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Abstract

We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path (or a
directed cycle) is called monochromatic if all of its arcs are coloured alike.

A set N ⊆ V (D) is said to be a kernel by monochromatic paths if it satis5es the following two conditions:

(i) For every pair of di7erent vertices u, v∈N , there is no monochromatic directed path between them.
(ii) For every vertex x∈ (V (D) − N ), there is a vertex y∈N such that there is an xy-monochromatic directed path.

In this paper it is proved that if D is an m-coloured bipartite tournament such that every directed cycle of length 4 is
monochromatic, then D has a kernel by monochromatic paths.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

For general concepts we refer the reader to [1]. Let D be a digraph V (D) and A(D) will denote the sets of vertices
and arcs of D, respectively. An arc (u1; u2)∈A(D) is called asymmetrical (resp. symmetrical) if (u2; u1) �∈ A(D) (resp.
(u2; u1)∈A(D)). The asymmetrical part of D (resp. symmetrical part of D) which is denoted Asym(D) (resp. Sym(D)) is
the spanning subdigraph of D whose arcs are the asymmetrical (resp. symmetrical) arcs of D; D is called an asymmetrical
digraph if Asym(D) = D. We recall that a subdigraph D1 of D is a spanning subdigraph if V (D1) = V (D). If S is a
nonempty set of V (D) then the subdigraph D[S] induced by S is the digraph having vertex set S, and whose arcs are all
those arcs of D joining vertices of S. An arc (u1; u2) of D will be called an S1S2-arc whenever u1 ∈ S1 and u2 ∈ S2.

A set I ⊆ V (D) is independent if A(D[I ]) = ∅. A kernel N of D is an independent set of vertices such that for each
z ∈V (D) − N there exists a zN -arc in D. A digraph D is called a kernel-perfect digraph or KP-digraph when every
induced subdigraph of D has a kernel. A digraph D is called a bipartite tournament if its vertices can be partitioned into
two sets V1 and V2 such that:

(i) Every arc of D has an endpoint in V1 and the other endpoint in V2.
(ii) For all x1 ∈V1 and for all x2 ∈V2, we have |{(x1; x2); (x2; x1)} ∩A(D)|=1. We will write D=(V1; V2) to indicate the

partition.

E-mail address: hgaleana@matem.unam.mx (H. Galeana-S)anchez).

0012-365X/$ - see front matter c© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2004.03.005

mailto:hgaleana@matem.unam.mx


314 H. Galeana-Sanchez, R. Rojas-Monroy /Discrete Mathematics 285 (2004) 313–318

If T = (z0; z1; : : : ; zn) is a directed path, we denote by ‘(T ) = n its length and if zi, zj ∈V (T ) with i6 j, we denote
(zi; T; zj) the zizj-directed path contained in T . For a directed cycle �, ‘(�) will denote its length; a directed cycle is
quasi-monochromatic if with at most one exception, all of its arcs are coloured alike.

If D is an m-coloured digraph then the closure of D, denoted C(D) is the m-coloured multidigraph de5ned
as follows:

V (C(D)) − V (D);

A(C(D)) = A(D) ∪ {(u; v) with colour i | there exists a uv-monochromatic directed path coloured i contained in D}:
Notice that for any digraph D, C(C(D)) ∼= C(D) and D has a kernel by monochromatic paths if and only if C(D) has

a kernel.
In [7] Sands et al. have proved that any 2-coloured digraph has a kernel by monochromatic paths. In particular they

proved that any 2-coloured tournament has a kernel by monochromatic paths. They also raised the following problem:
Let T be a 3-coloured tournament such that every directed cycle of length 3 is quasi-monochromatic; must C(T ) have
a kernel? In [6] Shen Minggang proved that if in the problem we ask that every transitive tournament of order 3 be
quasi-monochromatic, the answer will be yes. In [4] it was proved that if T is an m-coloured tournament such that
every directed cycle of length at most 4 is quasi-monochromatic then C(T ) is kernel-perfect and hence T has a kernel
by monochromatic paths. Results similar to those in [6] and [4] were proved for the digraph obtained from a tourna-
ment by the deletion of a single arc, in [5] and [3], respectively. The known suKcient conditions for the existence of
a kernel by monochromatic paths in m-coloured (m¿ 3) tournaments (or nearly tournaments), ask for the monochro-
maticity or quasi-monochromaticity of small subdigraphs as directed cycles of length at most 4 or transitive tournaments
of order 3.

In this paper it is proved that if D is an m-coloured bipartite tournament such that every directed cycle of length 4 is
monochromatic then D has a kernel by monochromatic paths and the result is best possible.

We will need the following result.

Theorem 1.1 (Duchet [2]). If D is a digraph such that every directed cycle has at least one symmetrical arc, then D is
a kernel-perfect digraph.

2. The main result

First we prove the following lemmas which will be useful in the proof of the main result:

Lemma 2.1. Let D = (V1; V2) be a bipartite tournament and C = (u0; u1; : : : ; un) a directed walk in D. For {i; j} ⊆
{0; 1; : : : ; n} (ui; uj)∈A(D) or (uj; ui)∈A(D) if and only if j − i ≡ 1 (mod 2).

Proof. Without loss of generality we may assume u0 ∈V1, then we clearly have ui ∈V1 i7 i ≡ 0 (mod 2) and ui ∈V2 i7
i ≡ 1 (mod 2).

Lemma 2.2. For a bipartite tournament D= (V1; V2), every closed directed walk of length at most 6 in D is a directed
cycle of D.

Proof. Let C be a closed directed walk with ‘(C)6 6. We will prove that C is a directed cycle. Since D is bipartite ‘(C)
is even (as every closed odd directed walk contains an odd directed cycle); ‘(C)=2 is impossible as a bipartite tournament
is an asymmetrical digraph. Suppose ‘(C)=4, and let C=(u0; u1; u2; u3; u0) we may assume w.l.o.g. ui ∈V1 for i∈ {0; 2}
and uj ∈V2 for j∈ {1; 3} which implies ui �= uj for i∈ {0; 2}, j∈ {1; 3}. Since (u1; u2)∈A(D) and (u2; u3)∈A(D) we
have u1 �= u3 (as D is an asymmetrical digraph) and analogously u0 �= u2; so C is a directed cycle. Finally suppose
‘(C) = 6 and let C = (u0; u1; u2; u3; u4; u5; u0), clearly we may assume w.l.o.g. that ui ∈V1 for i∈ {0; 2; 4} and uj ∈V2 for
j∈ {1; 3; 5} which implies ui �= uj for i∈ {0; 2; 4} and j∈ {1; 3; 5}.
Moreover, since {(ui; ui+1); (ui+1; ui+2)} ⊆ A(D) for i∈ {0; 1; : : : ; 5} (notation (mod 6)) and D is asymmetrical, we have

ui �= ui+2 for i∈ {0; 1; : : : ; 5}.

Lemma 2.3. Let D be an m-coloured bipartite tournament such that every directed cycle of length 4 is monochromatic
and u; v∈V (D). If there exists a uv-monochromatic directed path and there is no vu-monochromatic directed path
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(in D), then at least one of the two following conditions holds:

(i) (u; v)∈A(D);
(ii) there exists (in D) a uv-directed path of length 2.

Proof. Let D, u, v∈V (D) be as in the hypothesis. We proceed by induction on the length of a uv-monochromatic directed
path. Clearly Lemma 2.3 holds when there exists a uv-monochromatic directed path of length at most 2. Suppose that
Lemma 2.3 holds when there exists a uv-monochromatic directed path of length ‘ with 26 ‘6 n. Now assume that there
exists a uv-monochromatic directed path say T = (u= u0; u1; : : : ; un+1 = v) with ‘(T ) = n+ 1; we may assume w.l.o.g. T
is coloured 1.

Claim 1. If (ui; v)∈A(D) for some i∈ {0; 1; : : : ; n− 2} then (u; v)∈A(D) or there exists a uv-directed path of length 2.

Assume (ui; v)∈A(D) for some i∈ {0; 1; : : : ; n− 2} and let i0 =min{i∈ {0; 1; : : : ; n− 2} | (ui; v)∈A(D)}. If i0 = 0 then
(u; v)∈A(D) and if i0 = 1 then (u; u1; v) is a uv-directed path of length 2, so we can assume i0 ∈ {2; : : : ; n− 2}.
Since i0 ≡ i0 − 2 (mod 2) and i0 �≡ n + 1 (mod 2) (as (ui0 ; v)∈A(D)) we have i0 − 2 �≡ n + 1 (mod 2) and it follows

from Lemma 2.1 that (ui0−2; v)∈A(D) or (v; ui0−2)∈A(D). Now the choice of i0 implies (v; ui0−2)∈A(D) and hence
C4 = (ui0−2; ui0−1; ui0 ; v; ui0−2) is a directed cycle of length 4 which by hypothesis is monochromatic, moreover, since
(ui0−1; ui0 ) is coloured 1 (as it is an arc of T ), it follows that C4 is coloured 1. Then we obtain that T ′=(u; T; ui0 )∪(ui0 ; v)
is a uv-monochromatic directed path with ‘(T ′)¡n+ 1; and the inductive hypothesis implies that (u; v)∈A(D) or there
exists a uv-directed path of length 2.

Now, it follows from Lemma 2.1 that for each i∈ {0; 1; : : : ; n − 2} (ui; ui+3)∈A(D) or (ui+3; ui)∈A(D) (as i �≡ i +
3 (mod 2)).

We will analyze two possible cases:
Case a: There exists i∈ {0; 1; : : : ; n−2} such that (ui; ui+3)∈A(D). Let j0 =max{j∈ {i+3; : : : ; n+1} | (ui; uj)∈A(D)}

(notice that Lemma 2.1 implies i �≡ j0 (mod 2)).
Case a.1: j0 = n+ 1.
Is this case the result follows from Claim 1.
Case a.2: j0 = n and i = 0.
We have (u0 = ui; uj0 = un; un+1) is a uv-directed path of length 2.
Case a.3: j0 = n and i¿ 1.
Since i �≡ j0 (mod 2), we have i−1 �≡ j0 +1=n+1 (mod 2) and it follows from Lemma 2.1 that (ui−1; un+1 =v)∈A(D)

or (v; ui−1)∈A(D). When (ui−1; v)∈A(D), the aKrmation of Lemma 2.3 follows from Claim 1. When (v; ui−1)∈A(D)
we obtain C4 = (ui−1; ui; uj0 = un; v; ui−1) a directed cycle of length 4 which by hypothesis is monochromatic; in fact C4 is
coloured 1 (as (ui−1; ui)∈A(T )∩ A(C4)); and then T ′ = (u; T; ui)∪ (ui; uj0 = un; un+1 = v) is a uv-monochromatic directed
path with ‘(T ′)6 n. Now it follows from the inductive hypothesis that (u; v)∈A(D) or there exists a uv-directed path of
length 2.
Case a.4: j06 n− 1.
i �≡ j0 + 2 (mod 2) (as i �≡ j0 (mod 2)), so it follows from Lemma 2.1 that (ui; uj0+2)∈A(D) or (uj0+2; ui)∈A(D);

now the choice of j0 implies (uj0+2; ui)∈A(D). Thus C4 = (ui; uj0 ; uj0+1; uj0+2; ui) is a directed cycle of length 4 which
by hypothesis is monochromatic and coloured 1 (as (uj0 ; uj0+1)∈A(T ) ∩ A(C4)); in particular (ui; uj0 ) is coloured 1 and
then T ′ =(u; T; ui)∪ (ui; uj0 )∪ (uj0 ; T; v) is a uv-monochromatic directed path with ‘(T ′)6 n and the inductive hypothesis
implies (u; v)∈A(D) or there exists a uv-directed path of length 2.
Case b: For each i∈ {0; 1; : : : ; n− 2}, (ui+3; ui)∈A(D).
Ci4 = (ui; ui+1; ui+2; ui+3; ui) is a directed cycle of length 4 and by hypothesis it is monochromatic, moreover Ci4 is

coloured 1 because (ui; ui+1)∈ (A(T )∩A(Ci4)), hence for each i∈ {0; 1; : : : ; n−2}, (ui+3; ui) is coloured 1. Let k ∈ {1; 2; 3}
such that k ≡ n+ 1 (mod 3), then (v= un+1; un−2; un−5; : : : ; uk)∪ (uk ; T; u3)∪ (u3; u0) is a vu-monochromatic directed path,
contradicting the hypothesis, thus this case is impossible.

Theorem 2.1. Let D be an m-coloured bipartite tournament. If every directed cycle of length 4 in D is monochromatic,
then C(D) is kernel-perfect.

Proof. During the proof we will use the fact that each closed directed walk of length at most 6 is a directed cycle
(Lemma 2.2) without any more explanation.
In view of Theorem 1.1 it suKces to prove (and we will prove) that each directed cycle of C(D) has a symmetrical arc.
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We proceed by contradiction; suppose that there exists a directed cycle of C(D), C = (u0; u1; : : : ; un; u0) with C ⊆
AsymC(D).

Claim 2. For each i∈ {0; 1; : : : ; n}, (ui; ui+1)∈A(D) or there exists a uiui+1-directed path of length 2 (notation mod n+1).

Let i∈ {0; 1; : : : ; n}. Since (ui; ui+1)∈A(C(D)) we have that there exists a uiui+1-monochromatic directed path in D,
and the fact that C has no symmetrical arcs implies there is no ui+1ui-monochromatic directed path in D, so Claim 2
follows from Lemma 2.3.

Now we consider two possible cases:
Case a: n= 2.
Since D has no odd directed cycles, we have that for some i∈ {0; 1; 2}, (ui; ui+1) �∈ A(D) (notation (mod 3)). W.l.o.g

we may assume (u0; u1) �∈ A(D), then it follows from Claim 2 that there exists a u0u1-directed path of length 2 in D, say
(u0; v0; u1).
Case a.1: {(u1; u2), (u2; u0)} ⊆ A(D).
In this case (u0; v0; u1; u2; u0) is a directed cycle of length 4 in D, which by hypothesis is monochromatic; and then

(u1; u2; u0) is a u1u0-monochromatic directed path in D; thus (u0; u1) is a symmetrical arc of C in C(D), contradicting our
assumption.
Case a.2: {(u1; u2); (u2; u0)} * A(D).

Claim 3. We may assume {(u1; u2); (u2; u0)} ∩ A(D) = ∅.

If (u1; u2) �∈ A(D) then (u2; u0) �∈ A(D); since (u1; u2) �∈ A(D) it follows from Claim 2 that there exists a u1u2-directed
path of length 2, say (u1; v1; u2), so when (u2; u0)∈A(D) we obtain (u0; v0; u1; v1; u2; u0) a directed cycle of length 5ve
contained in D which is impossible. Analogously it can be proved that: If (u2; u0) �∈ A(D) then (u1; u2) �∈ A(D).
Now it follows from Claim 2 that there exists a u1u2-directed path of length 2 in D, say (u1; v1; u2), and a u2u0-directed

path of length 2 in D, say (u2; v2; u0). Thus (u0; v0; u1; v1; u2; v2; u0) is a directed cycle of length 6 in D; and it follows
from Lemma 2.1 that (u0; v1)∈A(D) or (v1; u0)∈A(D). When (u0; v1)∈A(D) we obtain (u0; v1; u2; v2; u0) is a directed
cycle of length 4 in D and by hypothesis it is monochromatic, in particular (u0; v1; u2) is a u0u2-monochromatic directed
path in D which implies (u2; u0) is a symmetrical arc of C in C(D) contradicting our assumption. When (v1; u0)∈A(D)
we have (u0; v0; u1; v1; u0) is a directed cycle of length 4 in D and by hypothesis is monochromatic, thus (u1; v1; u0) is a
u1u0-monochromatic directed path in D and then (u0; u1) is a symmetrical arc of C in C(D), a contradiction.
Case b: n¿ 3.
In what follows the notation is taken modulo n+ 1.
In view of Claim 2, for each i∈ {0; 1; : : : ; n} we can take a uiui+1-directed path as follows:

Ti =

{
(ui; ui+1) when (ui; ui+1)∈A(D) and

a uiui+1-directed path of length 2 when (ui; ui+1) �∈ A(D):

Let C′ =
⋃ n
i=1 Ti. Then C

′ is a closed directed walk in D, so we may let C′ = (z0; z1; : : : ; zk ; z0) and de5ne the function
’ : {0; 1; : : : ; k} → V (C) as follows: For each i∈ {0; 1; : : : ; n} if Ti = (ui = zi0 ; zi0+1 = ui+1) then ’(i0) = zi0 = ui; and if
Ti = (ui = zi0 ; zi0+1; zi0+2 = ui+1) then ’(i0) = ’(i0 + 1) = zi0 .

We will say that an index j∈ {0; 1; : : : ; k} is a principal index when ’(j) = zj; and we will denote by Ip the set of
principal indexes. Notice that in C′ the indexes are all di7erent and also notice that a vertex uj may correspond to a
principal index ‘ and also to a non principal index p.

Suppose w.l.o.g. that u0 = z0. Since D is a bipartite tournament, we have k ≡ 1 (mod 2) and by Lemma 2.1, for each
i∈ {1; : : : ; k−3

2 } (z0; z2i+i)∈A(D) or (z2i+1; z0)∈A(D). We consider the following cases:
Case b.1: (z3; z0)∈A(D).
In this case we have (z0; z1; z2; z3; z0) is a directed cycle of length 4 and by hypothesis is monochromatic. The de5nition

of C′ implies z1 = u1 or z2 = u1. If z1 = u1 then (u1 = z1; z2; z3; z0 = u0) is a u1u0-monochromatic directed path in D which
implies that (u0; u1) is a symmetrical arc of C in C(D), contradicting our assumption on C. So z1 �= u1, consequently
z2 = u1 and then (u1 = z2; z3; z0 = u0) is a u1u0-monochromatic directed path in D, thus (u0; u1) is a symmetrical arc of C
in C(D), a contradiction.
Case b.2: (z0; zk−2)∈A(D).
The assumption in subcase b.2 implies (z0; zk−2; zk−1; zk ; z0) is a directed cycle of length 4 which by hypothesis is

monochromatic. The construction of C′ implies that zk=un or zk−1=un. When zk=un we have that (u0=z0; zk−2; zk−1; zk=un)
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is a u0un-monochromatic directed path in D which implies that (un; u0) is a symmetrical arc of C in C(D), contradicting
our assumption. Hence zk �= un and then zk−1 = un; now (u0 = z0; zk−2; zk−1 = un) is a u0un-monochromatic directed path
in D which implies that (un; u0) is a symmetrical arc of C in C(D), a contradiction.
Case b.3: (z0; z3)∈A(D) and (zk−2; z0)∈A(D).
Since {(z0; z1); (z0; z3); (zk−2; z0)} ⊆ A(D) we have k−2¿ 5 and there exists j∈ {1; : : : ; k−5

2 } such that (z0; z2j+1)∈A(D)
and (z2j+3; z0)∈A(D). Let i0=min{ j∈ {1; : : : ; k−5

2 } | {(z0; z2j+1); (z2j+3; z0)} ⊆ A(D)}. Hence C̃=(z0; z2i0+1; z2i0+2; z2i0+3; z0)
is a directed cycle of length 4 in D which by hypothesis is monochromatic. Now we consider two possible cases.
Case b.3.1: 2i0 + 1∈ Ip.
In this case z2i0+1 = uj for some j∈ {2; : : : ; n − 2} (as 36 2i0 + 16 k − 4). By the construction of C′ we have

z2i0+2 =uj+1 or z2i0+3 =uj+1. If z2i0+2 =uj+1 then (uj+1= z2i0+2; z2i0+3; z0; z2i0+1 =uj) is a uj+1uj-monochromatic directed path
in D which implies that (uj; uj+1) is a symmetrical arc of C in C(D) contradicting our assumption. Hence z2i0+2 �= uj+1

and consequently z2i0+3 = uj+1 thus (uj+1 = z2i0+3; z0; z2i0+1 = uj) is a uj+1uj-monochromatic directed path in D and then
(uj; uj+1) is a symmetrical arc of C in C(D), a contradiction.
Case b.3.2: 2i0 + 1 �∈ Ip.
Now, by construction of C′ we have that {2i0; 2i0 + 2} ⊆ Ip, i.e. z2i0 = uj−1 and z2i0+2 = uj for some j∈ {2; : : : ; n− 1}.

Lemma 2.1 implies (z2i0 ; z2i0+3)∈A(D) or (z2i0+3; z2i0 )∈A(D). When (z2i0+3; z2i0 )∈A(D) we obtain that (z2i0 ; z2i0+1; z2i0+2;
z2i0+3; z2i0 ) is a directed cycle of length 4 and by hypothesis is monochromatic; thus (uj = z2i0+2; z2i0+3; z2i0 = uj−1)
is a ujuj−1-monochromatic directed path and (uj−1; uj) is a symmetrical arc of C in C(D), a contradiction. So we
have (z2i0 ; z2i0+3)∈A(D); observe that the choice of i0 implies (z0; z2i0−1)∈A(D) (when (z2i0−1; z0)∈A(D), the fact
(z0; z1)∈A(D) implies that there exists j6 i0−2 such that (z0; z2j+1)∈A(D) and (z2j+3; z0)∈A(D) contradicting the choice
of i0), thus C′′ = (z0; z2i0−1; z2i0 ; z2i0+3; z0) is a directed cycle of length 4 which by hypothesis must be monochromatic;
since (z2i0+3; z0)∈A(C̃)∩A(C′′) we have that C̃ and C′′ are of the same colour; so (uj= z2i0+2; z2i0+3; z0; z2i0−1; z2i0 =uj−1)
is a monochromatic directed path in D and (uj−1; uj) is a symmetrical arc of C in C(D), a contradiction.

The following result is a direct consequence of Theorem 2.1:

Theorem 2.2. Let D be an m-coloured bipartite tournament. If every directed cycle of length 4 in D is monochromatic,
then D has a kernel by monochromatic paths.

Remark 2.1. The hypothesis that every directed cycle of length 4 is monochromatic in Theorem 2.2 is tight.
Let D be the 3-coloured bipartite tournament de5ned as follows:
V (D)= {u; v; w; x; y; z} and A(D)= {(u; x); (x; v); (v; y); (y; w); (w; z); (z; u); (x; w); (y; u); (z; v)}; the arcs (x; w); (w; z) and

(z; u) are coloured 1; the arcs (y; u); (u; x) and (x; v) are coloured 2; and the arcs (z; v); (v; y) and (y; w) are coloured 3. The
only directed cycles of length 4 of D are (u; x; w; z; u); (v; y; u; x; v) and (w; z; v; y; w) which are quasi-monochromatic and
the digraph C(D) is a complete digraph which has no kernel; hence D has no kernel by monochromatic paths. Moreover,
we can construct an in5nite family of digraphs all of whose directed cycles of length 4 are quasi-monochromatic and
which have no kernel by monochromatic paths as follows: Let Dn be the digraph obtained from D by adding vertices
z1; z2; : : : ; zn and arcs coloured 3 from each one of these vertices to u, v and w, respectively.

Remark 2.2. The assumption that every directed cycle of length 4 in a bipartite tournament D is monochromatic, does
not imply that every directed cycle of length 6 in D is monochromatic.

Remark 2.3. For each m there exists an m-coloured Hamiltonian bipartite tournament such that every directed cycle of
length 4 is monochromatic.

Proof. Let D be the m-coloured digraph de5ned as follows:

V (D) = X ∪ Y ∪ Z ∪W where; X = {x1; x2; : : : ; xm}; Y = {y1; y2; : : : ; ym}
Z = {z1; z2; : : : ; zm}; W = {w1; w2; : : : ; wm}:

A(D) = XY ∪ Yz ∪ ZW ∪WX ∪ ZY ∪WZ ∪ XW where:

XY = {(xi; yj) | i∈ {1; 2; : : : ; m}; j∈ {1; 2; : : : ; : : : ; m}};
YZ = {(yi; zi) | i∈ {1; 2; : : : ; m}}; ZW = {(zi; wi) | i∈ {1; 2; : : : ; : : : ; m}};
WX = {(wi; xi+1) | i∈ {1; 2; : : : ; m− 1}} ∪ {(wm; x1)};
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ZY = {(zi; yj) | i∈ {1; 2; : : : ; m}; j∈ {1; 2; : : : ; : : : ; m}; i �= j};
WZ = {(wi; zj) | i∈ {1; 2; : : : ; m}; j∈ {1; 2; : : : ; : : : ; m}; i �= j};
XW = {(xi; wj) | i∈ {1; 2; : : : ; m}; j∈ {1; 2; : : : ; : : : ; m}; i �= j + 1};

(notation modm).
For each i∈ {1; 2; : : : ; m} the arc (xi; yi) is colored i and any other arc is coloured 1.
Clearly D is an m-coloured bipartite tournament.

Claim 3. D is Hamiltonian. It follows from the de;nition of D that for each i∈ {1; 2; : : : ; m} we have the directed path
Ti = (xi; yi; zi; wi; xi+1) and clearly V (Ti) ∩ V (Tj) = ∅ for j �= i + 1, and V (Ti) ∩ V (Ti+1) = {xi+1}. So C =

⋃m
i=1 Ti is a

Hamiltonian directed cycle of D.

Claim 4. Every directed cycle of length 4 of D is monochromatic. Proceeding by contradiction, suppose that C4 =
(u1; u2; u3; u4; u1) is a non monochromatic directed cycle of D, so C4 must contain at least one arc coloured i for some
i∈ {2; : : : ; m}, so we may assume that u1 = x2 and u2 = y2; it follows from the de;nition of D that u3 = z2 and (u4 =w2

or u4 = yi for some i �= 2). When u4 = w2, we obtain that (x2; w2)∈A(D) and hence (w2; x2) �∈ A(D), a contradiction.
When u4 = yi for some i �= 2 we obtain that (x2; yi)∈A(D) contradicting that (u4 = yi; u1 = x2)∈A(D).
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