Available at

www.ElsevierMathematics.com DISCRETE
£ ides POWERED BY SCIENCE @DIRECT" MATHEMATICS
ELSEVIER Discrete Mathematics 275 (2004) 129—136

www.elsevier.com/locate/disc

Kernels in pretransitive digraphs

Hortensia Galeana-Sanchez®, Rocio Rojas-Monroy®

aInstituto de Matematicas, UNAM, Universidad Nacional Autéonoma de México, Ciudad Universitaria,
Meéxico, D.F. 04510, Mexico
b Facultad de Ciencias, Universidad Auténoma del Estado de México, Instituto Literario No. 100,
Centro 50000, Toluca, Edo. de Méx., Mexico

Received 14 February 2002; received in revised form 5 February 2003; accepted 19 February 2003

Abstract

Let D be a digraph, V(D) and 4(D) will denote the sets of vertices and arcs of D, respectively.
A kernel N of D is an independent set of vertices such that for every we V(D) — N there
exists an arc from w to N. A digraph D is called right-pretransitive (resp. left-pretransitive)
when (u,v) € A(D) and (v,w) € A(D) implies (u,w) € A(D) or (w,v) € A(D) (resp. (u,v) € A(D)
and (v,w) € A(D) implies (u,w) € A(D) or (v,u) € A(D)). This concepts were introduced by P.
Duchet in 1980. In this paper is proved the following result: Let D be a digraph. If D=D;UD,
where D is a right-pretransitive digraph, D is a left-pretransitive digraph and D; contains no
infinite outward path for i € {1,2}, then D has a kernel.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

For general concepts we refer the reader to [1]. In the paper we write digraph to
mean 1-digraph in the sense of Berge [1]. In this paper D will denote a possibly infinite
digraph; V(D) and A(D) will denote the sets of vertices and arcs of D, respectively.
Often we shall write u u, instead of (uju). An arc uju; € A(D) is called asymmetrical
(resp. symmetrical) if uu; & A(D) (resp. upu; € A(D)). The asymmetrical part of D
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(resp. symmetrical part of D), which is denoted by Asym(D) (resp. Sym(D)), is the
spanning subdigraph of D whose arcs are the asymmetrical (resp. symmetrical) arcs of
D. We recall that a subdigraph D; of D is a spanning subdigraph if V' (D;)=V (D). If
S is a nonempty subset of V(D) then the subdigraph D[S] induced by S is the digraph
with vertex set S and whose arcs are those arcs of D which join vertices of S.

A directed path is a finite or infinite sequence (x1,xp,...) of distinct vertices of D
such that (x;,x;.1)€ A(D) for each i. When D is infinite and the sequence is infinite
we call the directed path an infinite outward path. Let S; and S, be subsets of V' (D),
a finite directed path (x1,x3,...,x,) will be called and S;S,-directed path whenever
x1 €8 and x, €S, in particular when the directed path is an arc.

Definition 1.1. A set 7/ C V(D) is independent if A(D[I]) = 0. A kernel N of D is
an independent set of vertices such that for each z € V(D) — N there exists a zN-arc
in D.

A digraph D is called kernel-perfect digraph when every induced subdigraph of D
has a kernel.

The concept of kernel was introduced by Von Neumann and Morgenstern [7] in
the context of Game Theory. The problem of the existence of a kernel in a given
digraph has been studied by several authors in particular by Richardson [8,9], Duchet
and Meyniel [4], Duchet [2,3], Galeana-Sanchez and Neumann-Lara [6].

It is well known that a finite transitive digraph is kernel-perfect and a finite sym-
metrical digraph is kernel perfect. (We recall that a digraph D is transitive whenever
(u,v) € A(D) and (v,w) € A(D) implies (u,w) € A(D).)

Definition 1.2 (Duchet [2]). A digraph D is called right- (resp. left-) pretransitive if
every nonempty subset B of V(D) possesses a vertex #(B)=b such that: (x,b) € A(D)
and (b, y) € A(D) implies (x, y) € A(D) or (y,b) € A(D) (resp. (x,b) € A(D) and (b, y) €
A(D) implies (x, y) € A(D) or (b,x) € A(D)), for any two vertices x, y € V(D).

Clearly taking B = {b} for each b€ V(D) (taking all the possible singletons of
V(D)) in Definition 1.2, we obtain that Definition 1.2 is equivalent to those given in
the Abstract, which for technical reasons will be used in this paper.

Theorem 1.1 (P. Duchet [2]). 4 finite right-pretransitive (resp. left-pretransitive)
digraph is kernel-perfect.

The result proved in this paper generalize Theorem 1.1 and the following result of
Sands et al. [10].

Theorem 1.2 (Sands et al. [10]). Let D be a digraph whose arcs are coloured with
two colors. If D contains no monochromatic infinite outward path, then there exists
a set S of vertices of D such that: no two vertices of S are connected by a monochro-
matic directed path and, for every vertex x not in S there is a monochromatic directed
path from x to a vertex in S.
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In order to understand Theorem 1.2 in terms of kernels we include the following
definitions:

We call the digraph D an m-coloured digraph if the arcs of D are coloured with m
colours. A directed path is called monochromatic if all of its arcs are coloured alike.

Definition 1.3 (Galeana-Sanchez [5]). Let D be an m-coloured digraph. A set N C
V(D) is said to be a kernel by monochromatic paths if it satisfies the following two
conditions:

(i) For every pair of different vertices u,v € N there is no monochromatic directed path
between them and,

(ii) For every vertex x € V(D) — N there is a vertex y € N such that there is an
xy-monochromatic directed path.

Definition 1.4. If D is an m-coloured digraph then the closure of D, denoted % (D) is
the m-coloured multidigraph defined as follows:

V(¢(D))=V(D);
A(6(D)) = A(D) U {uv with colour i| there exits an uv-monochromatic directed

path of colour i contained in D}.

Note that for any digraph D, € (4 (D)) = (D) and D has a kernel by monochro-
matic paths if and only if %(D) has a kernel. (Although the concept of kernel was
defined in [1] for 1-digraphs, the same concept is valid and can be considered in
multidigraphs).

In this terminology Theorem 1.2 asserts that if D is a 2-coloured digraph, which
contains no monochromatic infinite outward path, then (D) has a kernel (in fact
% (D) is a kernel-perfect digraph).

Now it is clear that Theorem 1.2 is equivalent to the following assertion: Let D be
a digraph; D; and D, transitive subdigraphs of D such that D =D; UD,. If D has no
infinite outward path contained in D;; (i =1,2) then D has a kernel.

Finally, we will introduce some notation: Given two subdigraphs of D; D; and D,

(possibly A(D;) N A(D,) # 0). For distinct vertices x, y of D; xb y will mean that

the arc (x,y) € A(D;), and xS will mean that there exists an arc in D; from x to a
vertex in S, S C V(D), where i =1,2. When we do not know if the arc is in D; or in

D, we write simply x — y. The negation of xb v (resp. xi>S) will be denoted x— y
(resp. x—%S) for i=1,2.

2. Kernels in pretransitive digraphs

The main result of this section is Theorem 2.1, to prove this result we use a method
closely related to the one of Sands et al. [10].
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Lemma 2.1. Let D be a right-pretransitive or left-pretransitive digraph. If
(x1,X2,...,x,) is a sequence of vertices such that (x;,x;11)€A(D) and (xi11,x;) &
A(D), then the sequence is a directed path and for each i€{l,...,n — 1},
(x;,x;) € A(D) and (x;,x;) & A(D), for every je{i+1,...,n}.

Proof. We proceed by induction on n. The result is obvious for n < 2. Assume the
result is true for a sequence (x1,x2,...,X,), which satisfies the hypothesis of Lemma 2.1.
Consider a sequence T=(x1,X2,...,X,,X,+1) such that for each i € {1,...,n}, (x;,x;41) €
A(D) and (x;11,x;) € A(D). Since (x,...,x,) and (x2,...,x,41) satisfy the inductive
hypothesis we only need to prove x| # x,+1, (x1,X,+1)€A(D) and (x,11,x1) & A(D).

First assume by contradiction that x,.; =x;. It follows from the inductive hypothesis
on (xi,...,x,) that (x;,x,) € A(D), and so (x,+1,x,) € A(D), contradicting our assump-
tion on T; so T is a directed path. Now consider the arcs (x;,x,) and (x,,x,]); since
D is a right-pretransitive or left-pretransitive digraph, (x,,x;) & A(D) and (x,,1,X,) &
A(D), we conclude (x1,x,+1)€ A(D). Finally suppose (x,+1,x1)€A(D); when D is
a right-pretransitive digraph considering the arcs (x,41,x;) and (x1,x,), and when D
is a left-pretransitive considering the arcs (x,,x,.1) and (x,y1,x;), we conclude that
(Xn41,%,) €A(D) or (x,,x;) € A(D), which is impossible. [

Lemma 2.2. Let D be a right-pretransitive or left-pretransitive digraph. If D has
no infinite outward paths, and O # U C V(D), then there exists x € U such that
(x, )€ A(D) with ye U implies (y,x) € A(D).

Proof. Suppose by contradiction that for each x € U, there exists y€ U such that
(x,¥y)€A(D) and (y,x) & A(D). Consider some x; € U, then there exists x, € U such
that (x1,x) € A(D) and (xz,x1) € A(D). So for each n € N; given x, € U, there exists
Xne1 € U such that (x,,x,.1)€A(D) and (x,.1,x,) € A(D). It follows from Lemma
2.1 that T,,o 1 =(x1,...,X,,X,41) 1s a directed path. Consider the sequence 7' = (x,),en.
For each n €N, (x,,x,11)€A(T,11) C A(D); for n < m we have {x,,x,} C V(T,),
and since T, is a directed path we obtain x, # x,; hence T is an infinite outward
path, a contradiction. [J

Theorem 2.1. Let D be a digraph. If there exists two subdigraphs of D say Dy and D,
such that D=DyUD, (possibly A(D\)NA(D,) # 0), where Dy is a right-pretransitive
digraph, D, is a left-pretransitive digraph, and D; contains no infinite outward path
SJor i€{1,2}. Then D is a kernel-perfect digraph.

Proof. It suffices to prove that D has a kernel, as any induced subdigraph of D satisfies
the hypothesis of Theorem 2.1.

For independent sets of vertices of D; S, T; we write S < T if and only if, for
each s €S there exists ¢ € T, such that either s =¢ or (s—1>t and 1 s). Notice that in
particular S C 7 implies S < 7.

(1) The collection of all independent sets of vertices of D is partially ordered
by <.

(1.1) < is reflexive.
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This follows from the fact S C S.
(1.2) < is transitive.

Let S, T and R be independent sets of vertices of D, such that S < 7 and T < R, and
let s€S. Since S < T there exists # € T such that either, s =1 or (s—1>t and t—Ls) and;
T < R implies there exists » € R such that either, t =7 or (t#r and r—l—>t). Ifs=tor
t=r, then s=r or (s—1>r and r—}»s) with » € R. So we can assume s # ¢, t # r, (s—1>t
and t—l—>s) and (t—]>r and r—l»t). And since D, is a right-pretransitive digraph it follows
from Lemma 2.1 on the sequence (s,t,7) that s5r and r—£—>s.

(1.3) < is antisymmetrical.

Let S and T be independent sets of vertices of D such that S < 7 and 7 < S, and let
s€S. Since S < T there exists £ € T such that either, s=¢ or (s—1>t and t—lﬁs). Suppose
s # t; the fact T < S implies that there exists s’ €S such that either, t=s" or (t—l>s’ and
s’ —lﬁ»t). When t=s' we obtain s—s’' contradicting that S is an independent set; so ¢ # s
and (t#s’ and s’ —£—>t). Now applying Lemma 2.1 on the sequence (s,t,s"), we have

sLs! contradicting that S is an independent set. We conclude ¢ =s and consequently
s€T and § C T. Analogously it can be proved 7 C S.
Let & be the family of all nonempty independent sets S of vertices of D such that,

52 y implies y — § for all vertices y of D;.

(2) (#, <) has maximal elements.

2.1) 7 £0.
Since D, is a left-pretransitive digraph, which has no infinite outward paths; it follows
from Lemma 2.2 (taking D=D, and U =V'(D,)), that there exists a vertex x € V(D)
such that xiy implies y — x, for all vertices y of D,, so {x} € Z.

(2.2) Every chain in (4, <) is upper bounded.
Let % be a chain in (%, <), and define S = {s € Jgc, S| there exists S €% such
that s€ T whenever T €% and T > S} (S° consists of all vertices of D that belong

to every member of ¥ from some point on).
We will prove that S is an upper bound of €.

(2.2.1) S # (), and for each S€ %, §® = S.

Let S€% and ) €S, we will prove that there exists ¢ € S such that either, 7o = ¢
1
or (t0—1>t and t-»ty). If tp €S we are done, so assume {, ¢ S°°. We proceed by

.. . . 1
contradiction; suppose that if ¢+ € V(D) with (t0—1>t and 7-~ty), then ¢t ¢ S°°. Take
To = S; since ty ¢ S°° we have that there exists ) € 4, T} = Ty such that ¢, & T.

. 1 . . .
Hence there exists #; € 77 such that t0—1>t1 and #,-~f. And our assumption implies
t1 ¢ S°. The fact #; ¢ S implies #; ¢ T, for some 7, €%, T, = T, and there
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exists #, € T> such that tl—l>t2 and #,—»t;. Since D is a right-pretransitive digraph, it
follows from Lemma 2.1 on the sequence 1, = (f,,%), that 7, is a directed path,

1 1 . .
to—t and H-»ty, and 1, ¢ S°°. We may continue that way and we obtain, for each
1 1 .
neN;T,€%b,t, €T, (ty—t, and t,—1y) and t, ¢ S°°, hence there exists 7, € € such
. . 1 1
that T,y = T, and ¢, & T,.; so there exists t,,1 € T, with t,—t,1 and t,.1—+t,.

. . . ... . 1 1
Since D) is a right-pretransitive digraph, and (z,—1,+ and ¢,;-t,) for each n € N;
it follows from Lemma 2.1 (on the sequence) 7,.1 = (fo,t1,...,4+1), that 7,1 is a

. . 1 . . .
directed path in D; and (t()#tn+1 and #,.1-1). And our assumption implies #,.; ¢

. 1
S§°°. Now consider the sequence t = (,),cn, for each n € N we have t,—t,,;, and for
n < m,{ty,tu} C V(t,); and since 1,, is a directed path we have ¢, # t,. Hence 7 is
an infinite outward path contained in D;. We conclude that there exists € S°° such

that (toi>t and t—}'+t0).
(2.2.2) §*° is an independent set.

Let 51,5, €S and suppose without loss of generality that S;,S, € ¥ are such that:
s1€81,51 €S whenever S€% and S = 5,5, €8, and S| < S,. Then s; €S, and since
S, is independent there is no arc between s; and s, in D.

(223) S® € 7.

Suppose S‘X’iy with y € V(D,), so there exists s €S with siy. Let S€% such
that s€ T forall Te¥,T = S.
Since S€ % we have y — S, so there exists s’ €S with y — s'. When s’ € §°

we are done. When s’ € S we analyze the two possibilities, y—1>s’ or yis’ . First

suppose yis’ ; since 52 vy, and D, is a left-pretransitive digraph it follows 555’ or
. . . . 2

yis, now the fact S is an independent set and {s,s'} C S implies s—s’, so yis and

consequently y — S°°. Now suppose y—1>s’ ; since s’ €S and since § < S by (2.2.1),
. 1 .

and s € S*°. There exists 1 € S such that s’ Lt and s’ , finally the fact that Dy is

a right-pretransitive digraph implies y—1>t.

We have proven that any chain in % has an upper bound in &, and so by Zorn’s
Lemma, (%, <) contains maximal elements. Let S be a maximal element of (%, <).

(3) S is a kernel of D.
Since S € %, S is an independent set of vertices of D.

(3.1) For each x € (V(D) — §) there exists an xS-arc.
Suppose by contradiction there exists x € (V' (D) — S) such that x - S.

(3.1.1) There exists a vertex xo € V(D) such that xo - S, and x, satisfies: xoi y
and y - S imply y — x¢ for all vertices y € V(D)

Let U={z€V(D,)— S|z -+ S}. When U # 0 it follows from Lemma 2.2 (applied
on D, and U) that there exists xo with the required properties. When U = it follows
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from our assumption that z - §, for some vertex z in V(D;) — (SUV(D;)). And we
take xo any such a vertex.

. . o . 2
Notice that the choice of x¢ implies xo - S and since S € # also we have S—»x.

1 . . .
Let T'={s€S|s—=x}, it follows from above that 7U{x,} is an independent set of
vertices of D.

(3.12) TU {x} € 7.

Suppose T U {xo}i yand y - T; we will prove y — xo. Before to start the proof of
(3.1.2) we make the following observation.

(3.1.2.1) If y-5(S — T) then y—5xo.

Assume yi>(S — T); since s—1>x0 for any s € (S — T'), and D, is a right-pretransitive
digraph, we have y—1>x0 or x0—1>(S — T). Now, we know xo - S, so, we conclude

y—1>x0 . We proceed to prove (3.1.2) by considering the two following cases:
Case a: T V.

Since 7" C S we have Siy and the fact S€ . implies y — S. So y — (S —1T) (as
we are assuming y - 7).

When y-5(S — T) it follows from (3.1.2.1) that y-—xq.
When yi(S — T); since we have T ER y and D, is a left-pretransitive digraph, it
follows yiT or TL(S — T); now Ti(S — T) is impossible as 7 C S and S is an

independent set, we conclude yiT , a contradiction.
2
Case b: xo—y.
We consider two possible subcases:

Case b.1: y -» §.

Since xoiy we have y € V(D,) and the choice of xy (see (3.1.1)) implies y — xo.

Case b.2: y — S.

In this case we have y — (S —T') (as we are assuming y - 7'). When y—1>(S —T)it
follows from (3.1.2.1) that y—5xq.
When yi(S — T), since xoiy and D, is a left-pretransitive digraph, we obtain

xoi(S —T) or yixo; now recalling that xo - S, so, we conclude yixo.

(3.13) S < T U {xo}.

For s €(S — T) we have son and we have noted xy - S; hence S < T U {x}, and
it follows from the fact xo € S (by the construction in (3.1.1)) that S < 7 U {xo}.

Clearly propositions (3.1.2) and (3.1.3) contradict that S is a maximal element
of (#,<). O
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Remark 2.1. The hypothesis D; has no infinite outward paths in Theorem 2.1 is
necessary.

Consider the following digraph D; V' (D)={u, |n € N} and A(D)={(uy, un)|n,meN
and n <m}, D; =D and D, =D.

It is easy to see that if A is any right-pretransitive digraph, and we consider D; and
D, such that: V(Dy)=V(D)UV(H), A(D1)=AH)U{(u,v)|ucV(H),veV (D)} and
D, =D then D =D; UD, has no kernel.

Remark 2.2. The following digraph D is the union of two right-pretransitive digraphs,
D, and D,, and it has no kernel.

V(Dl ) - V(DZ) = {u’ v, W,X}, A(Dl ) - {(x» u)’ (us W)’ (Wa u)’ (U’ W)}»
A(Dy) = {(u,v), (x,v),(v,x),(w,x)} and D=D;UD,.

Remark 2.3. There exists a digraph D which is the union of two left-pretransitive
digraphs and has no kernel.

V(D1)=V(Dy)={u,v,w,x}, ADy)={(u,v),(u,w),(w,u),(w,x)},
A(Dz) = {(x,u), ()C,U), (U,x),(U,W)} and D:Dl UDZ

It is easy to see that by adding vertices to this digraphs one can construct arbitrarily
large finite examples as those given in Remarks 2.2 and 2.3.

Acknowledgements

We thank the referees for their suggestions which improved the rewriting of this
paper.

References

[1] C. Berge, Graphs, in: North-Holland Mathematical Library, Vol. 6, North-Holland, Amsterdam, 1985.

[2] P. Duchet, Graphes Noyau-Parfaits, Ann. Discrete Math. 9 (1980) 93—101.

[3] P. Duchet, A sufficient condition for a digraph to be kernel-perfect, J. Graph Theory 11 (1) (1987)
81-85.

[4] P. Duchet, H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105.

[5] H. Galeana-Sanchez, Kernels in edge-coloured digraphs, Discrete Math. 184 (1998) 87-99.

[6] H. Galeana-Sanchez, V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48
(1984) 67-76.

[7]1 J. Von Neumann, O. Morgenstern, Theory of Games and Economic Behavior, Princeton University
Press, Princeton, 1944,

[8] M. Richardson, Solutions of irreflexive relations, Ann. Math. 58 (2) (1953) 573-580.

[9] M. Richardson, Extensions theorems for solutions of irreflexive relations, Proc. Nat. Acad. Sci. USA
39 (1953) 649-651.

[10] B. Sands, N. Sauer, R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin.
Theory Ser. B 33 (1982) 271-275.



	Kernels in pretransitive digraphs
	Introduction
	Kernels in pretransitive digraphs
	Acknowledgements
	References


