojas-Soto,
Alcántara & Navarro, 2003; Méndez-Larios et al.,
2005), hydrological basins (Aguilar-Aguilar et al.,
2003), real and virtual islands (Maldonado & Uriz,
1995; Morrone, 1998; Luna et al., 1999, 2001; Trejo-
Torres & Ackerman, 2001), and transects (Trejo-
Torres & Ackerman, 2002; García-Trejo & Navarro,
2004; León-Paniagua et al., 2004; Navarro et al.,
2004). An additional implementation is track analysis
(Craw, Grehan & Heads, 1999; Luna et al., 2001;
Morrone & Márquez, 2001). To determine areas of
endemism, grid-cells were used in such a way that
nested sets observed in the cladogram represented
areas of endemism, if each set was supported by at
least two taxa (Morrone, 1994a; Morrone & Escal-
ante, 2002). Craw et al. (1999) considered that PAE is
a method for recognizing generalized tracks through

the discovery of nested sets of biogeographical units,
which was previously suggested by Smith (1992) and
further applied by Luna et al. (2001) and Morrone &
Márquez (2001).

In Mexico, PAE has been applied to different geo-
graphical units. Grid-cells as unit areas have been
applied to Mexican terrestrial mammals (Morrone &
Escalante, 2002), birds of the Baja California Penin-
sula (Rojas-Soto et al., 2003), and flowering plants
of the Valle de Tehuacán-Cuicatlán (Méndez-Larios
et al., 2005). Gymnosperms have been never included
in this type of analysis.

In the present study, we analyse the distributional
patterns of Mexican gymnosperms using PAE with
two different sample units (grid-cells and predeter-
mined areas of endemism, represented by biogeo-
graphical provinces) and also detect generalized
tracks. We intend to test previous hypotheses and to
explore the potential of gymnosperms for biogeo-
graphical analyses.

MATERIAL AND METHODS

Distributional data of gymnosperm species were
obtained from the revision of 1462 herbarium speci-
mens deposited in the following collections: MO,
MEXU, ENCB, XAL, IEB, XALU, IBUG, FCME, and
INIF (acronym sensu Holmgren, Holmgren & Barnett,
1990). In addition, floristic and revisionary published
studies were reviewed (Zanoni & Adams, 1979;
Wiggins, 1980; Zanoni, 1982; Vovides, 1983, 1999;
Stevenson et al., 1986; Patterson, 1988; Espinosa,
1991; McVaugh, 1992; Zamudio, 1992, 2002; Moretti
et al., 1993; Fonseca, 1994; Zamudio & Carranza, 1994;
Farjon & Styles, 1997; Medina & Dávila, 1997; Narave
& Taylor, 1997; Aguirre-Planter, Furnier & Eguiarte,
2000; Felger, 2000; Contreras-Medina, Luna & Alcán-
tara, 2001, 2003). Botanical field explorations were
carried out in the states of Hidalgo, Querétaro, Estado
de México, Puebla, and Oaxaca to obtain field data and
additional distribution information of some species.

We used two different units of analysis to run PAE:
grid-cells of 2° latitude ¥ 2° longitude and Mexican
biogeographical provinces (Fig. 1) proposed by Mor-
rone (2005). We used 124 species (columns) to con-
struct two data matrices; the number of areas (rows)
varied according to the different units analysed, 60
grid-cells of 2° latitude ¥ 2° longitude (Supplementary
Material, Table S1) and 14 biogeographical provinces
(Supplementary Material, Table S2). Both matrices
included one row coded with all zeros to root the area
cladograms. The analyses were carried out with the
heuristic search option in Nona (Goloboff, 1999)
through Winclada (Nixon, 2002). When more than one
cladogram resulted from the analysis, a strict consen-
sus cladogram was constructed.
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Morrone (1994a) proposed PAE as a tool to detect
areas of endemism, using grid-cells as units based on
their shared species, where one group of grid-cells
defined at least by two taxa represents an area of
endemism. We draw the grid-cells on a map of Mexico,
including only those where at least one species was
recorded. With this information, we constructed a
data matrix (Supplementary Material, Table S1) as
explained above and a parsimony analysis was per-
formed. The resultant cladogram grouped those grid-
cells with shared species, and those groups were
superimposed onto the map of grid-cells, delimiting
the areas of endemism.

The application of PAE using Mexican biogeo-
graphical provinces to construct generalized tracks
was implemented by Morrone & Márquez (2001). The
nested sets of biogeographical provinces obtained
from the resulting cladograms were used to construct
generalized tracks. PAE may be considered as a
method of nesting panbiogeographical tracks in a
hierarchical scheme (Smith, 1992). Details about the
panbiogeographical approach are provided by Craw
et al. (1999). We followed the iterative procedure PAE
with progressive character elimination (Luna et al.,
2000; García-Barros et al., 2002) where, each time
that a set of cladograms was obtained, the species
defining the clades (synapomorphies) were deleted
and a new run was undertaken. The major clades
obtained and supported by the congruent distribu-
tions of two or more species in each run were con-
verted into generalized tracks, by joining together the

provinces included in the same clade by their minimal
geographical distance. Gymnosperm species defining
each track are listed in Table 1.

RESULTS AND DISCUSSION
GRID-CELLS

The analysis of the grid-cell matrix produced 7084
cladograms of 382 steps, consistency index of 0.32 and

Figure 1. Biogeographical provinces of Mexico according to Morrone (2005). alt, Mexican Plateau; bal, Balsas Basin; bc,
Baja California; clf, California; chi, Chiapas; gm, Gulf of Mexico; pac, Pacific Coast; sme, Sierra Madre Oriental; smo,
Sierra Madre Occidental; sms, Sierra Madre del Sur; son, Sonora; tam, Tamaulipas; vol, Transmexican Volcanic Belt; yuc,
Yucatan Peninsula.

Table 1. Generalized tracks and examples of species
defining them

Track
Total of species
involved Examples

a 5 Ephedra californica,
Juniperus californica, and
Pinus lambertiana

b 24 Cupressus lusitanica,
Juniperus flaccida, Pinus
leiophylla, Pinus teocote,
and Pseudotsuga menziesii

c 2 Ceratozamia latifolia and
Ceratozamia microstrobila

d 3 Abies hickelii, Pinus
lawsonii, and Pinus
pringlei

e 2 Podocarpus oleifolius and
Zamia splendens
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retention index of 0.56. The strict consensus cla-
dogram (Fig. 2), with 462 steps, a consistency index of
0.27, and a retention index of 0.43, showed a poly-
tomy composed of 21 grid-cells, three major compo-
nents and three small clades (composed of two or
three grid-cells each). The largest component (1) com-
prised grid-cells from central and southern Mexico,
the second set represents the Sierra Madre Occiden-
tal province (smo) (2), and the third major component
includes those grid-cells located in the northern part

of the Baja California peninsula (3). Among the small
clades, a set of three grid-cells are located in north-
eastern Mexico (4), in the northern portion of the
Sierra Madre Oriental (sme) province; another clade
with two grid-cells (5) is located in western Mexico in
the Pacific Coast province (pac); and a third one
grouped into two grid-cells is located in the Yucatan
peninsula (6) (Fig. 3).

The largest component (1) corresponds to the
classic Mesoamerican pattern (Vivó, 1943; Rzedowski,

Figure 2. Strict consensus cladogram obtained with the 2° grid-cell analysis. Each number represents one grid-cell. For
reference numbers, see Fig. 3. Numbers above branches represent species which correspond with data matrix in the
Supplementary Material, Table S1. Black circles in the branches represent synapomorphies, whereas white circles
represent homoplasies.
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1978; Halffter, 1987; Morrone & Márquez, 2001),
which includes southern and central Mexico and
Central America. Two of the smaller components
(5 and 6) are equivalent to the biogeographical prov-
inces with the same name, but the inclusion of only
two grid-cells in each one of them did not allow any
inference to be made about their precise delimita-
tion. Among these components, three sets of grid-
cells agree with some principal regions of dis-
tribution of Mexican pines, as previously proposed
(Eguiluz, 1985; Styles, 1993; Farjon & Styles, 1997),
which are located at the northern portion of the
Baja California peninsula, the Sierra Madre Occi-
dental, and the Sierra Madre Oriental. Based on the
congruence of our results with these proposals, we
suggest that these areas represent important
centres of diversity and endemism for Mexican
gymnosperms.

An exploratory analysis using grid-cells of 1° did
not show congruent patterns. This same problem

was observed by Morrone & Escalante (2002) with
mammals, demonstrating that the results obtained
with larger Mexican grid-cells are better than those
obtained with smaller ones (in their case, 1° and 0.5°).
Based on a phenetic analysis, Ramírez-Pulido &
Castro-Campillo (1990) proposed a Mexican regional-
ization using grid-cells of 2°, obtaining 19 mastofau-
nistic provinces. We obtained a better resolution with
the grid-cells of 2°, results that are congruent with
the biogeographical provinces analysis undertaken
and explained below, mainly in the case of the Sierra
Madre Occidental province (smo). As previously sug-
gested by Linder (2001), we consider that the choice of
the grid-cell size is decisive to undertake biogeo-
graphical analyses. The selection of small size grid-
cells (0.5° or 1°) can result in poor resolution of the
resultant area cladograms (Morrone & Escalante,
2002). We can affirm this after an exploratory analy-
sis of Mexican gymnosperm species using grid-cells of
1° (not shown), where we obtained more than 10 000

Figure 3. Map obtained for the 2° grid-cell matrix, based on the cladogram of Fig. 2, showing the spatial representation
of grid-cell components. Each set of grid-cells shades represent the different groups of grid-cells obtained in the cladogram
of Fig. 2.
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cladograms, whose consensus cladogram had a big
polytomy, with only few grid-cells grouped.

BIOGEOGRAPHICAL PROVINCES

For the biogeographical province matrix, we obtained
two cladograms with 186 steps, a consistency index of
0.66 and a retention index of 0.57. The consensus
cladogram, of 191 steps, consistency index of 0.64 and
retention index of 0.54, is shown in Figure 4. Both
cladograms were very similar, and only differed in the
position of the Sierra Madre Occidental (smo), which
in one cladogram is related to the Transmexican
Volcanic Belt province (vol), and in the second cla-
dogram is the sister group to the Sierra Madre Ori-
ental (sme)-Mexican Plateau (alt) provinces. The
consensus cladogram was used to draw the general-
ized tracks, as explained below. In this cladogram,
one component included the California (clf) and
Baja California (bc) provinces, supported by five gym-
nosperm species, Ephedra californica S. Watson,
Juniperus californica Carrière, Pinus lambertiana
Douglas, P. monophylla Torrey et Frémont, and P.
quadrifolia Sudworth. The Yucatan peninsula (yuc) is

also separated from the rest of continental Mexico.
The Tamaulipas (tam) province has an uncertain posi-
tion in the cladogram. A large component including
the majority of the Mexican continental provinces
(excluding both peninsulas) is divided in two clades:
the first one comprises three lowland provinces
located in western Mexico (pac, dbal, son), and a
second one includes all the mountainous provinces
(chi, sms, vol, smo, sme) as well as the Mexican
Plateau (alt) and Gulf of Mexico (gm) provinces. In
the latter, the Gulf of Mexico province (gm) is located
at the base, followed by two southern provinces
(sms and chi) and, finally, a clade including the Sierra
Madre Occidental (smo), Transmexican Volcanic Belt
(vol), Sierra Madre Oriental (sme), and Mexican
Plateau (alt) provinces.

Previous PAEs that examined the relationships
among Mexican biogeographical provinces partially
agree with our results. Morrone et al. (1999) and
Espinosa et al. (2000), based on distributional data of
birds, insects, and vascular plants, found two major
components: one (Nearctic) that includes all the
northern Mexican provinces, and another (Neotropi-
cal) that includes the remaining central and southern

Figure 4. Strict consensus cladogram obtained with the provinces matrix, depicting the relationships of the Mexican
biogeographical provinces. Labels are the names of the provinces. Numbers above branches represent species and
numbers below represent character state (presence/absence) of each species. Black circles in the branches represent
synapomorphies, whereas white circles represent homoplasy. alt, Mexican Plateau; bc, Baja California; clf, California; chi,
Chiapas; dbal, Balsas Basin; gm, Gulf of Mexico; pac, Pacific Coast; sme, Sierra Madre Oriental; smo, Sierra Madre
Occidental; sms, Sierra Madre del Sur; son, Sonora; tam, Tamaulipas; vol, Transmexican Volcanic Belt; yuc, Yucatan
Peninsula.
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provinces. In both studies, these authors grouped all
the provinces of the Baja California peninsula in the
same clade, as well as the provinces of the Yucatan
peninsula, reflecting the separate histories of both
peninsulas from the rest of continental Mexico. Also
in both studies, all the montane provinces were
located in different clades whereas, in the present
study, all the main montane provinces were included
in the same clade, as in the study by Morrone &
Márquez (2001). Another consistent pattern is the
relationship of the Chiapas and Gulf of Mexico prov-
inces, which always appears in the same clade, as was
the case in our study, usually as sister areas. This
implies a close relationship between eastern and
southern Mexico, representing a recurrent pattern
frequently found in several works with different
methodologies and taxa (Smith, 1941; Aguilar-Aguilar
et al., 2003).

Morrone & Escalante (2002), when analysing
Mexican terrestrial mammals, found a basal diver-
gence of the Baja California peninsula in their cla-
dogram. In addition, some areas from eastern and
western Mexico were located at the base of a large
component, and the relationships among the Neotro-
pical provinces were very similar to those detected
herein. An important difference of the present study
versus that of Morrone & Escalante (2002) is the
relationship found by them for the Yucatan peninsula
with southern provinces; and similar results were
also obtained by Aguilar-Aguilar et al. (2003) with
helminth parasites. The Yucatan peninsula is also
well differentiated and separated from the rest of
continental Mexico, and our results suggest that it
can be considered as a single biogeographical unit,
as was previously established by Rzedowski (1978),
Morrone (2005), and Morrone & Escalante (2002),
among others. In the results from the present study,
the Baja California peninsula can be differentiated
from the rest of the country, as suggested previously
by Morrone et al. (1999), Espinosa et al. (2000), and
Morrone & Escalante (2002).

The uncertain position of the Tamaulipas (tam)
province is possibly due to the relatively few gymno-
sperm species that it harbours. Similar results in the
placement of the poorest-in-species areas in uncertain
positions have been obtained by Glasby & Álvarez
(1999) and Trejo-Torres & Ackerman (2001) with PAE,
and Contreras-Medina & Luna (2002) with a cladistic
biogeographical analysis. Another explanation about
the uncertain position of certain areas may be due, as
noted by Glasby & Álvarez (1999), to long-distance
dispersal processes, latitudinal gradients, degree of
isolation, or other undetected historical patterns. The
Tamaulipas province is more closely related to some
eastern North American provinces (Katinas et al.,
2004). In this sense, the restriction of the present

study to the Mexican territory may reflect in some
way its uncertain position.

The changing position of the Sierra Madre Occiden-
tal may be mainly due to the geographical distribu-
tion of several pine species and the transitional
character of many of the provinces studied. Some
gymnosperm species that inhabit the USA are also
distributed in some portions of the Sierra Madre
Occidental, the Sierra Madre Oriental, and the
Mexican Plateau provinces, which reflects the rela-
tionships suggested in one cladogram, such as
Cupressus arizonica Greene, Pinus arizonica Engel-
mann, Pinus engelmannii Carrière and Juniperus
erythrocarpa Cory. In the other cladogram, the rela-
tionship between the Transmexican Volcanic Belt and
Sierra Madre Occidental provinces is supported by
the geographical distribution of some pine species
that inhabit the latter and also are found in the
western portion of the Transmexican Volcanic Belt
province, such as Pinus durangensis Martínez, Pinus
lumholtzii B.L. Robinson et Fernald, and Pinus pra-
etermissa Styles et McVaugh, as well as one juniper
species (Juniperus jaliscana Pérez de la Rosa). The
above results may be due to the transition nature of
the Mexican mountain provinces (Morrone, 2005).

Rzedowski (1978) included all the mountain prov-
inces (sme, smo, vol, sms, and chi) in a single region
named Mesoamerican Mountain region. Morrone &
Márquez (2001) and Katinas et al. (2004) found
similar results with PAE, where most of these prov-
inces are grouped in the same clade, with the excep-
tion of the Chiapas (chi) province, which is located in
a different clade in the first work, and was not analy-
sed in the second one. Our results support the
proposal of Rzedowski because all the mountain prov-
inces are in the same clade, but differ in the position
of the Sierra Madre Oriental, which is sister area to
the Mexican Plateau in both cladograms, and they are
sister group to the Sierra Madre Occidental. Accord-
ing to Liebherr (1991), there are large numbers of
shared endemic species of Coleoptera between the
northern portions of the Sierra Madre Oriental and
the Sierra Madre Occidental. Morrone et al. (1999)
and Espinosa et al. (2000) showed different area rela-
tionships (i.e. the Sierra Madre del Sur is related to
the Balsas Basin, Pacific Coast and Transmexican
Volcanic Belt provinces; Chiapas is included in other
clade and is related to the Gulf of Mexico and Soco-
nusco provinces; the Sierra Madre Occidental is
related to the Sonora province; and the Sierra Madre
Oriental is related to the Mexican Plateau). These
results confirm that Mexico (or at least a great part of
it) represents a transition zone, where biotic events of
‘hybridization’ have occurred, allowing the mixture
of different biotic components (Morrone, 2005). Tran-
sition zones deserve special attention because they
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represent sites of intensive biotic interaction
(Ruggiero & Ezcurra, 2003) and may exhibit an
unusual high biodiversity.

TRACK ANALYSIS

The main clades in the consensus cladogram obtained
in the biogeographical provinces analysis were
mapped as generalized tracks (Fig. 5). Subsequently,
we performed parsimony analyses deleting the
species defining the tracks in the previous run. The
second analysis yielded nine cladograms (114 steps, a
consistency index of 0.74, and a retention index of
0.45). A strict consensus cladogram (121 steps, a con-
sistency index of 0.70, and a retention index of 0.32)
was constructed (Fig. 6); the main clade was mapped
as a generalized track (Fig. 7). The third analysis
yielded a single cladogram (108 steps, a consistency
index of 0.75, and a retention index of 0.44) (Fig. 8);
its two main clades were mapped as generalized
tracks (Fig. 9). In the fourth run, 20 cladograms were
obtained (92 steps, a consistency index of 0.79, and a
retention index of 0.47); in their consensus cladogram
only two clades were obtained (not shown), but they
were supported on homoplasies, so we decided to stop
the analysis here.

In the five generalized tracks obtained, we observed
that at least one montane province is included except
for track a, which suggests that the Mexican montane
areas have played an important role in the spatial
evolution of gymnosperms. The existence of several
generalized tracks is evidence of the complexity of

Figure 5. Main clades of the cladogram of Fig. 4 superimposed onto the map as generalized tracks in the Baja California
peninsula (a) and in the Mesoamerican Mountain region (b).

Figure 6. Strict consensus cladogram obtained from nine
most parsimonious trees in the second run. Numbers
above branches represent species and numbers below rep-
resent character state (presence/absence) of each species.
Black circles in the branches represent synapomorphies,
whereas white circles represent homoplasies.
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Mexico. Four generalized tracks obtained (b–e) coin-
cide mainly with the Mountain Mesoamerican pattern
proposed by Halffter (1976, 1978, 1987) and with the
Mountain Mesoamerican biotic element of Morrone
(2005). A different historical biogeography of the
Mexican peninsulas from the rest of the Mexican
territory is evident, mainly in the first run. Some
species that inhabit Mexico have most of their distri-
butional area in the USA, especially those distributed
in the Baja California peninsula, reflecting a Nearctic
distributional pattern. This is represented in the gen-
eralized track a. Tracks c and d are based mainly on
endemic species, where the Sierra Madre Oriental
and Transmexican Volcanic Belt, both mountain
chains, contain most of the biodiversity of gymno-
sperm species in the country and the former include
a high number of endemic species. Tracks b and e are
based on a combination of endemic species and taxa
distributed in Mexico and Central America, reflecting
a Neotropical distributional pattern.

CONCLUSIONS

Smaller grid-sizes result in a finer resolution of
distributional patterns, but increase artificially the
number of empty grid-cells, especially in those cases
where species were assigned to an incorrect grid-cell
by error (Linder, 2001). Some general patterns are
evident in our area cladogram using grid-cells of 2°, so
we can conclude that the use of larger size grid-cells
minimizes the occurrence of false absences, as Linder
(2001) earlier suggested. The 2° grid-cell appears to

Figure 7. Main clade of the strict consensus cladogram obtained from nine new cladograms in the second run,
superimposed onto the map as a generalized track in eastern Mexico (c).

Figure 8. Most parsimonious cladogram obtained in the
third run. Numbers above branches represent species and
numbers below represent character state (presence/
absence) of each species. Black circles in the branches
represent synapomorphies, whereas white circles repre-
sent homoplasies.
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be an adequate resolution to be explored in future
biogeographical analysis using PAE and other parsi-
mony methods of the Mexican biota.

The track analysis shows that the Mexican moun-
tain chains have played an important role in the
spatial evolution of gymnosperms because these areas
are represented in all generalized tracks and repre-
sent areas where the highest biodiversity of these
plants in the country are concentrated, which also
reflects speciation events in these mountain chains.
The track analysis also suggests that the Baja Cali-
fornia and Yucatan peninsulas have had independent
biogeographical histories from continental Mexico
because the generalized track in the California pen-
insula is isolated from the remaining tracks and the
Yucatan peninsula is not included in any track. Our
analysis supports the idea that Mexico represents a
complex area, as demonstrated by the analyses of
Contreras-Medina & Eliosa-León (2001) with several
taxa, Álvarez & Morrone (2004) with birds, Escalante,
Rodríguez & Morrone (2004) with terrestrial
mammals, and Morrone & Gutiérrez (2005) with
fleas. Our data indicate that Mexico is an evolution-
ary ‘active’ zone, which led to the speciation of several
lineages, especially Pinus, Ceratozamia, and Dioon,
and the local extinction of other lineages, especially
Picea and Tsuga in southern and central Mexico
(Clisby & Sears, 1955; Palacios & Rzedowski, 1993;
Lozano-García & Xelhuantzi-López, 1997; Graham,
1999). These facts have been suggested with other
sources of evidence, supporting the idea that Mexico
represents an important centre of diversity and ende-

mism at the worldwide level for gymnosperms (Farjon
& Styles, 1997; Osborne, 1995).
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