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Abstract. This paper describes the global flow of homogeneous polynomial poten-
tials of degree 3 for negative and positive energy. For the negative energy case a blow
up of McGehee type is enough to get the complete picture of the flow. In the positive
energy case, McGehee blow up fails to give global information about the flow, but
comparing with a separable case we are able to obtain all the possible asymptotic
behavior of solutions, whenever the coefficients of the normal form of the potential
are positive.

1. Introduction. In [4] we studied some general properties of the flow for me-
chanical systems with polynomial potentials of degree at most 4. The essential tool
was the application of a McGehee type blow up at infinity studied systematically by
Lacomba and Ibort [6]. It was generalized later in [7], where the mass matrix was
assumed to depend on the position in a homogeneous way. This blow up produces a
two dimensional manifold called the infinity manifold which allows us to study the
flow in a neighborhood of the infinity in the configuration space. This method has
also been applied to the study of mechanical systems with quasihomogeneous po-
tentials, where the homogeneity degree is negative, (see [2]). In a more recent paper
[5], we focused in the study of the global flow for the case of homogeneous polyno-
mial potentials of degree 3 and negative energy. The blow up allowed us to extend
the energy level to a compact three dimensional manifold with the infinity manifold
as boundary. This boundary is invariant under the extended flow. Transversality
properties of the flow in [5] were used to get the global flow in the case of separable
potential. In this paper, we show how to extend the analysis of the separable case
to the general one, when the energy is negative. Moreover, we also describe the
flow for positive energy, where the blow up does not give global information, and
we have to use some comparison based on differential inequalities. In Section 2 we
review the McGehee blow up at infinity giving the expression of the vector field on
the energy levels and the infinity surface for mechanical systems with 2 degrees of
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freedom and any positive degree of homogeneity in McGehee coordinates. It turns
out that the flow on the infinity surface is always gradient-like with respect to one
of the velocity coordinates (see [4]). We then restate the main properties of the
global flow for separable cubic homogeneous potentials when energy is negative,
which were proved in [5] and turned out to be fundamental for studying the global
flow in the general case.

In Section 3 we extend the previous result obtained in [5] for the global flow on
negative energy levels, to the non separable homogeneous potentials. We prove that
the general case for negative energy shows the same type of flow as the separable
case. The topology of positive energy levels is described in Section 4. The flow for
positive energy is analyzed in Section 5. The end result is that all solutions come
asymptotically from infinity and go away to infinity in the configuration space for
negative energy, while for positive energy we need a restriction on the coefficients.
This is in strong contrast with the behavior of systems with non homogeneous
polynomial potentials, where it has been shown that the dynamics is very rich,
with the appearance of many periodic and recurrent orbits. This is the case for
example of the classical Henon-Heiles potential where a quadratic form is added to
the cubic terms, (see [8] and [9]).

2. Some previous results and the global flow for negative energy. We
consider two degrees of freedom Hamiltonian systems of the following form

H (x, y, p1, p2) =
1
2

(
p2
1 + p2

2

)− V (x, y) (2.1)

where V is a homogeneous function of degree 3 in the plane, i.e. V (λx, λy) =
λ3V (x, y) for any λ > 0.

For blowing up at infinity, configuration coordinates are changed into polar coor-
dinates, but with the radial coordinate replaced by its reciprocal. The new position
coordinates are ρ, θ, where

ρ =
1√

x2 + y2
; x =

1
ρ

cos θ; y =
1
ρ

sin θ. (2.2)

The new radial and tangential velocity components are respectively defined as

v = ρ3/2
(−ρ̇/ρ2

)
, u = ρ3/2

(
ρ−1θ̇

)
. (2.3)

Then the energy relation H = h in ρ, θ, v, u coordinates becomes
1
2

(
u2 + v2

)
= U (θ) + ρ3h, (2.4)

where U (θ) = V (cos θ, sin θ) .
Writing Hamilton′s equations for Hamiltonian (2.1) in terms of the new variables,

shows the further need for a change of time scale

dt

dτ
= ρ1/2, (2.5)

in order to eliminate this factor from the right hand side of all the equations. We
obtain the following system of differential equations

ρ′ = −ρ v, v′ = u2 − 3
2 v2 + 3 U (θ) ,

θ′ = u, u′ = − 5
2u v + U ′ (θ) ,

(2.6)

where ′ = d/dτ .
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The energy level H = h in the new coordinates is defined as the 3-dimensional
manifold

Eh =
{

(ρ, θ, v, u) | ρ > 0,
1
2

(
u2 + v2

)
= U (θ) + ρ3h

}
.

But since the energy relation (2.4) and the system of equations (2.6) are well defined
at infinity, i.e. ρ = 0, we can glue to Eh a 2-dimensional boundary, the infinity
surface

N∞ =
{

(ρ, θ, v, u) | ρ = 0,
1
2

(
u2 + v2

)
= U (θ)

}
,

which is independent of h and invariant under the flow, because from (2.6) ρ = 0
implies ρ′ = 0. Although Eh and N∞ are contained in a 4-dimensional space, they
can be represented in the 3-space of coordinates θ, v, u when h < 0 or h > 0. The
boundary N∞ is a surface of revolution defined only at points where U ≥ 0.

All the equilibrium points on N∞ are generically hyperbolic for the flow. They
are located in the intersection with the plane u = 0 and correspond to critical points
of U .

The critical points of U generate the so-called homothetic solutions. They are
defined by taking θ ≡ θ0 where U ′ (θ0) = 0, u = 0. Homothetic solutions are
depicted as vertical lines for h 6= 0 in θ, v, u coordinates. When U ′′ (θ0) > 0, the
corresponding points of equilibrium S+ and S− on N∞ are saddles. In this case
the homothetic solution belongs to the transversal intersection of two dimensional
stable and unstable manifolds W s(S+) and Wu(S−) (see [5]).

The following proposition and theorem were proved in [4].

Proposition 2.1. The flow of (2.6) is gradient-like with respect to v, as follows
a) If h < 0 on Eh ∪N∞ (ρ ≥ 0)
b)If h ≥ 0 on N∞ (ρ = 0)

Theorem 2.2. Let U (x, y) be a cubic homogeneous polynomial potential. Suppose
that h < 0, U (θ0) > 0, U ′ (θ0) = 0 and U ′′ (θ0) > 0. Then the stable manifold
W s (S+) and the unstable manifold Wu (S−) intersect transversally along the ho-
mothetic trajectory {θ = θ0, u = 0} .

The general form of a homogeneous polynomial potential of degree 3 with 2
degrees of freedom is

V (x, y) = ay3 + bxy2 + cx2y + dx3.

We consider the normal form

V (x, y) = y3 + αxy2 + βx3,

See details in [3]. The corresponding trigonometric polynomial U (θ) of degree 3
and its derivative are given by

U (θ) = V (cos θ, sin θ) = sin3 θ + α cos θ sin2 θ + β cos3 θ, (2.7)

U
′
(θ) = sin θ[−α sin2 θ + (2α− 3β) cos2 θ + 3 sin θ cos θ].

It is clear that the general shape and smoothness of the infinity surface N∞
depend upon the roots of U (θ) and of U ′ (θ) . Generically, we have three different
geometrical shapes obtained as revolution surfaces from curves having one maxi-
mum (“ovoidal shaped”), two maxima and one minimum (“peanut shaped”) and
one curve with three components with a maximum each (“three ovoids”).
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When N∞ is peanut shaped, we denote by A+, B+ the attractor points on
N∞ corresponding to the maxima of U , and by S± the saddle points. The θ–
coordinates of A+, S± and B+ are progressive; θ∗ denotes the θ–coordinate of
S±. The positive part of the corresponding function U (θ) modulo 2π is defined
on an interval (I0 (α, β) , I1 (α, β)) , of length π, with I0 (α, β) ∈ [−π/2, 0] and
I1 (α, β) ∈ [π/2, π].

To study the behavior of the flow on N∞, because of the symmetry

(ρ, θ, v, u, τ) → (ρ, θ,−v,−u,−τ) , (2.8)

of the solutions of system (2.6), it is enough to study the behavior of the two
solutions having as initial conditions the points with θ = I0 (α, β) and θ = I1 (α, β).
Let us denote these solutions by γ(α, β) and δ(α, β), respectively. These solutions
allow us to find the separatrices of the flow on N∞, and hence they determine
it completely. Due to the above symmetry, it is enough to study the part where
v ≥ 0. The following result refines Theorem 7 in [5], because of assertions (6) and
(7). Although the proof is essentially the same as in that paper, we rewrite it below
in order to correct some misprints.

Theorem 2.3. Let U be given by (2.7). Then, for α = 0, there are values 0 <
β1 ≤ β2 < β−1

2 ≤ β−1
1 of β, such that

(1) For each β ∈ (0, β1), the ω−limit of γ(0, β) is B+

(2) If β > β2, then the ω−limit of γ(0, β) is A+,
Similarly,
(3) If β ∈ (

0, β−1
2

)
, then the ω−limit of δ(0, β) is B+

(4) If β > β−1
1 , then the ω−limit of δ(0, β) is A+

(5) For β = β1, the solution γ(0, β) connects the two saddle points S− and S+. In
the same way, for β = β−1

1 , the solution δ(0, β) connects the same saddle points on
the other side of N∞.

Moreover, For 0 < β < β1 there exist two intervals J1(β), J2(β) around 0, such
that
(6)If α ∈ J1(β), the ω−limit of γ(α, β) is B+

(7) If α ∈ J2(β), the ω−limit of δ(α, β) is B+

Proof. Eliminating the time in equations of motion (2.6) with ρ = 0 and using the
energy relation (2.4), we get the equation

dv

dθ
=

5
2

√
2U (θ)− v2. (2.9)

We compare the solutions v (θ) of this equation with the solutions of a similar
equation where 2U (θ) is replaced by a constant 2K, i.e.

dv

dθ
=

5
2

√
2K − v2. (2.10)

By direct integration, and assuming the initial condition v (θ0) = 0, we obtain the
solution

v̄ (θ) =
√

2K sin
5
2

(θ − θ0) , (2.11)

provided that 5
2 (θ − θ0) ≤ π/2, i.e. θ − θ0 ≤ π/5.

We begin by proving 1). Let us take θ0 = I0 and K = β and consider the
solution (2.11). In the interval [I0, θ∗] the inequality 0≤ 2U (θ) − v2 ≤ 2β − v2 is
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satisfied; hence in particular

v (θ∗) ≤ v̄ (θ∗) =
√

2β sin
5
2

(θ∗ − I0) .

On the other hand I0 = − arctan β1/3 and θ∗ = arctanβ converge to zero as β
tends to zero. Then if β is small enough, we have

v̄ (θ∗) ≤
√

2β

2
<

√
2U (θ∗). (2.12)

So, for this β, we have that

v (θ∗) <
√

2U (θ∗). (2.13)

The second inequality of (2.12) is true at least for β < 1, since U (θ∗) = β
(
1 + β2

)1/2
.

To prove the existence of β1, we just take the supremum of the values of β satisfying
(2.13). Then one verifies that for this value γ(0, β) has a saddle-saddle connection.

We now prove 2). Assume that U (θ, β) has the following property: There exists
an interval [θ0, θ1] ⊂ [I0, θ∗] such that θ1 − θ0 ≥ π/5 and

√
2U (θ0) =

√
2U (θ1) ≥√

2U (θ∗). Because of (2.11), the solution of (2.10) with K = U (θ0) and the initial
condition v (θ0) = 0, attains the value

√
2U (θ0) before θ = θ1. Since the right hand

side of (2.10) is greater or equal than the one of (2.9) in the interval [θ0, θ1], the
solution γ corresponding to U (θ, β) will attain a value greater than

√
2U (θ∗) in

the same interval. Indeed, such an interval exists for β = 1, since θ∗ = π
4 > π

5 .
We claim that if this property is valid for some value β = β2, the same is true

for each β > β2. Indeed, θ∗ = arctan β is an increasing function of β. Let θ̄ (β) be
the unique negative solution of the equation

U
(
θ̄ (β) , β

)
=

β

(1 + β2)1/2
= U (θ∗, β) . (2.14)

We will prove that θ̄ (β) is a decreasing function of β. From the implicit function
theorem we get

3 sin θ̄ cos θ̄
(
sin θ̄ − β cos θ̄

) dθ̄

dβ
+ cos3 θ̄ =

1

(1 + β2)3/2
.

Solving for the derivative, we have

dθ̄

dβ
=

(
1 + β2

)−3/2 − cos3 θ̄

3 sin θ̄ cos θ̄
(
sin θ̄ − β cos θ̄

) .

¿From (2.14), we solve for − cos3 θ̄, getting the equation

dθ̄

dβ
=
−β2

(
1 + β2

)−3/2 + β−1 sin3 θ̄

3 sin θ̄ cos θ̄
(
sin θ̄ − β cos θ̄

) .

Since -π
2 < θ̄ < 0, we see that dθ̄

dβ < 0, as asserted.
Now, β2 is the infimum of the values of β for which the ω−limit of γ(0, β) is A+.

The rest of the proof from (1)-(5), follows from the symmetry β → β−1. Statements
(6) and (7) are easily proved using a continuity argument.
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3. Global flow for negative energy. We will consider now the global flow on
the extended energy levels Eh ∪ N∞ for h < 0. In this case these extended levels
are compact manifolds with boundary. In fact, their topology is generically one or
three disjoint copies of a closed 3–ball D3. Their flow is gradient-like everywhere,
and it is completely described by the blow up coordinates. The only case where
the global flow needs to be explicitly described is for the peanut shaped manifolds.
For the ovoidal cases, the flow begins in a repeller and ends in an attractor for
each connected component. In [5] we gave a thoroughly qualitative description
for the case α = 0, depending only on the behavior of some separatrix curves
and the transversal invariant submanifolds W s(S+) and Wu(S−). We recall the
main features of this description, giving a more clear account of the construction.
Generically and by symmetry, it is enough to consider two cases: β2 < β < β−1

2 and
β < β1. We denote by γ±i the separatrix curves which are the invariant manifolds at
the saddle equilibrium points on N∞. Here, the plus sign denotes unstable manifold
while the minus sign denotes stable manifolds, for i = 1, 2, 3, 4, (see Figure 1).

Since the flow is almost–gradient, the ω−limit of γ+
1 and γ+

2 are B+ and A+,
respectively, while the ω−limit of γ−3 and γ−4 are A− and B−, respectively.

It is important to notice that the asymptotic behavior of solutions γ and δ
determine the behavior of the other γ±i . 1) Case β2 < β < β−1

2 . This is the
simplest one. From Theorem 2.3 and the symmetry 2.8 the α−limit of γ is A− and
the α−limit of δ is B−. From the same symmetry the coordinate θ of γ is always
lesser than θ∗ and greater than θ∗ for δ. This forces the following behavior of γ−1 ,
γ−2 , γ+

3 , γ+
4 . The invariant submanifolds W s(S+) and Wu(S−) will match with

separatrices γi
±, i = 1, 2, 3, 4, at the opposite point, as shown in Figure 1.

Hence, this intersection acts as a double hinge (see Figure 2), which separates
completely the flow into 4 disjoint regions in Eh. In this way, an orbit which begins
at A− may end at either A+ or B+. The same thing for orbits beginning at B−.

2) Case β < β1. As in the previous case, separatrices on the right have B+

as ω−limit and B− as α−limit. However, the unstable separatrix γ2
− having S−
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as α−limit has B+ as ω−limit instead of A+, while separatrix γ3
− having S+ as

ω−limit goes around and has B− as α−limit instead of A−. Hence, the double
hinge described in the first case, separates the energy level into five regions in a
more complicated way as we describe below.

Since γ2
− has B+ as ω−limit, it crosses to the right side after one turn around

the homothetic orbit, while γ2
+ stays always on the left. This forces a splitting of

the corresponding invariant surface into two portions: one of them stays on the
left, while the other one passes to the right. The first one is generated between two
consecutive turns of γ2

+. The other one runs between γ1
+ and the part of γ2

− on the
right side, but closer to N∞ than the invariant manifold bounded by γ1

± (unstable
manifold of S−). We call this second portion a small channel, because of the way
it runs closer to N∞, see Figure 3.

Transversal sections θ < θ∗, θ = θ∗ (passing through S+ and S−) and θ > θ∗ of
Figure 3 are depicted in the Figure 4. The boundary of the regions are sections of
the invariant submanifolds Wu

S− and W s
S+

.

In section θ > θ∗ a big new region numbered 4 appears, corresponding to the
side of the double hinge containing the homothetic orbit from B− to B+ for θ > θ∗.
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Figure 4

Regions 1, 2 and 5 have now shrunk. The last one is the continuation of the small
channel.

This way we can describe precisely the α− and ω− limits of orbits on the 5 open
regions as follows

Region α− limit ω − limit
1 A− B+

2 B− A+

3 A− A+

4 B− B+

5 B− B+

.

Finally, the only portions of invariant submanifolds changing from one side to
the other of Figure 4 for the extended energy level are

a: The boundary between regions 1 and 5, contained in Wu
S− . Its ω−limit is B+,

exactly like γ2
−

b: The boundary between regions 2 and 5, contained in W s
S+

. Its α−limit is B−,
exactly like γ3

+.

Basically, the two above described flows are the only ones for the general “peanut
shaped” case with α 6= 0. In fact, for 0 < β < β1, we recall from Theorem 2.3 there
exist intervals J1(β) and J2(β) such that if α ∈ J1(β), the ω−limit of γ is B+, and
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B
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if α ∈ J2(β), the ω−limit of δ is B+. By taking α ∈ J1(β)
⋂

J2(β), we have small
channels as in case 2.

It is interesting to notice that all the trajectories are parabolic, which means that
they escape to infinity with asymptotic velocity equal to 0. This follows from the
fact that in McGehee coordinates, solutions escape towards equilibrium points on
the infinity manifolds which have coordinates ρ = 0, u = 0 and v 6= 0. Hence, since
v = −ρ−1/2ρ̇, we see that ρ̇ tends to 0 along escaping solutions.

4. Topology of Eh

⋃
N∞ for h > 0. To describe the topology of the phase space

for energy h > 0, we have to consider two cases: (1) when N∞ is topologically a
sphere S2, and (2) when N∞ has three connected components, each one topolog-
ically equivalent to a sphere S2. We claim that in case (1) we get a closed 3–ball
D3, while in case (2) we have a D3 where two disjoint open balls has been removed.
The result in case (1) is remarkably the same as for h < 0.

As a verification, we will give two arguments to obtain the topology. First, by
using cartesian coordinates, and second starting with blow up coordinates. In case
(1), from the energy relation 1

2

(
p2
1 + p2

2

)−V (x, y) = h, where V is a homogeneous
polynomial of degree 3 in the plane, one realizes that we have to construct an S1

pinched bundle over the Hill’s region in cartesian coordinates as it is shown in
Figure 5(a). The pinching of the circles occurs on the boundary of the zero velocity
curve. The dotted part of the boundary represent escape to infinity, so that it
will generate N∞. This gives a close 3–ball D3 whose boundary is the sphere N∞.
See Figure 5(b), where the homothetic orbit is shown and the zero velocity curve
appears as a dotted line intersecting it. If we start the description in blow up
coordinates, we have an open solid torus obtained by identifying both ends of the
cylinder in Figure 6(a). Since these coordinates can not describe a passing through
the origin in configuration space, the homothetic orbit has to be completed by the
homothetic dotted curve outside the cylinder. The solid torus represents in fact,
the portion of Eh obtained when a small open ball B centered at the origin in
Figure 5(a) is removed. As a trivial bundle over S1, the 2–ball B generates another
solid torus as it is shown in Figure 6(c), under top and bottom identification. The
boundary S1 × S1 of the solid torus has to be identified with the boundary of the
solid torus in Figure 6(a), which is reproduced schematically in Figure 6(b). In this
case, meridians and parallels of the two S1 × S1 tori are exchanged when making
the identification. This is known to produce topologically a 3–sphere S3. But, since
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the open ball inside Figure 6(b) has to be removed, we get an S3 where an open
ball is deleted, which in turn is equivalent to a closed 3–ball D3.

In case (2), in cartesian coordinates, we have to construct an S1–pinched bundle
over the Hill’s region shown in 7(a). The pinching of the circles occurs over the
boundary consisting of three disjoint zero velocity curves. In order to find the
topology, we first cut Hill’s region through the line segment A, B, C from the
origin. Proceeding as in case (1), we get three double truncated cones as shown in
Figure 8(a), (b) and (d), where conical boundaries A′, B′, C ′ have to be identified
in the indicated senses.

If we identify boundaries B′ in Figure 8(a) and (b), we get Figure 8(c) which
is a similar solid where an open ball has been removed in its interior. Finally,
boundaries A′ in Figures 8(c) and (d) are correspondingly identified, giving the
3–ball D3 where three open smaller open balls are removed in its interior, as shown
in Figure 8(e). The surfaces A′, B′, and C ′ are also depicted there for an easy
understanding of the process. If we start the description in blow up coordinates,
the construction is similar to case (1). We have again two solid tori obtained from
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Figure 9(b) and (c) with the corresponding identification exchanging meridians with
parallels.

The only difference being that we have now removed three interior small disjoint
open balls in the first solid torus. The solid torus in Figure 9(c) comes from the
small open ball about the origin in configuration space shown in Figure 7(a). In
short, we get a 3–sphere S3 where three disjoint small open balls are removed in
its interior, which is in turn equivalent to a D3 where two small disjoint open balls
are removed in its interior, as before.
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5. Global flow for positive energy. To study the global flow of the Hamiltonian
system

ẋ = p1, ẏ = p2, (5.1)
ṗ1 = αy2 + 3βx2, ṗ2 = 3y2 + 2αxy. (5.2)

we consider first the case α = 0

ẋ = p1, ẏ = p2,
ṗ1 = 3βx2, ṗ2 = 3y2.

(5.3)

Then, the separable homogeneous potential U is given by U(x, y) = y3 + βx3 and
the Hamiltonian is

H =
1
2

(
ṗ2
1 + ṗ2

2

)− U (x, y) . (5.4)

This is an integrable system with first integrals given by

I1 = 1
2 ẋ2 − βx3,

I2 = 1
2 ẏ2 − y3.

(5.5)

The dynamics of system (5.3) on a given positive energy level H = h, can be
reduced to the study of the dynamics of the corresponding systems in x and y on
the energy levels I1 = h1 and I2 = h2 with h = h1 + h2. According to the sign of
the energy levels h1 and h2 we have four cases: (I) h1 > 0, h2 > 0; (II) h1 < 0,
h2 > 0; (III) h1 > 0, h2 < 0; (IV) h1 = 0, or h2 = 0. The Hill’s region on variables
x and y are respectively given by

x > −
(

h1
β

)1/3

,

y > −h
1/3
2 .

(5.6)

We immediately conclude from here that for each energy level h, the coordinates of

the trajectories are bounded below by the values −
(

h1
β

)1/3

and −h
1/3
2 ; in particular

the point
(
−

(
h1
β

)1/3

,−h
1/3
2

)
is on the zero velocity curve.

Consider the initial condition x0 = x (0) and y0 = y (0) and denote by t (x; x0)
the time when the solution starting at x0 is at the position x. From the equality
I1 = h1 we get

t (x, x0) = ±
∫ x

x0

ds√
2 (h1 + βs3)

. (5.7)

In order to compute the time of escape to infinity we choose the positive sign and
to compute the time it takes for coming from infinity we take the negative sign.
Similarly, the corresponding time for y is denoted by t (y, y0) and it is given by

t (y, y0) = ±
∫ y

y0

ds√
2 (h2 + s3)

. (5.8)

The time of escape to infinity of the variables x and y are denoted by t∗ (β; x0) =
limx→∞ t (x, x0) and t∗ (y0) = limy→∞ t (y, y0), respectively. We also define the
passing time through minimal values of x by

t∗ (β; x0) = lim
x→−(h1

β )1/3

∫ x0

x

ds√
2 (h1 + βs3)

. (5.9)
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In the same way, the corresponding passing time of y is

t∗ (y0) = lim
x→−h

1/3
2

∫ x0

x

ds√
2 (h2 + s3)

. (5.10)

Since for each variable the intervals of definition of the solution are symmetrical
with respect to the passing time through a minimal value of the corresponding
variable, the times of capture from infinity are given by T (β;x0) = −t∗ (β;x0) −
2t∗ (β;x0) and T (y0) = −t∗ (y0)− 2t∗ (y0) , respectively.

Lemma 5.1. All the trajectories of the System (5.3), come from and escape to
infinity in a finite time.

Proof. We first analyze the case (I): h1 > 0, h2 > 0. We consider x0 > −
(

h1
β

)1/3

and let K ≥ 0 be any number greater than x0, then

t∗ (β;x0) =
∫ K

x0

ds√
2 (h1 + βs3)

+
∫ ∞

K

ds√
2 (h1 + βs3)

. (5.11)

The first integral in the above equation is finite because its integrand is continuous.
On the other hand, if s > 0 then

1√
2 (h1 + βs3)

<
1√
2βs3

. (5.12)

Therefore,
∫ ∞

K

ds√
2 (h1 + βs3)

= lim
x→∞

∫ x

K

ds√
2 (h1 + βs3)

≤ lim
x→∞

∫ x

K

ds√
2βs3

< ∞. (5.13)

It follows that t∗ (β) is finite. By taking β = 1, we see that t∗ is also finite.
To prove that t∗ (β;x0) and t∗ (y0) are finite, we take the inverse of the function

y = 1/
√

2 (h1 + βs3) in the interval s ∈
(
− (h1/β)1/3

, 0
]
. So, we find that s =

(
1

2βy2 − h1
β

)1/3

for y ∈
(

1√
2h1

,∞
)

. Thus, we see that t∗ (β; x0) is equal to

t∗ (β;x0) = −
(

h1

β

)1/3 (
1√
2h1

)
−

∞∫

1/
√

2h1

[(
h1

β

)1/3

+
(

1
2βy2

− h1

β

)1/3
]

dy.

(5.14)
By using the identity

(
a3 + b3

)
= (a + b)

(
a2 − ab + b2

)
, and after some simplifica-

tions, the above integrand becomes

1

2βy2
(
(h1/β)2/3 + (−h1/β)1/3 (1/2βy2 − h1/β)1/3 + (1/2βy2 − h1/β)2/3

) .

(5.15)
It is lesser or equal than 1/(2β (h1/β)2/3

y2), because the three terms in the de-
nominator are positive. Then
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0 ≤
∞∫

1/
√

2h1

[(
h1

β

)1/3

+
(

1
2βy2

− h1

β

)1/3
]

dy ≤

∞∫

1/
√

2h1

1/(2β (h1/β)2/3
y2) dy. (5.16)

Hence, t∗ (β; x0) is finite. The time t∗ (y0) is also finite, since it is equal to t∗ (1; y0) .
We see now the case (II) h1 < 0, h2 > 0. Obviously, it follows from the previous

case (I) that the times t∗ (y0) and t∗ (y0) are finite. Let x0 > − (h1/β)(1/3)
> 0. We

take s0 > x0 such that −h1 <
βs3

0
2 . Then −βs3

2 < h1 for all s ≥ s0. Consequently,
we obtain that 1√

2(h1+βs3)
< 1√

βs3
; therefore t∗ (β;x0) ≤

∫∞
x0

1√
βs3

ds < ∞. In a

similar way, as in case (I), the expression for t∗ (β;x0) is

(
x0 + (h1/β)1/3

)
y0 −

∞∫

y0

[(
h1

β

)1/3

+
(

1
2βy2

− h1

β

)1/3
]

dy, (5.17)

where y0 = 1/
√

2 (h1 + βx3
0). The above integral is finite since the integrand can be

taken to the form given by (5.15) and it is bounded above by 1/(2β (h1/β)2/3
y2).

Thus t∗ (β;x0) < ∞.
Case (III) h1 > 0, h2 < 0, follows from the previous case, since t∗ (1; y0) = t∗ (y0)

and t∗ (1; y0) = t∗ (y0) .
To prove case (IV): h1 = 0, or h2 = 0, it is enough to analyze h1 = 0. Let x0 > 0.

We easily see that t∗ (β; x0) =
∫∞

x0

ds√
2βs3

is finite and t∗ (β;x0) =
∫ x0

0
ds√
2βs3

is

infinite. However, since h2 > 0, the corresponding time for y0 is finite and therefore
the trajectory passing by (x0, y0) either escapes to infinity or is captured from
infinity in finite time.

In what follows we give a complete description of the way the trajectories come
from or go towards infinity.
Case (I): h1 > 0, h2 > 0. the times of escape and capture are finite and the possi-
ble intervals of definition of trajectories (x (t) , y (t)) are: (i) T (y0) < t < t∗ (y0) ,
(ii) T (y0) < t < t∗ (β;x0) , (iii) T (β; x0) < t < t∗ (β; x0) and (iv) T (β; x0) <
t < t∗ (y0) . If (i) holds, coordinate x (t) remains bounded and hence the trajectory
comes from and escapes to infinity in the direction of the y axis (see (A) in Fig-
ure 10). Regarding (ii), y (t) remains bounded when x (t) escapes to infinity and
conversely x (t) is bounded and y (t) goes to infinity as t → T (y0). Therefore, the
trajectory escapes in the direction of the x axis and is captured from infinity in the
direction of the y axis (see (B) in Figure 10). In case (iii) y (t) remains bounded
and then the trajectory comes from infinity and escapes to infinity in the direction
of the x axis (see (C) in Figure 10). If (iv) holds, x (t) tends to infinity when
t → T (β; x0) and y (t) remains bounded. Moreover, when t → t∗ (y0) , y (t) tends
to infinity and x (t) remains bounded; from this we see that trajectory (x (t) , y (t))
comes from infinity in the direction of the x axis and goes to infinity in the direction
of the y axis (see (D) in Figure 10). In all the cases, the trajectory may cross the
x axis or the y axis.
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(a) (e)(b) (c) (d)

(A) (B) ( C )
(D)

Figure 10

We notice that in the four cases (i)–(iv), the trajectories escape in the direction of
the homothetic solution, when the times t∗ (y0) and t∗ (β; x0) are equal. Similarly,
the trajectory is captured from infinity in the direction of the homothetic solution
when the times T (y0) and T (β;x0) , are equal (see (a)-(e) in Figure 10).

The cases (II): h1 < 0, h2 > 0 and (III): h1 > 0, h2 < 0, are similar to case (I),
since times T (y0) , T (β; x0) , t∗ (y0) and t∗ (β;x0) are finite. Nevertheless, in case
(II), the trajectory does not cross the y axis and in case (III) it does not cross the
x axis.

If (IV) holds: h1 = 0 or h2 = 0, then T (β; x0) = −∞ or T (y0) = −∞, respec-
tively. Hence, the possible intervals of definition of the trajectories when h1 = 0,
are: (a) T (y0) < t < t∗ (y0) , (b) T (y0) < t < t∗ (β; x0) . So, the trajectories come
from infinity in the direction of the y axis and for the interval (a) they escape to
infinity in the direction of the y axis, while for the interval (b) they escape in the
direction of the x axis. If t∗ (y0) = t∗ (β;x0) , then the trajectory escapes with an
angle arctan(β). The same thing happens when h2 = 0, by exchanging x with y.

5.1. The general case. Now we consider the general case when the potential is

U (x, y) = y3 + αxy2 + βx3, (5.18)

and α, β are greater than zero. System (5.3) becomes

ẋ = p1, ẏ = p2,
ṗ1 = αy2 + 3βx2, ṗ2 = 3y2 + 2αxy.

(5.19)

The analysis of the above system is reduced to that of (5.3) because of the differen-
tial inequality ṗ1 = αy2 + 3βx2 > 3βx2. In order to study the behavior of variable
x, we compare with the system Ẋ = P1, Ṗ1 = 3βX2. We conclude from here that
if variable X escapes then x escapes, and this happens in finite time. During this
finite time interval y may (generically) either remain bounded or escape to infinity.
This produces several cases, according to the fact that the escaping time of y be
smaller, equal or greater than the the corresponding escaping time for x. It is easy
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to verify that all these cases may arise, as it was the case for the integrable system
(5.3), and as a consequence the escapes are as in the above described types (see
Figure 10).

The idea in order to prove that coordinate x (t) of each solution is bounded below
goes as follows: suppose that x (t) goes to −∞ (on a time T ≥ −∞). Since ẍ is
greater that zero, x (t) is an upward concave curve, its derivative p1 tends to a non
negative value as t → T . On the other hand, we see from (5.19) that ṗ1 goes to
infinity as t → T. This a contradiction, because p1 is monotonically increasing.

Although the McGehee coordinates do not give global information in the present
case (positive energy), we see by using the same arguments as in the negative energy
case at the end of the Section 3, that all solutions also escape parabolically to
infinity.

We finally remark the importance of taking α and β > 0, in order to have the
above simple dynamics. Rod [10] analyzes the Hamiltonian system corresponding
to the potential 1/3x3 − xy2, finding a very complicated behaviour.
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