

Available online at www.sciencedirect.com

Discrete Mathematics 285 (2004) 313-318

Note

www.elsevier.com/locate/disc

On monochromatic paths and monochromatic 4-cycles in edge coloured bipartite tournaments

Hortensia Galeana-Sánchez^a, Rocío Rojas-Monroy^b

^aInstituto de Matemáticas, Universidad Nacional Autonoma de Mexico (UNAM), Ciudad Universitaria,

Circuito Exterior, 04510 México, DF, Mexico ^bFacultad de Ciencias, Universidad Autónoma del Estado de México, Instituto Literario No. 100, Centro 50000, Toluca, Edo. de México, Mexico

Received 5 February 2003; received in revised form 18 February 2004; accepted 3 March 2004

Abstract

We call the digraph D an *m*-coloured digraph if the arcs of D are coloured with *m* colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike.

A set $N \subseteq V(D)$ is said to be a kernel by monochromatic paths if it satisfies the following two conditions:

(i) For every pair of different vertices $u, v \in N$, there is no monochromatic directed path between them.

(ii) For every vertex $x \in (V(D) - N)$, there is a vertex $y \in N$ such that there is an xy-monochromatic directed path.

In this paper it is proved that if D is an *m*-coloured bipartite tournament such that every directed cycle of length 4 is monochromatic, then D has a kernel by monochromatic paths. (\hat{c}) 2004 Elsevier B.V. All rights reserved.

MSC: 05C20

Keywords: Kernel; Kernel by monochromatic paths; Bipartite tournament

1. Introduction

For general concepts we refer the reader to [1]. Let D be a digraph V(D) and A(D) will denote the sets of vertices and arcs of D, respectively. An arc $(u_1, u_2) \in A(D)$ is called asymmetrical (resp. symmetrical) if $(u_2, u_1) \notin A(D)$ (resp. $(u_2, u_1) \in A(D)$). The asymmetrical part of D (resp. symmetrical part of D) which is denoted Asym(D) (resp. Sym(D)) is the spanning subdigraph of D whose arcs are the asymmetrical (resp. symmetrical) arcs of D; D is called an asymmetrical digraph if Asym(D) = D. We recall that a subdigraph D_1 of D is a spanning subdigraph if $V(D_1) = V(D)$. If S is a nonempty set of V(D) then the subdigraph D[S] induced by S is the digraph having vertex set S, and whose arcs are all those arcs of D joining vertices of S. An arc (u_1, u_2) of D will be called an S_1S_2 -arc whenever $u_1 \in S_1$ and $u_2 \in S_2$.

A set $I \subseteq V(D)$ is independent if $A(D[I]) = \emptyset$. A kernel N of D is an independent set of vertices such that for each $z \in V(D) - N$ there exists a zN-arc in D. A digraph D is called a kernel-perfect digraph or KP-digraph when every induced subdigraph of D has a kernel. A digraph D is called a bipartite tournament if its vertices can be partitioned into two sets V_1 and V_2 such that:

(i) Every arc of D has an endpoint in V_1 and the other endpoint in V_2 .

(ii) For all $x_1 \in V_1$ and for all $x_2 \in V_2$, we have $|\{(x_1, x_2), (x_2, x_1)\} \cap A(D)| = 1$. We will write $D = (V_1, V_2)$ to indicate the partition.

E-mail address: hgaleana@matem.unam.mx (H. Galeana-Sánchez).

If $T = (z_0, z_1, ..., z_n)$ is a directed path, we denote by $\ell(T) = n$ its length and if $z_i, z_j \in V(T)$ with $i \leq j$, we denote (z_i, T, z_j) the $z_i z_j$ -directed path contained in T. For a directed cycle γ , $\ell(\gamma)$ will denote its length; a directed cycle is quasi-monochromatic if with at most one exception, all of its arcs are coloured alike.

If D is an m-coloured digraph then the closure of D, denoted $\mathscr{C}(D)$ is the m-coloured multidigraph defined as follows:

 $V(\mathscr{C}(D)) - V(D),$

 $A(\mathscr{C}(D)) = A(D) \cup \{(u, v) \text{ with colour } i \mid \text{there exists a } uv\text{-monochromatic directed path coloured } i \text{ contained in } D\}.$

Notice that for any digraph D, $\mathscr{C}(\mathscr{C}(D)) \cong \mathscr{C}(D)$ and D has a kernel by monochromatic paths if and only if $\mathscr{C}(D)$ has a kernel.

In [7] Sands et al. have proved that any 2-coloured digraph has a kernel by monochromatic paths. In particular they proved that any 2-coloured tournament has a kernel by monochromatic paths. They also raised the following problem: Let T be a 3-coloured tournament such that every directed cycle of length 3 is quasi-monochromatic; must $\mathscr{C}(T)$ have a kernel? In [6] Shen Minggang proved that if in the problem we ask that every transitive tournament of order 3 be quasi-monochromatic, the answer will be yes. In [4] it was proved that if T is an *m*-coloured tournament such that every directed cycle of length at most 4 is quasi-monochromatic then $\mathscr{C}(T)$ is kernel-perfect and hence T has a kernel by monochromatic paths. Results similar to those in [6] and [4] were proved for the digraph obtained from a tournament by the deletion of a single arc, in [5] and [3], respectively. The known sufficient conditions for the existence of a kernel by monochromatic paths in *m*-coloured ($m \ge 3$) tournaments (or nearly tournaments), ask for the monochromaticity or quasi-monochromaticity of small subdigraphs as directed cycles of length at most 4 or transitive tournaments of order 3.

In this paper it is proved that if D is an *m*-coloured bipartite tournament such that every directed cycle of length 4 is monochromatic then D has a kernel by monochromatic paths and the result is best possible.

We will need the following result.

Theorem 1.1 (Duchet [2]). If D is a digraph such that every directed cycle has at least one symmetrical arc, then D is a kernel-perfect digraph.

2. The main result

First we prove the following lemmas which will be useful in the proof of the main result:

Lemma 2.1. Let $D = (V_1, V_2)$ be a bipartite tournament and $C = (u_0, u_1, \ldots, u_n)$ a directed walk in D. For $\{i, j\} \subseteq \{0, 1, \ldots, n\}$ $(u_i, u_j) \in A(D)$ or $(u_j, u_i) \in A(D)$ if and only if $j - i \equiv 1 \pmod{2}$.

Proof. Without loss of generality we may assume $u_0 \in V_1$, then we clearly have $u_i \in V_1$ iff $i \equiv 0 \pmod{2}$ and $u_i \in V_2$ iff $i \equiv 1 \pmod{2}$. \Box

Lemma 2.2. For a bipartite tournament $D = (V_1, V_2)$, every closed directed walk of length at most 6 in D is a directed cycle of D.

Proof. Let *C* be a closed directed walk with $\ell(C) \leq 6$. We will prove that *C* is a directed cycle. Since *D* is bipartite $\ell(C)$ is even (as every closed odd directed walk contains an odd directed cycle); $\ell(C)=2$ is impossible as a bipartite tournament is an asymmetrical digraph. Suppose $\ell(C)=4$, and let $C = (u_0, u_1, u_2, u_3, u_0)$ we may assume w.l.o.g. $u_i \in V_1$ for $i \in \{0, 2\}$ and $u_j \in V_2$ for $j \in \{1, 3\}$ which implies $u_i \neq u_j$ for $i \in \{0, 2\}$, $j \in \{1, 3\}$. Since $(u_1, u_2) \in A(D)$ and $(u_2, u_3) \in A(D)$ we have $u_1 \neq u_3$ (as *D* is an asymmetrical digraph) and analogously $u_0 \neq u_2$; so *C* is a directed cycle. Finally suppose $\ell(C) = 6$ and let $C = (u_0, u_1, u_2, u_3, u_4, u_5, u_0)$, clearly we may assume w.l.o.g. that $u_i \in V_1$ for $i \in \{0, 2, 4\}$ and $u_j \in V_2$ for $j \in \{1, 3, 5\}$ which implies $u_i \neq u_j$ for $i \in \{0, 2, 4\}$ and $j \in \{1, 3, 5\}$.

Moreover, since $\{(u_i, u_{i+1}), (u_{i+1}, u_{i+2})\} \subseteq A(D)$ for $i \in \{0, 1, \dots, 5\}$ (notation (mod 6)) and D is asymmetrical, we have $u_i \neq u_{i+2}$ for $i \in \{0, 1, \dots, 5\}$. \Box

Lemma 2.3. Let D be an m-coloured bipartite tournament such that every directed cycle of length 4 is monochromatic and $u, v \in V(D)$. If there exists a uv-monochromatic directed path and there is no vu-monochromatic directed path

(in D), then at least one of the two following conditions holds:

- (i) $(u,v) \in A(D);$
- (ii) there exists (in D) a uv-directed path of length 2.

Proof. Let D, u, $v \in V(D)$ be as in the hypothesis. We proceed by induction on the length of a *uv*-monochromatic directed path. Clearly Lemma 2.3 holds when there exists a *uv*-monochromatic directed path of length at most 2. Suppose that Lemma 2.3 holds when there exists a *uv*-monochromatic directed path of length ℓ with $2 \leq \ell \leq n$. Now assume that there exists a *uv*-monochromatic directed path of length ℓ with $2 \leq \ell \leq n$. Now assume that there exists a *uv*-monochromatic directed path of length ℓ with $2 \leq \ell \leq n$. Now assume w.l.o.g. T is coloured 1.

Claim 1. If $(u_i, v) \in A(D)$ for some $i \in \{0, 1, \dots, n-2\}$ then $(u, v) \in A(D)$ or there exists a uv-directed path of length 2.

Assume $(u_i, v) \in A(D)$ for some $i \in \{0, 1, ..., n-2\}$ and let $i_0 = \min\{i \in \{0, 1, ..., n-2\} | (u_i, v) \in A(D)\}$. If $i_0 = 0$ then $(u, v) \in A(D)$ and if $i_0 = 1$ then (u, u_1, v) is a *uv*-directed path of length 2, so we can assume $i_0 \in \{2, ..., n-2\}$.

Since $i_0 \equiv i_0 - 2 \pmod{2}$ and $i_0 \not\equiv n + 1 \pmod{2}$ (as $(u_{i_0}, v) \in A(D)$) we have $i_0 - 2 \not\equiv n + 1 \pmod{2}$ and it follows from Lemma 2.1 that $(u_{i_0-2}, v) \in A(D)$ or $(v, u_{i_0-2}) \in A(D)$. Now the choice of i_0 implies $(v, u_{i_0-2}) \in A(D)$ and hence $C_4 = (u_{i_0-2}, u_{i_0-1}, u_{i_0}, v, u_{i_0-2})$ is a directed cycle of length 4 which by hypothesis is monochromatic, moreover, since (u_{i_0-1}, u_{i_0}) is coloured 1 (as it is an arc of T), it follows that C_4 is coloured 1. Then we obtain that $T' = (u, T, u_{i_0}) \cup (u_{i_0}, v)$ is a *uv*-monochromatic directed path with $\ell(T') < n + 1$; and the inductive hypothesis implies that $(u, v) \in A(D)$ or there exists a *uv*-directed path of length 2.

Now, it follows from Lemma 2.1 that for each $i \in \{0, 1, ..., n-2\}$ $(u_i, u_{i+3}) \in A(D)$ or $(u_{i+3}, u_i) \in A(D)$ (as $i \neq i + 3 \pmod{2}$).

We will analyze two possible cases:

Case a: There exists $i \in \{0, 1, ..., n-2\}$ such that $(u_i, u_{i+3}) \in A(D)$. Let $j_0 = \max\{j \in \{i+3, ..., n+1\} | (u_i, u_j) \in A(D)\}$ (notice that Lemma 2.1 implies $i \not\equiv j_0 \pmod{2}$).

Case $a.1: j_0 = n + 1.$

Is this case the result follows from Claim 1.

Case a.2: $j_0 = n$ and i = 0.

We have $(u_0 = u_i, u_{i_0} = u_n, u_{n+1})$ is a *uv*-directed path of length 2.

Case a.3: $j_0 = n$ and $i \ge 1$.

Since $i \neq j_0 \pmod{2}$, we have $i-1 \neq j_0+1=n+1 \pmod{2}$ and it follows from Lemma 2.1 that $(u_{i-1}, u_{n+1}=v) \in A(D)$ or $(v, u_{i-1}) \in A(D)$. When $(u_{i-1}, v) \in A(D)$, the affirmation of Lemma 2.3 follows from Claim 1. When $(v, u_{i-1}) \in A(D)$ we obtain $C_4 = (u_{i-1}, u_i, u_{j_0} = u_n, v, u_{i-1})$ a directed cycle of length 4 which by hypothesis is monochromatic; in fact C_4 is coloured 1 (as $(u_{i-1}, u_i) \in A(T) \cap A(C_4)$); and then $T' = (u, T, u_i) \cup (u_i, u_{j_0} = u_n, u_{n+1} = v)$ is a *uv*-monochromatic directed path with $\ell(T') \leq n$. Now it follows from the inductive hypothesis that $(u, v) \in A(D)$ or there exists a *uv*-directed path of length 2.

Case a.4: $j_0 \leq n - 1$.

 $i \neq j_0 + 2 \pmod{2}$ (as $i \neq j_0 \pmod{2}$), so it follows from Lemma 2.1 that $(u_i, u_{j_0+2}) \in A(D)$ or $(u_{j_0+2}, u_i) \in A(D)$; now the choice of j_0 implies $(u_{j_0+2}, u_i) \in A(D)$. Thus $C_4 = (u_i, u_{j_0}, u_{j_0+1}, u_{j_0+2}, u_i)$ is a directed cycle of length 4 which by hypothesis is monochromatic and coloured 1 (as $(u_{j_0}, u_{j_0+1}) \in A(T) \cap A(C_4)$); in particular (u_i, u_{j_0}) is coloured 1 and then $T' = (u, T, u_i) \cup (u_i, u_{j_0}) \cup (u_{j_0}, T, v)$ is a *uv*-monochromatic directed path with $\ell(T') \leq n$ and the inductive hypothesis implies $(u, v) \in A(D)$ or there exists a *uv*-directed path of length 2.

Case b: For each $i \in \{0, 1, ..., n - 2\}$, $(u_{i+3}, u_i) \in A(D)$.

 $C_4^i = (u_i, u_{i+1}, u_{i+2}, u_{i+3}, u_i)$ is a directed cycle of length 4 and by hypothesis it is monochromatic, moreover C_4^i is coloured 1 because $(u_i, u_{i+1}) \in (A(T) \cap A(C_4^i))$, hence for each $i \in \{0, 1, ..., n-2\}$, (u_{i+3}, u_i) is coloured 1. Let $k \in \{1, 2, 3\}$ such that $k \equiv n + 1 \pmod{3}$, then $(v = u_{n+1}, u_{n-2}, u_{n-5}, ..., u_k) \cup (u_k, T, u_3) \cup (u_3, u_0)$ is a *vu*-monochromatic directed path, contradicting the hypothesis, thus this case is impossible. \Box

Theorem 2.1. Let D be an m-coloured bipartite tournament. If every directed cycle of length 4 in D is monochromatic, then $\mathscr{C}(D)$ is kernel-perfect.

Proof. During the proof we will use the fact that each closed directed walk of length at most 6 is a directed cycle (Lemma 2.2) without any more explanation.

In view of Theorem 1.1 it suffices to prove (and we will prove) that each directed cycle of $\mathscr{C}(D)$ has a symmetrical arc.

We proceed by contradiction; suppose that there exists a directed cycle of $\mathscr{C}(D)$, $C = (u_0, u_1, \dots, u_n, u_0)$ with $C \subseteq Asym \mathscr{C}(D)$.

Claim 2. For each $i \in \{0, 1, ..., n\}$, $(u_i, u_{i+1}) \in A(D)$ or there exists a $u_i u_{i+1}$ -directed path of length 2 (notation mod n+1).

Let $i \in \{0, 1, ..., n\}$. Since $(u_i, u_{i+1}) \in A(\mathscr{C}(D))$ we have that there exists a $u_i u_{i+1}$ -monochromatic directed path in D, and the fact that C has no symmetrical arcs implies there is no $u_{i+1}u_i$ -monochromatic directed path in D, so Claim 2 follows from Lemma 2.3.

Now we consider two possible cases:

Case a: n = 2.

Since *D* has no odd directed cycles, we have that for some $i \in \{0, 1, 2\}$, $(u_i, u_{i+1}) \notin A(D)$ (notation (mod 3)). W.l.o.g we may assume $(u_0, u_1) \notin A(D)$, then it follows from Claim 2 that there exists a u_0u_1 -directed path of length 2 in *D*, say (u_0, v_0, u_1) .

*Case a.*1: $\{(u_1, u_2), (u_2, u_0)\} \subseteq A(D)$.

In this case $(u_0, v_0, u_1, u_2, u_0)$ is a directed cycle of length 4 in D, which by hypothesis is monochromatic; and then (u_1, u_2, u_0) is a u_1u_0 -monochromatic directed path in D; thus (u_0, u_1) is a symmetrical arc of C in $\mathscr{C}(D)$, contradicting our assumption.

Case a.2: $\{(u_1, u_2), (u_2, u_0)\} \notin A(D)$.

Claim 3. We may assume $\{(u_1, u_2), (u_2, u_0)\} \cap A(D) = \emptyset$.

If $(u_1, u_2) \notin A(D)$ then $(u_2, u_0) \notin A(D)$; since $(u_1, u_2) \notin A(D)$ it follows from Claim 2 that there exists a u_1u_2 -directed path of length 2, say (u_1, v_1, u_2) , so when $(u_2, u_0) \in A(D)$ we obtain $(u_0, v_0, u_1, v_1, u_2, u_0)$ a directed cycle of length five contained in D which is impossible. Analogously it can be proved that: If $(u_2, u_0) \notin A(D)$ then $(u_1, u_2) \notin A(D)$.

Now it follows from Claim 2 that there exists a u_1u_2 -directed path of length 2 in D, say (u_1, v_1, u_2) , and a u_2u_0 -directed path of length 2 in D, say (u_2, v_2, u_0) . Thus $(u_0, v_0, u_1, v_1, u_2, v_2, u_0)$ is a directed cycle of length 6 in D; and it follows from Lemma 2.1 that $(u_0, v_1) \in A(D)$ or $(v_1, u_0) \in A(D)$. When $(u_0, v_1) \in A(D)$ we obtain $(u_0, v_1, u_2, v_2, u_0)$ is a directed cycle of length 4 in D and by hypothesis it is monochromatic, in particular (u_0, v_1, u_2) is a u_0u_2 -monochromatic directed path in D which implies (u_2, u_0) is a symmetrical arc of C in $\mathscr{C}(D)$ contradicting our assumption. When $(v_1, u_0) \in A(D)$ we have $(u_0, v_0, u_1, v_1, u_0)$ is a directed cycle of length 4 in D and by hypothesis is monochromatic, thus $(u_1, v_1, u_0) \in A(D)$ we have $(u_0, v_0, u_1, v_1, u_0)$ is a directed cycle of length 4 in D and by hypothesis are of C in $\mathscr{C}(D)$ contradicting our assumption. When $(v_1, v_1, u_0) \in A(D)$ is a u_1u_0 -monochromatic directed path in D and then (u_0, u_1) is a symmetrical arc of C in $\mathscr{C}(D)$, a contradiction.

Case b: $n \ge 3$.

In what follows the notation is taken modulo n + 1.

In view of Claim 2, for each $i \in \{0, 1, ..., n\}$ we can take a $u_i u_{i+1}$ -directed path as follows:

 $T_i = \begin{cases} (u_i, u_{i+1}) \text{ when } (u_i, u_{i+1}) \in A(D) \text{ and} \\ a \ u_i u_{i+1} \text{-directed path of length } 2 \text{ when } (u_i, u_{i+1}) \notin A(D). \end{cases}$

Let $C' = \bigcup_{i=1}^{n} T_i$. Then C' is a closed directed walk in D, so we may let $C' = (z_0, z_1, ..., z_k, z_0)$ and define the function $\varphi : \{0, 1, ..., k\} \to V(C)$ as follows: For each $i \in \{0, 1, ..., n\}$ if $T_i = (u_i = z_{i_0}, z_{i_0+1} = u_{i+1})$ then $\varphi(i_0) = z_{i_0} = u_i$; and if $T_i = (u_i = z_{i_0}, z_{i_0+1}, z_{i_0+2} = u_{i+1})$ then $\varphi(i_0) = \varphi(i_0 + 1) = z_{i_0}$.

We will say that an index $j \in \{0, 1, ..., k\}$ is a principal index when $\varphi(j) = z_j$; and we will denote by I_p the set of principal indexes. Notice that in C' the indexes are all different and also notice that a vertex u_j may correspond to a principal index ℓ and also to a non principal index p.

Suppose w.l.o.g. that $u_0 = z_0$. Since D is a bipartite tournament, we have $k \equiv 1 \pmod{2}$ and by Lemma 2.1, for each $i \in \{1, \dots, \frac{k-3}{2}\}$ $(z_0, z_{2i+i}) \in A(D)$ or $(z_{2i+1}, z_0) \in A(D)$. We consider the following cases:

*Case b.*1: $(z_3, z_0) \in A(D)$.

In this case we have $(z_0, z_1, z_2, z_3, z_0)$ is a directed cycle of length 4 and by hypothesis is monochromatic. The definition of C' implies $z_1 = u_1$ or $z_2 = u_1$. If $z_1 = u_1$ then $(u_1 = z_1, z_2, z_3, z_0 = u_0)$ is a u_1u_0 -monochromatic directed path in D which implies that (u_0, u_1) is a symmetrical arc of C in $\mathscr{C}(D)$, contradicting our assumption on C. So $z_1 \neq u_1$, consequently $z_2 = u_1$ and then $(u_1 = z_2, z_3, z_0 = u_0)$ is a u_1u_0 -monochromatic directed path in D, thus (u_0, u_1) is a symmetrical arc of C in $\mathscr{C}(D)$, a contradiction.

Case b.2: $(z_0, z_{k-2}) \in A(D)$.

The assumption in subcase b.2 implies $(z_0, z_{k-2}, z_{k-1}, z_k, z_0)$ is a directed cycle of length 4 which by hypothesis is monochromatic. The construction of C' implies that $z_k = u_n$ or $z_{k-1} = u_n$. When $z_k = u_n$ we have that $(u_0 = z_0, z_{k-2}, z_{k-1}, z_k = u_n)$

is a u_0u_n -monochromatic directed path in D which implies that (u_n, u_0) is a symmetrical arc of C in $\mathscr{C}(D)$, contradicting our assumption. Hence $z_k \neq u_n$ and then $z_{k-1} = u_n$; now $(u_0 = z_0, z_{k-2}, z_{k-1} = u_n)$ is a u_0u_n -monochromatic directed path in D which implies that (u_n, u_0) is a symmetrical arc of C in $\mathscr{C}(D)$, a contradiction.

Case b.3: $(z_0, z_3) \in A(D)$ and $(z_{k-2}, z_0) \in A(D)$.

Since $\{(z_0, z_1), (z_0, z_3), (z_{k-2}, z_0)\} \subseteq A(D)$ we have $k-2 \ge 5$ and there exists $j \in \{1, ..., \frac{k-5}{2}\}$ such that $(z_0, z_{2j+1}) \in A(D)$ and $(z_{2j+3}, z_0) \in A(D)$. Let $i_0 = \min\{j \in \{1, ..., \frac{k-5}{2}\} | \{(z_0, z_{2j+1}), (z_{2j+3}, z_0)\} \subseteq A(D)\}$. Hence $\tilde{C} = (z_0, z_{2i_0+1}, z_{2i_0+2}, z_{2i_0+3}, z_0)$ is a directed cycle of length 4 in D which by hypothesis is monochromatic. Now we consider two possible cases.

Case b.3.1: $2i_0 + 1 \in I_p$.

In this case $z_{2i_0+1} = u_j$ for some $j \in \{2, ..., n-2\}$ (as $3 \leq 2i_0 + 1 \leq k-4$). By the construction of C' we have $z_{2i_0+2} = u_{j+1}$ or $z_{2i_0+3} = u_{j+1}$. If $z_{2i_0+2} = u_{j+1}$ then $(u_{j+1} = z_{2i_0+2}, z_{2i_0+3}, z_0, z_{2i_0+1} = u_j)$ is a $u_{j+1}u_j$ -monochromatic directed path in D which implies that (u_j, u_{j+1}) is a symmetrical arc of C in $\mathcal{C}(D)$ contradicting our assumption. Hence $z_{2i_0+2} \neq u_{j+1}$ and consequently $z_{2i_0+3} = u_{j+1}$ thus $(u_{j+1} = z_{2i_0+3}, z_0, z_{2i_0+1} = u_j)$ is a $u_{j+1}u_j$ -monochromatic directed path in D and then (u_j, u_{j+1}) is a symmetrical arc of C in $\mathcal{C}(D)$, a contradiction.

Case b.3.2: $2i_0 + 1 \notin I_p$.

Now, by construction of C' we have that $\{2i_0, 2i_0+2\} \subseteq I_p$, i.e. $z_{2i_0} = u_{j-1}$ and $z_{2i_0+2} = u_j$ for some $j \in \{2, \ldots, n-1\}$. Lemma 2.1 implies $(z_{2i_0}, z_{2i_0+3}) \in A(D)$ or $(z_{2i_0+3}, z_{2i_0}) \in A(D)$. When $(z_{2i_0+3}, z_{2i_0}) \in A(D)$ we obtain that $(z_{2i_0}, z_{2i_0+1}, z_{2i_0+2}, z_{2i_0+3}, z_{2i_0})$ is a directed cycle of length 4 and by hypothesis is monochromatic; thus $(u_j = z_{2i_0+2}, z_{2i_0+3}, z_{2i_0} = u_{j-1})$ is a u_ju_{j-1} -monochromatic directed path and (u_{j-1}, u_j) is a symmetrical arc of C in $\mathscr{C}(D)$, a contradiction. So we have $(z_{2i_0}, z_{2i_0+3}) \in A(D)$; observe that the choice of i_0 implies $(z_0, z_{2i_0-1}) \in A(D)$ (when $(z_{2i_0-1}, z_0) \in A(D)$), the fact $(z_0, z_1) \in A(D)$ implies that there exists $j \leq i_0 - 2$ such that $(z_0, z_{2j+1}) \in A(D)$ and $(z_{2j+3}, z_0) \in A(D)$ contradicting the choice of i_0), thus $C'' = (z_0, z_{2i_0-1}, z_{2i_0+3}, z_0)$ is a directed cycle of length 4 which by hypothesis must be monochromatic; since $(z_{2i_0+3}, z_0) \in A(\tilde{C}) \cap A(C'')$ we have that \tilde{C} and C'' are of the same colour; so $(u_j = z_{2i_0+2}, z_{2i_0+3}, z_0, z_{2i_0-1}, z_{2i_0} = u_{j-1})$ is a monochromatic directed path in D and (u_{j-1}, u_j) is a symmetrical arc of C in $\mathscr{C}(D)$, a contradiction. \Box

The following result is a direct consequence of Theorem 2.1:

Theorem 2.2. Let D be an m-coloured bipartite tournament. If every directed cycle of length 4 in D is monochromatic, then D has a kernel by monochromatic paths.

Remark 2.1. The hypothesis that every directed cycle of length 4 is monochromatic in Theorem 2.2 is tight.

Let D be the 3-coloured bipartite tournament defined as follows:

 $V(D) = \{u, v, w, x, y, z\}$ and $A(D) = \{(u, x), (x, v), (v, y), (y, w), (x, z), (z, u), (x, w), (y, u), (z, v)\}$; the arcs (x, w), (w, z) and (z, u) are coloured 1; the arcs (y, u), (u, x) and (x, v) are coloured 2; and the arcs (z, v), (v, y) and (y, w) are coloured 3. The only directed cycles of length 4 of D are (u, x, w, z, u), (v, y, u, x, v) and (w, z, v, y, w) which are quasi-monochromatic and the digraph $\mathscr{C}(D)$ is a complete digraph which has no kernel; hence D has no kernel by monochromatic paths. Moreover, we can construct an infinite family of digraphs all of whose directed cycles of length 4 are quasi-monochromatic and which have no kernel by monochromatic paths as follows: Let D_n be the digraph obtained from D by adding vertices z_1, z_2, \ldots, z_n and arcs coloured 3 from each one of these vertices to u, v and w, respectively.

Remark 2.2. The assumption that every directed cycle of length 4 in a bipartite tournament D is monochromatic, does not imply that every directed cycle of length 6 in D is monochromatic.

Remark 2.3. For each *m* there exists an *m*-coloured Hamiltonian bipartite tournament such that every directed cycle of length 4 is monochromatic.

Proof. Let *D* be the *m*-coloured digraph defined as follows:

$$V(D) = X \cup Y \cup Z \cup W \quad \text{where;} \quad X = \{x_1, x_2, \dots, x_m\}, \quad Y = \{y_1, y_2, \dots, y_m\}$$

$$Z = \{z_1, z_2, \dots, z_m\}, \quad W = \{w_1, w_2, \dots, w_m\}.$$

$$A(D) = X_Y \cup Y_z \cup Z_W \cup W_X \cup Z_Y \cup W_Z \cup X_W \quad \text{where:}$$

$$X_Y = \{(x_i, y_j) \mid i \in \{1, 2, \dots, m\}, \quad j \in \{1, 2, \dots, m\}\},$$

$$Y_Z = \{(y_i, z_i) \mid i \in \{1, 2, \dots, m\}\}, \quad Z_W = \{(z_i, w_i) \mid i \in \{1, 2, \dots, m\}\},$$

$$W_X = \{(w_i, x_{i+1}) \mid i \in \{1, 2, \dots, m-1\}\} \cup \{(w_m, x_1)\},$$

$$Z_Y = \{(z_i, y_j) \mid i \in \{1, 2, \dots, m\}, j \in \{1, 2, \dots, m\}, i \neq j\},\$$
$$W_Z = \{(w_i, z_j) \mid i \in \{1, 2, \dots, m\}, j \in \{1, 2, \dots, m\}, i \neq j\},\$$
$$X_W = \{(x_i, w_j) \mid i \in \{1, 2, \dots, m\}, j \in \{1, 2, \dots, m\}, i \neq j + 1\}$$

(notation mod m).

For each $i \in \{1, 2, ..., m\}$ the arc (x_i, y_i) is colored i and any other arc is coloured 1.

Clearly D is an m-coloured bipartite tournament. \Box

Claim 3. *D* is Hamiltonian. It follows from the definition of *D* that for each $i \in \{1, 2, ..., m\}$ we have the directed path $T_i = (x_i, y_i, z_i, w_i, x_{i+1})$ and clearly $V(T_i) \cap V(T_j) = \emptyset$ for $j \neq i+1$, and $V(T_i) \cap V(T_{i+1}) = \{x_{i+1}\}$. So $C = \bigcup_{i=1}^m T_i$ is a Hamiltonian directed cycle of *D*.

Claim 4. Every directed cycle of length 4 of D is monochromatic. Proceeding by contradiction, suppose that $C_4 = (u_1, u_2, u_3, u_4, u_1)$ is a non-monochromatic directed cycle of D, so C_4 must contain at least one arc coloured i for some $i \in \{2, ..., m\}$, so we may assume that $u_1 = x_2$ and $u_2 = y_2$; it follows from the definition of D that $u_3 = z_2$ and $(u_4 = w_2)$ or $u_4 = y_i$ for some $i \neq 2$). When $u_4 = w_2$, we obtain that $(x_2, w_2) \in A(D)$ and hence $(w_2, x_2) \notin A(D)$, a contradiction. When $u_4 = y_i$ for some $i \neq 2$ we obtain that $(x_2, y_i) \in A(D)$ contradicting that $(u_4 = y_i, u_1 = x_2) \in A(D)$.

Acknowledgements

We thank the referees for their suggestions which improved the rewriting of this paper.

References

- [1] C. Berge, Graphs, North-Holland, Amsterdam, New York, 1985.
- [2] P. Duchet, Graphes Noyau Parfaits, Ann. Discrete Math. 9 (1980) 93-101.
- [3] H. Galeana-Sánchez, Kernels in edge-coloured digraphs, Discrete Math. 184 (1988) 87-99.
- [4] H. Galeana-Sánchez, On monochromatic paths and monochromatic cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103–110.
- [5] H. Galeana-Sánchez, J.J. García-Ruvalcaba, Kernels in the closure of coloured digraphs, Discuss. Math. Graph Theory 20 (2000) 243–354.
- [6] S. Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory Ser. B 45 (1988) 108-111.
- [7] B. Sands, N. Sauer, R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory Ser. B 33 (1982) 271–275.