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Abstract

We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path (or a
directed cycle) is called monochromatic if all of its arcs are coloured alike.
A set N C V(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions:

(i) For every pair of different vertices u, v € N, there is no monochromatic directed path between them.
(ii) For every vertex x € (V(D) — N), there is a vertex y € N such that there is an xy-monochromatic directed path.

In this paper it is proved that if D is an m-coloured bipartite tournament such that every directed cycle of length 4 is
monochromatic, then D has a kernel by monochromatic paths.
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1. Introduction

For general concepts we refer the reader to [1]. Let D be a digraph V(D) and A(D) will denote the sets of vertices
and arcs of D, respectively. An arc (u;,uz) € A(D) is called asymmetrical (resp. symmetrical) if (u2,u1) & A(D) (resp.
(u2,u1) € A(D)). The asymmetrical part of D (resp. symmetrical part of D) which is denoted Asym(D) (resp. Sym(D)) is
the spanning subdigraph of D whose arcs are the asymmetrical (resp. symmetrical) arcs of D; D is called an asymmetrical
digraph if Asym(D) = D. We recall that a subdigraph D; of D is a spanning subdigraph if V(D;) = V(D). If S is a
nonempty set of V(D) then the subdigraph D[S] induced by S is the digraph having vertex set S, and whose arcs are all
those arcs of D joining vertices of S. An arc (u;,uz) of D will be called an S;S;-arc whenever u; € Sy and u; € S5.

A set I C V(D) is independent if A(D[/]) = 0. A kernel N of D is an independent set of vertices such that for each
z€ V(D) — N there exists a zN-arc in D. A digraph D is called a kernel-perfect digraph or KP-digraph when every
induced subdigraph of D has a kernel. A digraph D is called a bipartite tournament if its vertices can be partitioned into
two sets V7 and ¥, such that:

(i) Every arc of D has an endpoint in /; and the other endpoint in V5.
(ii) For all x; € V1 and for all x, € V2, we have [{(x1,x2), (x2,x1)} NA(D)| = 1. We will write D= (V1,>) to indicate the
partition.
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If T =(z0,21,...,2,) is a directed path, we denote by /(7)) = n its length and if z;, z; € V(T) with i < j, we denote
(zi,T,z;) the ziz;-directed path contained in 7. For a directed cycle y, /(y) will denote its length; a directed cycle is
quasi-monochromatic if with at most one exception, all of its arcs are coloured alike.

If D is an m-coloured digraph then the closure of D, denoted (D) is the m-coloured multidigraph defined
as follows:

V(€(D)) - V(D),

A(6(D)) =A(D) U {(u,v) with colour i | there exists a uv-monochromatic directed path coloured i contained in D}.

Notice that for any digraph D, €(%4(D)) = ¥(D) and D has a kernel by monochromatic paths if and only if €(D) has
a kernel.

In [7] Sands et al. have proved that any 2-coloured digraph has a kernel by monochromatic paths. In particular they
proved that any 2-coloured tournament has a kernel by monochromatic paths. They also raised the following problem:
Let T be a 3-coloured tournament such that every directed cycle of length 3 is quasi-monochromatic; must %(7) have
a kernel? In [6] Shen Minggang proved that if in the problem we ask that every transitive tournament of order 3 be
quasi-monochromatic, the answer will be yes. In [4] it was proved that if 7" is an m-coloured tournament such that
every directed cycle of length at most 4 is quasi-monochromatic then %(7) is kernel-perfect and hence 7 has a kernel
by monochromatic paths. Results similar to those in [6] and [4] were proved for the digraph obtained from a tourna-
ment by the deletion of a single arc, in [S] and [3], respectively. The known sufficient conditions for the existence of
a kernel by monochromatic paths in m-coloured (m > 3) tournaments (or nearly tournaments), ask for the monochro-
maticity or quasi-monochromaticity of small subdigraphs as directed cycles of length at most 4 or transitive tournaments
of order 3.

In this paper it is proved that if D is an m-coloured bipartite tournament such that every directed cycle of length 4 is
monochromatic then D has a kernel by monochromatic paths and the result is best possible.

We will need the following result.

Theorem 1.1 (Duchet [2]). If D is a digraph such that every directed cycle has at least one symmetrical arc, then D is
a kernel-perfect digraph.

2. The main result
First we prove the following lemmas which will be useful in the proof of the main result:

Lemma 2.1. Let D = (V1,V2) be a bipartite tournament and C = (uo,u1,...,u,) a directed walk in D. For {i,j} C
{0,1,....n} (ui,u;) € A(D) or (uj,u;) € A(D) if and only if j —i =1(mod2).

Proof. Without loss of generality we may assume uo € V1, then we clearly have u; € 7y iff i = 0(mod2) and u; € V> iff
i=1(mod2). [

Lemma 2.2. For a bipartite tournament D = (V1,V>), every closed directed walk of length at most 6 in D is a directed
cycle of D.

Proof. Let C be a closed directed walk with Z(C) < 6. We will prove that C is a directed cycle. Since D is bipartite Z(C)
is even (as every closed odd directed walk contains an odd directed cycle); /(C)=2 is impossible as a bipartite tournament
is an asymmetrical digraph. Suppose /(C)=4, and let C = (uo, u1, u2,u3,up) we may assume w.l.o.g. u; € V; for i € {0,2}
and u; € V> for j€{1,3} which implies u; # u; for i € {0,2}, j€{1,3}. Since (u1,u2) € A(D) and (u2,u3) € A(D) we
have u; # w3z (as D is an asymmetrical digraph) and analogously ug # u»; so C is a directed cycle. Finally suppose
/(C)=6 and let C = (uo,u1,us, u3,us, us,ug), clearly we may assume w.l.o.g. that u; € V; for i € {0,2,4} and u; € V> for
j€{1,3,5} which implies u; # u; for i € {0,2,4} and j€{1,3,5}.

Moreover, since {(ui,uit1), (Uit1,uir2)} C A(D) for i €{0,1,...,5} (notation (mod 6)) and D is asymmetrical, we have
u;#u;+2 fOI‘iE{O,l,...,S}. (]

Lemma 2.3. Let D be an m-coloured bipartite tournament such that every directed cycle of length 4 is monochromatic
and u, v € V(D). If there exists a uv-monochromatic directed path and there is no vu-monochromatic directed path
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(in D), then at least one of the two following conditions holds:

(i) (u,v) €AD);
(ii) there exists (in D) a uv-directed path of length 2.

Proof. Let D, u, ve V(D) be as in the hypothesis. We proceed by induction on the length of a uv-monochromatic directed
path. Clearly Lemma 2.3 holds when there exists a uv-monochromatic directed path of length at most 2. Suppose that
Lemma 2.3 holds when there exists a uv-monochromatic directed path of length / with 2 </ < n. Now assume that there
exists a uv-monochromatic directed path say T’ = (u = uo,u1,...,u,41 =v) with /(T) =n + 1; we may assume w.l.o.g. T
is coloured 1.

Claim 1. If (u;,v) € A(D) for some i € {0,1,...,n — 2} then (u,v) € A(D) or there exists a uv-directed path of length 2.

Assume (u;,v) € A(D) for some i € {0,1,...,n —2} and let ip =min{i €{0,1,...,n — 2} | (u;,v) € A(D)}. If ip =0 then
(u,v) € A(D) and if ip =1 then (u,u;,v) is a uv-directed path of length 2, so we can assume i € {2,...,n — 2}.

Since ip = ip — 2(mod2) and iy # n + 1 (mod2) (as (u;,v) €EA(D)) we have ip —2 # n+ 1(mod2) and it follows
from Lemma 2.1 that (u;,—2,0) € A(D) or (v,ui,—2) € A(D). Now the choice of iy implies (v,u;,—2) € A(D) and hence
Cy = (Uiy—2, Uig—1, Uiy, U, Ui;—2) is a directed cycle of length 4 which by hypothesis is monochromatic, moreover, since
(uig—1,ui,) 18 coloured 1 (as it is an arc of T), it follows that Cy is coloured 1. Then we obtain that T':(u, T, uiy ) U (i, v)
is a uv-monochromatic directed path with /(7") < n + 1; and the inductive hypothesis implies that (u,v) € A(D) or there
exists a uv-directed path of length 2.

Now, it follows from Lemma 2.1 that for each i €{0,1,...,n — 2} (ui,uiy3) €EA(D) or (uis3,u;) EAD) (as i Z i+
3 (mod 2)).

We will analyze two possible cases:

Case a: There exists i € {0,1,...,n—2} such that (u;,u;13) € A(D). Let jo=max{j € {i+3,...,n+1}|(ui,u;) € AD)}
(notice that Lemma 2.1 implies i Z jj (mod 2)).

Case a.l: jo=n+1.

Is this case the result follows from Claim 1.

Case a.2: jo=n and i =0.

We have (uo = ui, uj, = ty,un41) is a uv-directed path of length 2.

Case a.3: jo=nand i > 1.

Since i # jo (mod2), we have i —1 # jo+1=n+1(mod 2) and it follows from Lemma 2.1 that (u;—1, us+1 =0v) € A(D)
or (v,u;—1) € A(D). When (u;—1,v) € A(D), the affirmation of Lemma 2.3 follows from Claim 1. When (v,u;—1) € A(D)
we obtain Cy = (u;i—1, Ui, uj, =un, v,u;—1) a directed cycle of length 4 which by hypothesis is monochromatic; in fact Cy is
coloured 1 (as (ui—1,u;) € A(T) N A(Cy4)); and then T’ = (u, T,u;) U (us, U, = thy, tty+1 = 0) is a uv-monochromatic directed
path with Z(T") < n. Now it follows from the inductive hypothesis that (u,v) € A(D) or there exists a uv-directed path of
length 2.

Case a4: jo<n—1.

i # jo+2(mod2) (as i # jo(mod2)), so it follows from Lemma 2.1 that (u;,uj,+2) € A(D) or (uj,+2,u;) € AD);
now the choice of jo implies (ujy12,u;) € A(D). Thus Ci = (ui, ujy, wjy+1,Uj+2,u;) is a directed cycle of length 4 which
by hypothesis is monochromatic and coloured 1 (as (uy, ujy+1) € A(T) N A(Cs)); in particular (u;,u;,) is coloured 1 and
then T’ = (u, T, u;) U (us, uj,) U (), T,v) is a uv-monochromatic directed path with /(7’) < n and the inductive hypothesis
implies (u,v) € A(D) or there exists a uv-directed path of length 2.

Case b: For each i €{0,1,...,n — 2}, (uiy3,u;) € A(D).

Ci = (us, ui1, Uiy, uips, ;) is a directed cycle of length 4 and by hypothesis it is monochromatic, moreover Cj is
coloured 1 because (u;, ui+1) € (A(T)NA(CS)), hence for each i € {0,1,...,n—2}, (ui+3,u;) is coloured 1. Let k € {1,2,3}
such that £ = n+ 1 (mod 3), then (v =up+1, Un—2, Un—s,...,ux ) U (ur, T,u3) U (u3,up) is a vu-monochromatic directed path,
contradicting the hypothesis, thus this case is impossible. [

Theorem 2.1. Let D be an m-coloured bipartite tournament. If every directed cycle of length 4 in D is monochromatic,
then €(D) is kernel-perfect.

Proof. During the proof we will use the fact that each closed directed walk of length at most 6 is a directed cycle
(Lemma 2.2) without any more explanation.
In view of Theorem 1.1 it suffices to prove (and we will prove) that each directed cycle of ¥ (D) has a symmetrical arc.



316 H. Galeana-Sanchez, R. Rojas-Monroy | Discrete Mathematics 285 (2004) 313-318

We proceed by contradiction; suppose that there exists a directed cycle of (D), C = (uo,u1,...,us,up) with C C
Asym 6 (D).

Claim 2. For eachi€ {0,1,...,n}, (ui,ui+1) € A(D) or there exists a uju;1-directed path of length 2 (notation mod n+1).

Let i €{0,1,...,n}. Since (u;,ui+1) € A((D)) we have that there exists a wu;u;+1-monochromatic directed path in D,
and the fact that C has no symmetrical arcs implies there is no u;.ju;-monochromatic directed path in D, so Claim 2
follows from Lemma 2.3.

Now we consider two possible cases:

Case a: n=2.

Since D has no odd directed cycles, we have that for some i € {0, 1,2}, (w;,ui+1) € A(D) (notation (mod3)). W.l.o.g
we may assume (uo,u;) & A(D), then it follows from Claim 2 that there exists a uou;-directed path of length 2 in D, say
(uo, Vo, U] )

Case a.1: {(ui,u2), (u2,u0)} C A(D).

In this case (uo, vo, u1,uz,up) is a directed cycle of length 4 in D, which by hypothesis is monochromatic; and then
(u1,u2,up) is a ujup-monochromatic directed path in D; thus (uo,u;) is a symmetrical arc of C in (D), contradicting our
assumption.

Case a.2: {(ui,u2), (u2,u0)} & A(D).

Claim 3. We may assume {(u1,u2), (u2,u0)} NA(D) = 0.

If (u1,uz) & A(D) then (u2,uo) & A(D); since (u1,uz2) & A(D) it follows from Claim 2 that there exists a uju,-directed
path of length 2, say (ui,vi,u2), so when (uz,up) € A(D) we obtain (uo, vo, u1,v1,u2,up) a directed cycle of length five
contained in D which is impossible. Analogously it can be proved that: If (uz,u0) & A(D) then (u1,u2) € A(D).

Now it follows from Claim 2 that there exists a u;u,-directed path of length 2 in D, say (u1,v1,u2), and a upuo-directed
path of length 2 in D, say (u2,v2,u0). Thus (uo, vo, u1,v1,u2,02,up) is a directed cycle of length 6 in D; and it follows
from Lemma 2.1 that (uo,v1) € A(D) or (vi,uo) € A(D). When (uo,v1) € A(D) we obtain (uo, v1,u2,02,up) is a directed
cycle of length 4 in D and by hypothesis it is monochromatic, in particular (uo, v1,u2) is a uour-monochromatic directed
path in D which implies (u2,u0) is a symmetrical arc of C in (D) contradicting our assumption. When (v1,uo) € A(D)
we have (uo, vo,u1,v1,u0) is a directed cycle of length 4 in D and by hypothesis is monochromatic, thus (u1,v1,up) is a
ujuo-monochromatic directed path in D and then (uo, ;) is a symmetrical arc of C in %(D), a contradiction.

Case b: n = 3.

In what follows the notation is taken modulo n + 1.

In view of Claim 2, for each i € {0,1,...,n} we can take a w;u;;-directed path as follows:

(i, uiv1) when (u,uiy1) € A(D) and
" \a uju;1-directed path of length 2 when (u;,uiy1) & A(D).

Let C'=J;", T;. Then C’ is a closed directed walk in D, so we may let C' =(zo,z1,...,2,20) and define the function
¢:{0,1,...,k} — V(C) as follows: For each i € {0,1,...,n} if T; = (u; = zi;, Zig+1 = ui+1) then @(ip) = z;, = u;; and if
T = (u,- = Zig» Zig+15 Zig+2 = MH]) then (p(io) = (p(io + 1) = Zi,.

We will say that an index j €{0,1,...,k} is a principal index when ¢(j) = z;; and we will denote by /, the set of
principal indexes. Notice that in C’ the indexes are all different and also notice that a vertex u; may correspond to a
principal index / and also to a non principal index p.

Suppose w.l.o.g. that uy = z. Since D is a bipartite tournament, we have k = 1 (mod 2) and by Lemma 2.1, for each
i€{l,....52} (20,2244) EA(D) or (z2i11,20) € A(D). We consider the following cases:

Case b.1: (z3,z0) € A(D).

In this case we have (zo,z1,22,23,20) is a directed cycle of length 4 and by hypothesis is monochromatic. The definition
of C’ implies z; = u; or zz =uy. If zy =uy then (u) =z1,22,23,20 = up) is a ujup-monochromatic directed path in D which
implies that (up,u;) is a symmetrical arc of C in (D), contradicting our assumption on C. So z; # u;, consequently
zp =u; and then (4 =z2,23,20 = ug) is a ujup-monochromatic directed path in D, thus (uo,u;) is a symmetrical arc of C
in (D), a contradiction.

Case b.2: (zo,zxk—2) € A(D).

The assumption in subcase b.2 implies (zo,zk—2,2k—1,2k,20) is a directed cycle of length 4 which by hypothesis is
monochromatic. The construction of C implies that zy=u, or zy_=u,. When z;=u, we have that (1o=z0,z;_2, 2k 1, Zk=Un)
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is a uou,-monochromatic directed path in D which implies that (u,,u0) is a symmetrical arc of C in ¥(D), contradicting
our assumption. Hence z; # u, and then zy_; = u,; now (1o = zo,2zk—2,2Zk—1 = Uy ) 1S a uou,-monochromatic directed path
in D which implies that (u,,u0) is a symmetrical arc of C in %(D), a contradiction.

Case b.3: (zo,z3) € A(D) and (zx—2,20) € A(D).

Since {(z0,21),(20,23), (zk—2,20)} C A(D) we have k—2 > 5 and there exists j € {1,..., 5>} such that (z,z241) € A(D)
and (Zzb/+3,Zo) GA(D). Let iy =min{j S {1, ey /‘%5} | {(Zo,Zz},ur]),(Zz>/+3,20)} - A(D)} Hence C=(Zo,Zz,'0+1,22,'0+2,22,'0+3,20)
is a directed cycle of length 4 in D which by hypothesis is monochromatic. Now we consider two possible cases.

Case b.3.1: 2ip + 1 €1,,.

In this case z,+1 = u; for some j& {2,...,n — 2} (as 3 <2ip+ 1 <k —4). By the construction of C’ we have
Zoig42 =Ujr1 OF Zojg3 =ujp1. If Z2jps2 =11 then (ujp1 =z22ig+2, 22ig+3, 20, Z2ig+1 =U;) 1S @ u;11u;-monochromatic directed path
in D which implies that (u;,u;41) is a symmetrical arc of C in (D) contradicting our assumption. Hence zaj 42 # uj41
and consequently zz;, 3 = ;11 thus (ujy1 = 22i)+3,20, 22ip+1 = u;) is a u;y1u;-monochromatic directed path in D and then
(uj,ujy1) is a symmetrical arc of C in (D), a contradiction.

Case b.3.2: 2ip+ 1 € I,

Now, by construction of C’ we have that {2ig,2ip + 2} C I,, i.e. z2j, =u;j—1 and z,+2 =u; for some j€{2,...,n—1}.
Lemma 2.1 implies (22, 22i,+3) € A(D) or (22iy+3,22iy) € A(D). When (22i,43,22i,) € A(D) we obtain that (22, Z2iy+1, 22ip+2
Z2ig4+3,22iy) 1s a directed cycle of length 4 and by hypothesis is monochromatic; thus (u; = z2ij+2,22iy+3,22i, = Uj—1)
is a ujuj—1-monochromatic directed path and (u;—i,u;) is a symmetrical arc of C in %(D), a contradiction. So we
have (z2i,22i,+3) € A(D); observe that the choice of iy implies (zo,z2,—1) € A(D) (when (z2i,—1,20) € A(D), the fact
(z0,z1) € A(D) implies that there exists j < ip—2 such that (zo,z2;4+1) € A(D) and (z2/+3,20) € A(D) contradicting the choice
of ig), thus C” = (20, 22iy—1,22ig» Z2iy+3,Z0) is a directed cycle of length 4 which by hypothesis must be monochromatic;
since (z2i+3,20) € A(C)NA(C”) we have that C and C” are of the same colour; S0 (4, =22y +2, Z2ig +3» 20> Z2ig — 1, Z2ig = Uj—1)
is a monochromatic directed path in D and (u;—1,u;) is a symmetrical arc of C in 4(D), a contradiction. L[]

The following result is a direct consequence of Theorem 2.1:

Theorem 2.2. Let D be an m-coloured bipartite tournament. If every directed cycle of length 4 in D is monochromatic,
then D has a kernel by monochromatic paths.

Remark 2.1. The hypothesis that every directed cycle of length 4 is monochromatic in Theorem 2.2 is tight.

Let D be the 3-coloured bipartite tournament defined as follows:

V(D)= {u,v,w,x, y,z} and A(D)={(u,x),(x,0), (v, »), (¥, w),(W,2),(z,u), (x,w),(y,u),(z,v)}; the arcs (x,w),(w,z) and
(z,u) are coloured 1; the arcs (y,u),(u,x) and (x,v) are coloured 2; and the arcs (z,v), (v, y) and (y,w) are coloured 3. The
only directed cycles of length 4 of D are (u,x,w,zu),(v, y,u,x,v) and (w,z,v, y,w) which are quasi-monochromatic and
the digraph #(D) is a complete digraph which has no kernel; hence D has no kernel by monochromatic paths. Moreover,
we can construct an infinite family of digraphs all of whose directed cycles of length 4 are quasi-monochromatic and
which have no kernel by monochromatic paths as follows: Let D, be the digraph obtained from D by adding vertices
z1,22,...,2, and arcs coloured 3 from each one of these vertices to u, v and w, respectively.

Remark 2.2. The assumption that every directed cycle of length 4 in a bipartite tournament D is monochromatic, does
not imply that every directed cycle of length 6 in D is monochromatic.

Remark 2.3. For each m there exists an m-coloured Hamiltonian bipartite tournament such that every directed cycle of
length 4 is monochromatic.
Proof. Let D be the m-coloured digraph defined as follows:
V(D)=XUYUZUW where; X ={x,x2,...,%m}, Y =A{y1,Y20,Vm}
Z=Az1,22,..sZm}, W ={wi,wa,...,Wn}.
AD)=Xy U Y UZy UWx UZy UW;UXy  where:
Xy ={(x,y)|ie{l,2,....,m}, je{1,2,...,....,m}},
Y, =A{(izi)|ie{l,2,....,m}}, Zw={(ziw)|i€{1,2,...,....m}},
Wy ={(wi,xiz1) [ i €{1,2,....m — 1} } U {(Wm,x1)},
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ZY:{(Zliy/)lie{l’Q’)"'im}’ je{lﬂzb"""'ﬁm}’ i#j}?
WZ:{(w;,z/)|i€{1,2,...,m}, j€{1,2,...,...,m}, l#]},

X ={(xi,wj)|i€{1,2,....,m}, j€{1,2,...,...om}, i #j+ 1},

(notation mod m).
For each i € {1,2,...,m} the arc (x;, y;) is colored i and any other arc is coloured 1.
Clearly D is an m-coloured bipartite tournament. [

Claim 3. D is Hamiltonian. It follows from the definition of D that for each i € {1,2,...,m} we have the directed path
T = (xi, yi,zi, Wi, Xiy1) and clearly V(TN V(L) =0 for j # i+ 1, and V(T;) NV (Ti1) ={xis1}. So C=U", T; is a
Hamiltonian directed cycle of D.

Claim 4. Every directed cycle of length 4 of D is monochromatic. Proceeding by contradiction, suppose that Cs =
(u1,u2, u3, us,ur) is a non monochromatic directed cycle of D, so C4 must contain at least one arc coloured i for some
i€{2,...,m}, so we may assume that uy =x, and u, = y»; it follows from the definition of D that us =z, and (us =w,
or usy = y; for some i # 2). When us = w», we obtain that (x2,w») € A(D) and hence (w2,x2) & A(D), a contradiction.
When us = y; for some i # 2 we obtain that (xa,y;) € A(D) contradicting that (us = yi,uy = x2) € A(D).
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