On monochromatic paths and monochromatic 4-cycles in edge coloured bipartite tournaments

Hortensia Galeana-Sánchez ${ }^{\text {a }}$, Rocío Rojas-Monroy ${ }^{\text {b }}$
${ }^{\text {a }}$ Instituto de Matemáticas, Universidad Nacional Autonoma de Mexico (UNAM), Ciudad Universitaria, Circuito Exterior, 04510 México, DF, Mexico
${ }^{\mathrm{b}}$ Facultad de Ciencias, Universidad Autónoma del Estado de México, Instituto Literario No. 100, Centro 50000, Toluca, Edo. de México, Mexico

Received 5 February 2003; received in revised form 18 February 2004; accepted 3 March 2004

Abstract

We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike.

A set $N \subseteq V(D)$ is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) For every pair of different vertices $u, v \in N$, there is no monochromatic directed path between them. (ii) For every vertex $x \in(V(D)-N)$, there is a vertex $y \in N$ such that there is an $x y$-monochromatic directed path.

In this paper it is proved that if D is an m-coloured bipartite tournament such that every directed cycle of length 4 is monochromatic, then D has a kernel by monochromatic paths. (c) 2004 Elsevier B.V. All rights reserved.

MSC: 05C20
Keywords: Kernel; Kernel by monochromatic paths; Bipartite tournament

1. Introduction

For general concepts we refer the reader to [1]. Let D be a digraph $V(D)$ and $A(D)$ will denote the sets of vertices and arcs of D, respectively. An arc $\left(u_{1}, u_{2}\right) \in A(D)$ is called asymmetrical (resp. symmetrical) if $\left(u_{2}, u_{1}\right) \notin A(D)$ (resp. $\left.\left(u_{2}, u_{1}\right) \in A(D)\right)$. The asymmetrical part of D (resp. symmetrical part of D) which is denoted $\operatorname{Asym}(D)($ resp. $\operatorname{Sym}(D))$ is the spanning subdigraph of D whose arcs are the asymmetrical (resp. symmetrical) arcs of $D ; D$ is called an asymmetrical digraph if $\operatorname{Asym}(D)=D$. We recall that a subdigraph D_{1} of D is a spanning subdigraph if $V\left(D_{1}\right)=V(D)$. If S is a nonempty set of $V(D)$ then the subdigraph $D[S]$ induced by S is the digraph having vertex set S, and whose arcs are all those arcs of D joining vertices of S. An arc $\left(u_{1}, u_{2}\right)$ of D will be called an $S_{1} S_{2}$-arc whenever $u_{1} \in S_{1}$ and $u_{2} \in S_{2}$.

A set $I \subseteq V(D)$ is independent if $A(D[I])=\emptyset$. A kernel N of D is an independent set of vertices such that for each $z \in V(D)-N$ there exists a $z N$-arc in D. A digraph D is called a kernel-perfect digraph or $K P$-digraph when every induced subdigraph of D has a kernel. A digraph D is called a bipartite tournament if its vertices can be partitioned into two sets V_{1} and V_{2} such that:
(i) Every arc of D has an endpoint in V_{1} and the other endpoint in V_{2}.
(ii) For all $x_{1} \in V_{1}$ and for all $x_{2} \in V_{2}$, we have $\left|\left\{\left(x_{1}, x_{2}\right),\left(x_{2}, x_{1}\right)\right\} \cap A(D)\right|=1$. We will write $D=\left(V_{1}, V_{2}\right)$ to indicate the partition.

[^0]If $T=\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ is a directed path, we denote by $\ell(T)=n$ its length and if $z_{i}, z_{j} \in V(T)$ with $i \leqslant j$, we denote $\left(z_{i}, T, z_{j}\right)$ the $z_{i} z_{j}$-directed path contained in T. For a directed cycle $\gamma, \ell(\gamma)$ will denote its length; a directed cycle is quasi-monochromatic if with at most one exception, all of its arcs are coloured alike.

If D is an m-coloured digraph then the closure of D, denoted $\mathscr{C}(D)$ is the m-coloured multidigraph defined as follows:

$$
\begin{aligned}
& V(\mathscr{C}(D))-V(D) \\
& A(\mathscr{C}(D))=A(D) \cup\{(u, v) \text { with colour } i \mid \text { there exists a } u v \text {-monochromatic directed path coloured } i \text { contained in } D\} .
\end{aligned}
$$

Notice that for any digraph $D, \mathscr{C}(\mathscr{C}(D)) \cong \mathscr{C}(D)$ and D has a kernel by monochromatic paths if and only if $\mathscr{C}(D)$ has a kernel.

In [7] Sands et al. have proved that any 2-coloured digraph has a kernel by monochromatic paths. In particular they proved that any 2 -coloured tournament has a kernel by monochromatic paths. They also raised the following problem: Let T be a 3-coloured tournament such that every directed cycle of length 3 is quasi-monochromatic; must $\mathscr{C}(T)$ have a kernel? In [6] Shen Minggang proved that if in the problem we ask that every transitive tournament of order 3 be quasi-monochromatic, the answer will be yes. In [4] it was proved that if T is an m-coloured tournament such that every directed cycle of length at most 4 is quasi-monochromatic then $\mathscr{C}(T)$ is kernel-perfect and hence T has a kernel by monochromatic paths. Results similar to those in [6] and [4] were proved for the digraph obtained from a tournament by the deletion of a single arc, in [5] and [3], respectively. The known sufficient conditions for the existence of a kernel by monochromatic paths in m-coloured ($m \geqslant 3$) tournaments (or nearly tournaments), ask for the monochromaticity or quasi-monochromaticity of small subdigraphs as directed cycles of length at most 4 or transitive tournaments of order 3 .

In this paper it is proved that if D is an m-coloured bipartite tournament such that every directed cycle of length 4 is monochromatic then D has a kernel by monochromatic paths and the result is best possible.

We will need the following result.
Theorem 1.1 (Duchet [2]). If D is a digraph such that every directed cycle has at least one symmetrical arc, then D is a kernel-perfect digraph.

2. The main result

First we prove the following lemmas which will be useful in the proof of the main result:
Lemma 2.1. Let $D=\left(V_{1}, V_{2}\right)$ be a bipartite tournament and $C=\left(u_{0}, u_{1}, \ldots, u_{n}\right)$ a directed walk in D. For $\{i, j\} \subseteq$ $\{0,1, \ldots, n\}\left(u_{i}, u_{j}\right) \in A(D)$ or $\left(u_{j}, u_{i}\right) \in A(D)$ if and only if $j-i \equiv 1(\bmod 2)$.

Proof. Without loss of generality we may assume $u_{0} \in V_{1}$, then we clearly have $u_{i} \in V_{1}$ iff $i \equiv 0(\bmod 2)$ and $u_{i} \in V_{2}$ iff $i \equiv 1(\bmod 2)$.

Lemma 2.2. For a bipartite tournament $D=\left(V_{1}, V_{2}\right)$, every closed directed walk of length at most 6 in D is a directed cycle of D.

Proof. Let C be a closed directed walk with $\ell(C) \leqslant 6$. We will prove that C is a directed cycle. Since D is bipartite $\ell(C)$ is even (as every closed odd directed walk contains an odd directed cycle); $\ell(C)=2$ is impossible as a bipartite tournament is an asymmetrical digraph. Suppose $\ell(C)=4$, and let $C=\left(u_{0}, u_{1}, u_{2}, u_{3}, u_{0}\right)$ we may assume w.l.o.g. $u_{i} \in V_{1}$ for $i \in\{0,2\}$ and $u_{j} \in V_{2}$ for $j \in\{1,3\}$ which implies $u_{i} \neq u_{j}$ for $i \in\{0,2\}, j \in\{1,3\}$. Since $\left(u_{1}, u_{2}\right) \in A(D)$ and $\left(u_{2}, u_{3}\right) \in A(D)$ we have $u_{1} \neq u_{3}$ (as D is an asymmetrical digraph) and analogously $u_{0} \neq u_{2}$; so C is a directed cycle. Finally suppose $\ell(C)=6$ and let $C=\left(u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{0}\right)$, clearly we may assume w.l.o.g. that $u_{i} \in V_{1}$ for $i \in\{0,2,4\}$ and $u_{j} \in V_{2}$ for $j \in\{1,3,5\}$ which implies $u_{i} \neq u_{j}$ for $i \in\{0,2,4\}$ and $j \in\{1,3,5\}$.

Moreover, since $\left\{\left(u_{i}, u_{i+1}\right),\left(u_{i+1}, u_{i+2}\right)\right\} \subseteq A(D)$ for $i \in\{0,1, \ldots, 5\}($ notation $(\bmod 6))$ and D is asymmetrical, we have $u_{i} \neq u_{i+2}$ for $i \in\{0,1, \ldots, 5\}$.

Lemma 2.3. Let D be an m-coloured bipartite tournament such that every directed cycle of length 4 is monochromatic and $u, v \in V(D)$. If there exists a uv-monochromatic directed path and there is no vu-monochromatic directed path
(in D), then at least one of the two following conditions holds:
(i) $(u, v) \in A(D)$;
(ii) there exists (in D) a uv-directed path of length 2 .

Proof. Let $D, u, v \in V(D)$ be as in the hypothesis. We proceed by induction on the length of a $u v$-monochromatic directed path. Clearly Lemma 2.3 holds when there exists a $u v$-monochromatic directed path of length at most 2 . Suppose that Lemma 2.3 holds when there exists a $u v$-monochromatic directed path of length ℓ with $2 \leqslant \ell \leqslant n$. Now assume that there exists a $u v$-monochromatic directed path say $T=\left(u=u_{0}, u_{1}, \ldots, u_{n+1}=v\right)$ with $\ell(T)=n+1$; we may assume w.l.o.g. T is coloured 1 .

Claim 1. If $\left(u_{i}, v\right) \in A(D)$ for some $i \in\{0,1, \ldots, n-2\}$ then $(u, v) \in A(D)$ or there exists a uv-directed path of length 2 .
Assume $\left(u_{i}, v\right) \in A(D)$ for some $i \in\{0,1, \ldots, n-2\}$ and let $i_{0}=\min \left\{i \in\{0,1, \ldots, n-2\} \mid\left(u_{i}, v\right) \in A(D)\right\}$. If $i_{0}=0$ then $(u, v) \in A(D)$ and if $i_{0}=1$ then $\left(u, u_{1}, v\right)$ is a $u v$-directed path of length 2 , so we can assume $i_{0} \in\{2, \ldots, n-2\}$.

Since $i_{0} \equiv i_{0}-2(\bmod 2)$ and $i_{0} \not \equiv n+1(\bmod 2)\left(\right.$ as $\left.\left(u_{i_{0}}, v\right) \in A(D)\right)$ we have $i_{0}-2 \not \equiv n+1(\bmod 2)$ and it follows from Lemma 2.1 that $\left(u_{i_{0}-2}, v\right) \in A(D)$ or $\left(v, u_{i_{0}-2}\right) \in A(D)$. Now the choice of i_{0} implies $\left(v, u_{i_{0}-2}\right) \in A(D)$ and hence $C_{4}=\left(u_{i_{0}-2}, u_{i_{0}-1}, u_{i_{0}}, v, u_{i_{0}-2}\right)$ is a directed cycle of length 4 which by hypothesis is monochromatic, moreover, since $\left(u_{i_{0}-1}, u_{i_{0}}\right)$ is coloured 1 (as it is an arc of T), it follows that C_{4} is coloured 1 . Then we obtain that $T^{\prime}=\left(u, T, u_{i_{0}}\right) \cup\left(u_{i_{0}}, v\right)$ is a $u v$-monochromatic directed path with $\ell\left(T^{\prime}\right)<n+1$; and the inductive hypothesis implies that $(u, v) \in A(D)$ or there exists a $u v$-directed path of length 2 .

Now, it follows from Lemma 2.1 that for each $i \in\{0,1, \ldots, n-2\}\left(u_{i}, u_{i+3}\right) \in A(D)$ or $\left(u_{i+3}, u_{i}\right) \in A(D)$ (as $i \not \equiv i+$ $3(\bmod 2))$.

We will analyze two possible cases:
Case a : There exists $i \in\{0,1, \ldots, n-2\}$ such that $\left(u_{i}, u_{i+3}\right) \in A(D)$. Let $j_{0}=\max \left\{j \in\{i+3, \ldots, n+1\} \mid\left(u_{i}, u_{j}\right) \in A(D)\right\}$ (notice that Lemma 2.1 implies $i \not \equiv j_{0}(\bmod 2)$).

Case a.1: $j_{0}=n+1$.
Is this case the result follows from Claim 1.
Case a.2: $j_{0}=n$ and $i=0$.
We have ($\left.u_{0}=u_{i}, u_{j_{0}}=u_{n}, u_{n+1}\right)$ is a $u v$-directed path of length 2 .
Case a.3: $j_{0}=n$ and $i \geqslant 1$.
Since $i \not \equiv j_{0}(\bmod 2)$, we have $i-1 \not \equiv j_{0}+1=n+1(\bmod 2)$ and it follows from Lemma 2.1 that $\left(u_{i-1}, u_{n+1}=v\right) \in A(D)$ or $\left(v, u_{i-1}\right) \in A(D)$. When $\left(u_{i-1}, v\right) \in A(D)$, the affirmation of Lemma 2.3 follows from Claim 1. When $\left(v, u_{i-1}\right) \in A(D)$ we obtain $C_{4}=\left(u_{i-1}, u_{i}, u_{j_{0}}=u_{n}, v, u_{i-1}\right)$ a directed cycle of length 4 which by hypothesis is monochromatic; in fact C_{4} is coloured 1 (as $\left.\left(u_{i-1}, u_{i}\right) \in A(T) \cap A\left(C_{4}\right)\right)$; and then $T^{\prime}=\left(u, T, u_{i}\right) \cup\left(u_{i}, u_{j_{0}}=u_{n}, u_{n+1}=v\right)$ is a $u v$-monochromatic directed path with $\ell\left(T^{\prime}\right) \leqslant n$. Now it follows from the inductive hypothesis that $(u, v) \in A(D)$ or there exists a $u v$-directed path of length 2.

Case a.4: $j_{0} \leqslant n-1$.
$i \not \equiv j_{0}+2(\bmod 2)\left(\right.$ as $\left.i \not \equiv j_{0}(\bmod 2)\right)$, so it follows from Lemma 2.1 that $\left(u_{i}, u_{j_{0}+2}\right) \in A(D)$ or $\left(u_{j_{0}+2}, u_{i}\right) \in A(D)$; now the choice of j_{0} implies $\left(u_{j_{0}+2}, u_{i}\right) \in A(D)$. Thus $C_{4}=\left(u_{i}, u_{j_{0}}, u_{j_{0}+1}, u_{j_{0}+2}, u_{i}\right)$ is a directed cycle of length 4 which by hypothesis is monochromatic and coloured 1 (as $\left(u_{j_{0}}, u_{j_{0}+1}\right) \in A(T) \cap A\left(C_{4}\right)$); in particular ($u_{i}, u_{j_{0}}$) is coloured 1 and then $T^{\prime}=\left(u, T, u_{i}\right) \cup\left(u_{i}, u_{j_{0}}\right) \cup\left(u_{j_{0}}, T, v\right)$ is a $u v$-monochromatic directed path with $\ell\left(T^{\prime}\right) \leqslant n$ and the inductive hypothesis implies $(u, v) \in A(D)$ or there exists a $u v$-directed path of length 2 .

Case b: For each $i \in\{0,1, \ldots, n-2\},\left(u_{i+3}, u_{i}\right) \in A(D)$.
$C_{4}^{i}=\left(u_{i}, u_{i+1}, u_{i+2}, u_{i+3}, u_{i}\right)$ is a directed cycle of length 4 and by hypothesis it is monochromatic, moreover C_{4}^{i} is coloured 1 because $\left(u_{i}, u_{i+1}\right) \in\left(A(T) \cap A\left(C_{4}^{i}\right)\right)$, hence for each $i \in\{0,1, \ldots, n-2\},\left(u_{i+3}, u_{i}\right)$ is coloured 1 . Let $k \in\{1,2,3\}$ such that $k \equiv n+1(\bmod 3)$, then $\left(v=u_{n+1}, u_{n-2}, u_{n-5}, \ldots, u_{k}\right) \cup\left(u_{k}, T, u_{3}\right) \cup\left(u_{3}, u_{0}\right)$ is a $v u$-monochromatic directed path, contradicting the hypothesis, thus this case is impossible.

Theorem 2.1. Let D be an m-coloured bipartite tournament. If every directed cycle of length 4 in D is monochromatic, then $\mathscr{C}(D)$ is kernel-perfect.

Proof. During the proof we will use the fact that each closed directed walk of length at most 6 is a directed cycle (Lemma 2.2) without any more explanation.

In view of Theorem 1.1 it suffices to prove (and we will prove) that each directed cycle of $\mathscr{C}(D)$ has a symmetrical arc.

We proceed by contradiction; suppose that there exists a directed cycle of $\mathscr{C}(D), C=\left(u_{0}, u_{1}, \ldots, u_{n}, u_{0}\right)$ with $C \subseteq$ Asym $\mathscr{C}(D)$.

Claim 2. For each $i \in\{0,1, \ldots, n\},\left(u_{i}, u_{i+1}\right) \in A(D)$ or there exists a $u_{i} u_{i+1}$-directed path of length $2($ notation $\bmod n+1)$.
Let $i \in\{0,1, \ldots, n\}$. Since $\left(u_{i}, u_{i+1}\right) \in A(\mathscr{C}(D))$ we have that there exists a $u_{i} u_{i+1}$-monochromatic directed path in D, and the fact that C has no symmetrical arcs implies there is no $u_{i+1} u_{i}$-monochromatic directed path in D, so Claim 2 follows from Lemma 2.3.

Now we consider two possible cases:
Case a : $n=2$.
Since D has no odd directed cycles, we have that for some $i \in\{0,1,2\},\left(u_{i}, u_{i+1}\right) \notin A(D)($ notation $(\bmod 3))$. W.l.o.g we may assume $\left(u_{0}, u_{1}\right) \notin A(D)$, then it follows from Claim 2 that there exists a $u_{0} u_{1}$-directed path of length 2 in D, say $\left(u_{0}, v_{0}, u_{1}\right)$.

Case a.1: $\left\{\left(u_{1}, u_{2}\right),\left(u_{2}, u_{0}\right)\right\} \subseteq A(D)$.
In this case $\left(u_{0}, v_{0}, u_{1}, u_{2}, u_{0}\right)$ is a directed cycle of length 4 in D, which by hypothesis is monochromatic; and then $\left(u_{1}, u_{2}, u_{0}\right)$ is a $u_{1} u_{0}$-monochromatic directed path in D; thus $\left(u_{0}, u_{1}\right)$ is a symmetrical arc of C in $\mathscr{C}(D)$, contradicting our assumption.

Case a.2: $\left\{\left(u_{1}, u_{2}\right),\left(u_{2}, u_{0}\right)\right\} \nsubseteq A(D)$.
Claim 3. We may assume $\left\{\left(u_{1}, u_{2}\right),\left(u_{2}, u_{0}\right)\right\} \cap A(D)=\emptyset$.
If $\left(u_{1}, u_{2}\right) \notin A(D)$ then $\left(u_{2}, u_{0}\right) \notin A(D)$; since $\left(u_{1}, u_{2}\right) \notin A(D)$ it follows from Claim 2 that there exists a $u_{1} u_{2}$-directed path of length 2 , say $\left(u_{1}, v_{1}, u_{2}\right)$, so when $\left(u_{2}, u_{0}\right) \in A(D)$ we obtain $\left(u_{0}, v_{0}, u_{1}, v_{1}, u_{2}, u_{0}\right)$ a directed cycle of length five contained in D which is impossible. Analogously it can be proved that: If $\left(u_{2}, u_{0}\right) \notin A(D)$ then $\left(u_{1}, u_{2}\right) \notin A(D)$.

Now it follows from Claim 2 that there exists a $u_{1} u_{2}$-directed path of length 2 in D, say $\left(u_{1}, v_{1}, u_{2}\right)$, and a $u_{2} u_{0}$-directed path of length 2 in D, say $\left(u_{2}, v_{2}, u_{0}\right)$. Thus $\left(u_{0}, v_{0}, u_{1}, v_{1}, u_{2}, v_{2}, u_{0}\right)$ is a directed cycle of length 6 in D; and it follows from Lemma 2.1 that $\left(u_{0}, v_{1}\right) \in A(D)$ or $\left(v_{1}, u_{0}\right) \in A(D)$. When $\left(u_{0}, v_{1}\right) \in A(D)$ we obtain $\left(u_{0}, v_{1}, u_{2}, v_{2}, u_{0}\right)$ is a directed cycle of length 4 in D and by hypothesis it is monochromatic, in particular (u_{0}, v_{1}, u_{2}) is a $u_{0} u_{2}$-monochromatic directed path in D which implies $\left(u_{2}, u_{0}\right)$ is a symmetrical arc of C in $\mathscr{C}(D)$ contradicting our assumption. When $\left(v_{1}, u_{0}\right) \in A(D)$ we have ($u_{0}, v_{0}, u_{1}, v_{1}, u_{0}$) is a directed cycle of length 4 in D and by hypothesis is monochromatic, thus $\left(u_{1}, v_{1}, u_{0}\right)$ is a $u_{1} u_{0}$-monochromatic directed path in D and then $\left(u_{0}, u_{1}\right)$ is a symmetrical arc of C in $\mathscr{C}(D)$, a contradiction.

Case $b: n \geqslant 3$.
In what follows the notation is taken modulo $n+1$.
In view of Claim 2, for each $i \in\{0,1, \ldots, n\}$ we can take a $u_{i} u_{i+1}$-directed path as follows:

$$
T_{i}=\left\{\begin{array}{l}
\left(u_{i}, u_{i+1}\right) \text { when }\left(u_{i}, u_{i+1}\right) \in A(D) \text { and } \\
\text { a } u_{i} u_{i+1} \text {-directed path of length } 2 \text { when }\left(u_{i}, u_{i+1}\right) \notin A(D) .
\end{array}\right.
$$

Let $C^{\prime}=\bigcup_{i=1}^{n} T_{i}$. Then C^{\prime} is a closed directed walk in D, so we may let $C^{\prime}=\left(z_{0}, z_{1}, \ldots, z_{k}, z_{0}\right)$ and define the function $\varphi:\{0,1, \ldots, k\} \rightarrow V(C)$ as follows: For each $i \in\{0,1, \ldots, n\}$ if $T_{i}=\left(u_{i}=z_{i_{0}}, z_{i_{0}+1}=u_{i+1}\right)$ then $\varphi\left(i_{0}\right)=z_{i_{0}}=u_{i}$; and if $T_{i}=\left(u_{i}=z_{i_{0}}, z_{i_{0}+1}, z_{i_{0}+2}=u_{i+1}\right)$ then $\varphi\left(i_{0}\right)=\varphi\left(i_{0}+1\right)=z_{i_{0}}$.

We will say that an index $j \in\{0,1, \ldots, k\}$ is a principal index when $\varphi(j)=z_{j}$; and we will denote by I_{p} the set of principal indexes. Notice that in C^{\prime} the indexes are all different and also notice that a vertex u_{j} may correspond to a principal index ℓ and also to a non principal index p.

Suppose w.l.o.g. that $u_{0}=z_{0}$. Since D is a bipartite tournament, we have $k \equiv 1(\bmod 2)$ and by Lemma 2.1 , for each $i \in\left\{1, \ldots, \frac{k-3}{2}\right\}\left(z_{0}, z_{2 i+i}\right) \in A(D)$ or $\left(z_{2 i+1}, z_{0}\right) \in A(D)$. We consider the following cases:

Case b.1: $\left(z_{3}, z_{0}\right) \in A(D)$.
In this case we have $\left(z_{0}, z_{1}, z_{2}, z_{3}, z_{0}\right)$ is a directed cycle of length 4 and by hypothesis is monochromatic. The definition of C^{\prime} implies $z_{1}=u_{1}$ or $z_{2}=u_{1}$. If $z_{1}=u_{1}$ then $\left(u_{1}=z_{1}, z_{2}, z_{3}, z_{0}=u_{0}\right)$ is a $u_{1} u_{0}$-monochromatic directed path in D which implies that $\left(u_{0}, u_{1}\right)$ is a symmetrical arc of C in $\mathscr{C}(D)$, contradicting our assumption on C. So $z_{1} \neq u_{1}$, consequently $z_{2}=u_{1}$ and then $\left(u_{1}=z_{2}, z_{3}, z_{0}=u_{0}\right)$ is a $u_{1} u_{0}$-monochromatic directed path in D, thus $\left(u_{0}, u_{1}\right)$ is a symmetrical arc of C in $\mathscr{C}(D)$, a contradiction.

Case b.2: $\left(z_{0}, z_{k-2}\right) \in A(D)$.
The assumption in subcase b. 2 implies $\left(z_{0}, z_{k-2}, z_{k-1}, z_{k}, z_{0}\right)$ is a directed cycle of length 4 which by hypothesis is monochromatic. The construction of C^{\prime} implies that $z_{k}=u_{n}$ or $z_{k-1}=u_{n}$. When $z_{k}=u_{n}$ we have that ($u_{0}=z_{0}, z_{k-2}, z_{k-1}, z_{k}=u_{n}$)
is a $u_{0} u_{n}$-monochromatic directed path in D which implies that $\left(u_{n}, u_{0}\right)$ is a symmetrical arc of C in $\mathscr{C}(D)$, contradicting our assumption. Hence $z_{k} \neq u_{n}$ and then $z_{k-1}=u_{n}$; now ($u_{0}=z_{0}, z_{k-2}, z_{k-1}=u_{n}$) is a $u_{0} u_{n}$-monochromatic directed path in D which implies that $\left(u_{n}, u_{0}\right)$ is a symmetrical arc of C in $\mathscr{C}(D)$, a contradiction.

Case b.3: $\left(z_{0}, z_{3}\right) \in A(D)$ and $\left(z_{k-2}, z_{0}\right) \in A(D)$.
Since $\left\{\left(z_{0}, z_{1}\right),\left(z_{0}, z_{3}\right),\left(z_{k-2}, z_{0}\right)\right\} \subseteq A(D)$ we have $k-2 \geqslant 5$ and there exists $j \in\left\{1, \ldots, \frac{k-5}{2}\right\}$ such that $\left(z_{0}, z_{2 j+1}\right) \in A(D)$ and $\left(z_{2 j+3}, z_{0}\right) \in A(D)$. Let $i_{0}=\min \left\{\left.j \in\left\{1, \ldots, \frac{k-5}{2}\right\} \right\rvert\,\left\{\left(z_{0}, z_{2 j+1}\right),\left(z_{2 j+3}, z_{0}\right)\right\} \subseteq A(D)\right\}$. Hence $\tilde{C}=\left(z_{0}, z_{2 i_{0}+1}, z_{2 i_{0}+2}, z_{2 i_{0}+3}, z_{0}\right)$ is a directed cycle of length 4 in D which by hypothesis is monochromatic. Now we consider two possible cases.

Case b.3.1: $2 i_{0}+1 \in I_{p}$.
In this case $z_{2 i_{0}+1}=u_{j}$ for some $j \in\{2, \ldots, n-2\}$ (as $3 \leqslant 2 i_{0}+1 \leqslant k-4$). By the construction of C^{\prime} we have $z_{2 i_{0}+2}=u_{j+1}$ or $z_{2 i_{0}+3}=u_{j+1}$. If $z_{2 i_{0}+2}=u_{j+1}$ then $\left(u_{j+1}=z_{2 i_{0}+2}, z_{2 i_{0}+3}, z_{0}, z_{2 i_{0}+1}=u_{j}\right)$ is a $u_{j+1} u_{j}$-monochromatic directed path in D which implies that $\left(u_{j}, u_{j+1}\right)$ is a symmetrical arc of C in $\mathscr{C}(D)$ contradicting our assumption. Hence $z_{2 i_{0}+2} \neq u_{j+1}$ and consequently $z_{2 i_{0}+3}=u_{j+1}$ thus ($u_{j+1}=z_{2 i_{0}+3}, z_{0}, z_{2 i_{0}+1}=u_{j}$) is a $u_{j+1} u_{j}$-monochromatic directed path in D and then $\left(u_{j}, u_{j+1}\right)$ is a symmetrical arc of C in $\mathscr{C}(D)$, a contradiction.

Case b.3.2: $2 i_{0}+1 \notin I_{p}$.
Now, by construction of C^{\prime} we have that $\left\{2 i_{0}, 2 i_{0}+2\right\} \subseteq I_{p}$, i.e. $z_{2 i_{0}}=u_{j-1}$ and $z_{2 i_{0}+2}=u_{j}$ for some $j \in\{2, \ldots, n-1\}$. Lemma 2.1 implies $\left(z_{2 i_{0}}, z_{2 i_{0}+3}\right) \in A(D)$ or $\left(z_{2 i_{0}+3}, z_{2 i_{0}}\right) \in A(D)$. When $\left(z_{2 i_{0}+3}, z_{2 i_{0}}\right) \in A(D)$ we obtain that $\left(z_{2 i_{0}}, z_{2 i_{0}+1}, z_{2 i_{0}+2}\right.$, $z_{2 i_{0}+3}, z_{2 i_{0}}$) is a directed cycle of length 4 and by hypothesis is monochromatic; thus ($u_{j}=z_{2 i_{0}+2}, z_{2 i_{0}+3}, z_{2 i_{0}}=u_{j-1}$) is a $u_{j} u_{j-1}$-monochromatic directed path and $\left(u_{j-1}, u_{j}\right)$ is a symmetrical arc of C in $\mathscr{C}(D)$, a contradiction. So we have $\left(z_{2 i_{0}}, z_{2 i_{0}+3}\right) \in A(D)$; observe that the choice of i_{0} implies $\left(z_{0}, z_{2 i_{0}-1}\right) \in A(D)$ (when $\left(z_{2 i_{0}-1}, z_{0}\right) \in A(D)$, the fact $\left(z_{0}, z_{1}\right) \in A(D)$ implies that there exists $j \leqslant i_{0}-2$ such that $\left(z_{0}, z_{2 j+1}\right) \in A(D)$ and $\left(z_{2 j+3}, z_{0}\right) \in A(D)$ contradicting the choice of $\left.i_{0}\right)$, thus $C^{\prime \prime}=\left(z_{0}, z_{2 i_{0}-1}, z_{2 i_{0}}, z_{2 i_{0}+3}, z_{0}\right)$ is a directed cycle of length 4 which by hypothesis must be monochromatic; since $\left(z_{2 i_{0}+3}, z_{0}\right) \in A(\tilde{C}) \cap A\left(C^{\prime \prime}\right)$ we have that \tilde{C} and $C^{\prime \prime}$ are of the same colour; so ($u_{j}=z_{2 i_{0}+2}, z_{2 i_{0}+3}, z_{0}, z_{2 i_{0}-1}, z_{2 i_{0}}=u_{j-1}$) is a monochromatic directed path in D and $\left(u_{j-1}, u_{j}\right)$ is a symmetrical arc of C in $\mathscr{C}(D)$, a contradiction.

The following result is a direct consequence of Theorem 2.1:
Theorem 2.2. Let D be an m-coloured bipartite tournament. If every directed cycle of length 4 in D is monochromatic, then D has a kernel by monochromatic paths.

Remark 2.1. The hypothesis that every directed cycle of length 4 is monochromatic in Theorem 2.2 is tight.
Let D be the 3-coloured bipartite tournament defined as follows:
$V(D)=\{u, v, w, x, y, z\}$ and $A(D)=\{(u, x),(x, v),(v, y),(y, w),(w, z),(z, u),(x, w),(y, u),(z, v)\}$; the $\operatorname{arcs}(x, w),(w, z)$ and (z, u) are coloured 1 ; the $\operatorname{arcs}(y, u),(u, x)$ and (x, v) are coloured 2 ; and the $\operatorname{arcs}(z, v),(v, y)$ and (y, w) are coloured 3. The only directed cycles of length 4 of D are $(u, x, w, z, u),(v, y, u, x, v)$ and (w, z, v, y, w) which are quasi-monochromatic and the digraph $\mathscr{C}(D)$ is a complete digraph which has no kernel; hence D has no kernel by monochromatic paths. Moreover, we can construct an infinite family of digraphs all of whose directed cycles of length 4 are quasi-monochromatic and which have no kernel by monochromatic paths as follows: Let D_{n} be the digraph obtained from D by adding vertices $z_{1}, z_{2}, \ldots, z_{n}$ and arcs coloured 3 from each one of these vertices to u, v and w, respectively.

Remark 2.2. The assumption that every directed cycle of length 4 in a bipartite tournament D is monochromatic, does not imply that every directed cycle of length 6 in D is monochromatic.

Remark 2.3. For each m there exists an m-coloured Hamiltonian bipartite tournament such that every directed cycle of length 4 is monochromatic.

Proof. Let D be the m-coloured digraph defined as follows:

$$
\begin{aligned}
V(D) & =X \cup Y \cup Z \cup W \quad \text { where } ; \quad X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}, \quad Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\} \\
Z & =\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}, \quad W=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\} . \\
A(D) & =X_{Y} \cup Y_{z} \cup Z_{W} \cup W_{X} \cup Z_{Y} \cup W_{Z} \cup X_{W} \quad \text { where: } \\
X_{Y} & =\left\{\left(x_{i}, y_{j}\right) \mid i \in\{1,2, \ldots, m\}, j \in\{1,2, \ldots, \ldots, m\}\right\}, \\
Y_{Z} & =\left\{\left(y_{i}, z_{i}\right) \mid i \in\{1,2, \ldots, m\}\right\}, \quad Z_{W}=\left\{\left(z_{i}, w_{i}\right) \mid i \in\{1,2, \ldots, \ldots, m\}\right\} \\
W_{X} & =\left\{\left(w_{i}, x_{i+1}\right) \mid i \in\{1,2, \ldots, m-1\}\right\} \cup\left\{\left(w_{m}, x_{1}\right)\right\},
\end{aligned}
$$

$$
\begin{aligned}
Z_{Y} & =\left\{\left(z_{i}, y_{j}\right) \mid i \in\{1,2, \ldots, m\}, j \in\{1,2, \ldots, \ldots, m\},\right. \\
W_{Z} & =\left\{\left(w_{i}, z_{j}\right) \mid i \in\{1,2, \ldots, m\}, j \in\{1,2, \ldots, \ldots, m\}, i \neq j\right\} \\
X_{W} & =\left\{\left(x_{i}, w_{j}\right) \mid i \in\{1,2, \ldots, m\}, j \in\{1,2, \ldots, \ldots, m\}, i \neq j+1\right\}
\end{aligned}
$$

(notation $\bmod m$).
For each $i \in\{1,2, \ldots, m\}$ the arc $\left(x_{i}, y_{i}\right)$ is colored i and any other arc is coloured 1.
Clearly D is an m-coloured bipartite tournament.
Claim 3. D is Hamiltonian. It follows from the definition of D that for each $i \in\{1,2, \ldots, m\}$ we have the directed path $T_{i}=\left(x_{i}, y_{i}, z_{i}, w_{i}, x_{i+1}\right)$ and clearly $V\left(T_{i}\right) \cap V\left(T_{j}\right)=\emptyset$ for $j \neq i+1$, and $V\left(T_{i}\right) \cap V\left(T_{i+1}\right)=\left\{x_{i+1}\right\}$. So $C=\bigcup_{i=1}^{m} T_{i}$ is a Hamiltonian directed cycle of D.

Claim 4. Every directed cycle of length 4 of D is monochromatic. Proceeding by contradiction, suppose that $C_{4}=$ $\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{1}\right)$ is a non monochromatic directed cycle of D, so C_{4} must contain at least one arc coloured i for some $i \in\{2, \ldots, m\}$, so we may assume that $u_{1}=x_{2}$ and $u_{2}=y_{2}$; it follows from the definition of D that $u_{3}=z_{2}$ and $\left(u_{4}=w_{2}\right.$ or $u_{4}=y_{i}$ for some $i \neq 2$). When $u_{4}=w_{2}$, we obtain that $\left(x_{2}, w_{2}\right) \in A(D)$ and hence $\left(w_{2}, x_{2}\right) \notin A(D)$, a contradiction. When $u_{4}=y_{i}$ for some $i \neq 2$ we obtain that $\left(x_{2}, y_{i}\right) \in A(D)$ contradicting that $\left(u_{4}=y_{i}, u_{1}=x_{2}\right) \in A(D)$.

Acknowledgements

We thank the referees for their suggestions which improved the rewriting of this paper.

References

[1] C. Berge, Graphs, North-Holland, Amsterdam, New York, 1985.
[2] P. Duchet, Graphes Noyau - Parfaits, Ann. Discrete Math. 9 (1980) 93-101.
[3] H. Galeana-Sánchez, Kernels in edge-coloured digraphs, Discrete Math. 184 (1988) 87-99.
[4] H. Galeana-Sánchez, On monochromatic paths and monochromatic cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103-110.
[5] H. Galeana-Sánchez, J.J. García-Ruvalcaba, Kernels in the closure of coloured digraphs, Discuss. Math. Graph Theory 20 (2000) 243-354.
[6] S. Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory Ser. B 45 (1988) $108-111$.
[7] B. Sands, N. Sauer, R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory Ser. B 33 (1982) 271-275.

[^0]: E-mail address: hgaleana@matem.unam.mx (H. Galeana-Sánchez).

