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Abstract

Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively.
A kernel N of D is an independent set of vertices such that for every w∈V (D) − N there
exists an arc from w to N . A digraph D is called right-pretransitive (resp. left-pretransitive)
when (u; v)∈A(D) and (v; w)∈A(D) implies (u; w)∈A(D) or (w; v)∈A(D) (resp. (u; v)∈A(D)
and (v; w)∈A(D) implies (u; w)∈A(D) or (v; u)∈A(D)). This concepts were introduced by P.
Duchet in 1980. In this paper is proved the following result: Let D be a digraph. If D=D1∪D2

where D1 is a right-pretransitive digraph, D2 is a left-pretransitive digraph and Di contains no
in=nite outward path for i∈{1; 2}, then D has a kernel.
c© 2003 Elsevier B.V. All rights reserved.

MSC: 05C20

Keywords: Kernel; Kernel-perfect digraph; Right-pretransitive digraph; Left-pretransitive digraph

1. Introduction

For general concepts we refer the reader to [1]. In the paper we write digraph to
mean 1-digraph in the sense of Berge [1]. In this paper D will denote a possibly in=nite
digraph; V (D) and A(D) will denote the sets of vertices and arcs of D, respectively.
Often we shall write u1u2 instead of (u1u2). An arc u1u2 ∈A(D) is called asymmetrical
(resp. symmetrical) if u2u1 �∈ A(D) (resp. u2u1 ∈A(D)). The asymmetrical part of D
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(resp. symmetrical part of D), which is denoted by Asym(D) (resp. Sym(D)), is the
spanning subdigraph of D whose arcs are the asymmetrical (resp. symmetrical) arcs of
D. We recall that a subdigraph D1 of D is a spanning subdigraph if V (D1)=V (D). If
S is a nonempty subset of V (D) then the subdigraph D[S] induced by S is the digraph
with vertex set S and whose arcs are those arcs of D which join vertices of S.
A directed path is a =nite or in=nite sequence (x1; x2; : : :) of distinct vertices of D

such that (xi; xi+1)∈A(D) for each i. When D is in=nite and the sequence is in=nite
we call the directed path an in:nite outward path. Let S1 and S2 be subsets of V (D),
a =nite directed path (x1; x2; : : : ; xn) will be called and S1S2-directed path whenever
x1 ∈ S1 and xn ∈ S2 in particular when the directed path is an arc.

De�nition 1.1. A set I ⊆ V (D) is independent if A(D[I ]) = ∅. A kernel N of D is
an independent set of vertices such that for each z ∈V (D) − N there exists a zN -arc
in D.
A digraph D is called kernel-perfect digraph when every induced subdigraph of D

has a kernel.

The concept of kernel was introduced by Von Neumann and Morgenstern [7] in
the context of Game Theory. The problem of the existence of a kernel in a given
digraph has been studied by several authors in particular by Richardson [8,9], Duchet
and Meyniel [4], Duchet [2,3], Galeana-S'anchez and Neumann-Lara [6].
It is well known that a =nite transitive digraph is kernel-perfect and a =nite sym-

metrical digraph is kernel perfect. (We recall that a digraph D is transitive whenever
(u; v)∈A(D) and (v; w)∈A(D) implies (u; w)∈A(D).)

De�nition 1.2 (Duchet [2]). A digraph D is called right- (resp. left-) pretransitive if
every nonempty subset B of V (D) possesses a vertex t(B) = b such that: (x; b)∈A(D)
and (b; y)∈A(D) implies (x; y)∈A(D) or (y; b)∈A(D) (resp. (x; b)∈A(D) and (b; y)∈
A(D) implies (x; y)∈A(D) or (b; x)∈A(D)), for any two vertices x; y∈V (D).

Clearly taking B = {b} for each b∈V (D) (taking all the possible singletons of
V (D)) in De=nition 1.2, we obtain that De=nition 1.2 is equivalent to those given in
the Abstract, which for technical reasons will be used in this paper.

Theorem 1.1 (P. Duchet [2]). A :nite right-pretransitive (resp. left-pretransitive)
digraph is kernel-perfect.

The result proved in this paper generalize Theorem 1.1 and the following result of
Sands et al. [10].

Theorem 1.2 (Sands et al. [10]). Let D be a digraph whose arcs are coloured with
two colors. If D contains no monochromatic in:nite outward path, then there exists
a set S of vertices of D such that: no two vertices of S are connected by a monochro-
matic directed path and, for every vertex x not in S there is a monochromatic directed
path from x to a vertex in S.
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In order to understand Theorem 1.2 in terms of kernels we include the following
de=nitions:
We call the digraph D an m-coloured digraph if the arcs of D are coloured with m

colours. A directed path is called monochromatic if all of its arcs are coloured alike.

De�nition 1.3 (Galeana-S'anchez [5]). Let D be an m-coloured digraph. A set N ⊆
V (D) is said to be a kernel by monochromatic paths if it satis=es the following two
conditions:

(i) For every pair of diLerent vertices u; v∈N there is no monochromatic directed path
between them and,

(ii) For every vertex x∈V (D) − N there is a vertex y∈N such that there is an
xy-monochromatic directed path.

De�nition 1.4. If D is an m-coloured digraph then the closure of D, denoted C(D) is
the m-coloured multidigraph de=ned as follows:

V (C(D)) = V (D);

A(C(D)) = A(D) ∪ {uv with colour i | there exits an uv-monochromatic directed

path of colour i contained in D}:

Note that for any digraph D; C(C(D)) ∼= C(D) and D has a kernel by monochro-
matic paths if and only if C(D) has a kernel. (Although the concept of kernel was
de=ned in [1] for 1-digraphs, the same concept is valid and can be considered in
multidigraphs).
In this terminology Theorem 1.2 asserts that if D is a 2-coloured digraph, which

contains no monochromatic in=nite outward path, then C(D) has a kernel (in fact
C(D) is a kernel-perfect digraph).
Now it is clear that Theorem 1.2 is equivalent to the following assertion: Let D be

a digraph; D1 and D2 transitive subdigraphs of D such that D=D1 ∪D2. If D has no
in=nite outward path contained in Di; (i = 1; 2) then D has a kernel.
Finally, we will introduce some notation: Given two subdigraphs of D; D1 and D2

(possibly A(D1) ∩ A(D2) �= ∅). For distinct vertices x; y of D; x i→y will mean that
the arc (x; y)∈A(Di), and x i→S will mean that there exists an arc in Di from x to a
vertex in S; S ⊆ V (D), where i=1; 2. When we do not know if the arc is in D1 or in

D2 we write simply x → y. The negation of x i→y (resp. x i→S) will be denoted x
i9 y

(resp. x
i9 S) for i = 1; 2.

2. Kernels in pretransitive digraphs

The main result of this section is Theorem 2.1, to prove this result we use a method
closely related to the one of Sands et al. [10].
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Lemma 2.1. Let D be a right-pretransitive or left-pretransitive digraph. If
(x1; x2; : : : ; xn) is a sequence of vertices such that (xi; xi+1)∈A(D) and (xi+1; xi) �∈
A(D), then the sequence is a directed path and for each i∈{1; : : : ; n − 1};
(xi; xj)∈A(D) and (xj; xi) �∈ A(D), for every j∈{i + 1; : : : ; n}.
Proof. We proceed by induction on n. The result is obvious for n6 2. Assume the
result is true for a sequence (x1; x2; : : : ; xn), which satis=es the hypothesis of Lemma 2.1.
Consider a sequence T=(x1; x2; : : : ; xn; xn+1) such that for each i∈{1; : : : ; n}; (xi; xi+1)∈
A(D) and (xi+1; xi) �∈ A(D). Since (x1; : : : ; xn) and (x2; : : : ; xn+1) satisfy the inductive
hypothesis we only need to prove x1 �= xn+1; (x1; xn+1)∈A(D) and (xn+1; x1) �∈ A(D).

First assume by contradiction that xn+1=x1. It follows from the inductive hypothesis
on (x1; : : : ; xn) that (x1; xn)∈A(D), and so (xn+1; xn)∈A(D), contradicting our assump-
tion on T ; so T is a directed path. Now consider the arcs (x1; xn) and (xn; xn+1); since
D is a right-pretransitive or left-pretransitive digraph, (xn; x1) �∈ A(D) and (xn+1; xn) �∈
A(D), we conclude (x1; xn+1)∈A(D). Finally suppose (xn+1; x1)∈A(D); when D is
a right-pretransitive digraph considering the arcs (xn+1; x1) and (x1; xn), and when D
is a left-pretransitive considering the arcs (xn; xn+1) and (xn+1; x1), we conclude that
(xn+1; xn)∈A(D) or (xn; x1)∈A(D), which is impossible.

Lemma 2.2. Let D be a right-pretransitive or left-pretransitive digraph. If D has
no in:nite outward paths, and ∅ �= U ⊆ V (D), then there exists x∈U such that
(x; y)∈A(D) with y∈U implies (y; x)∈A(D).
Proof. Suppose by contradiction that for each x∈U , there exists y∈U such that
(x; y)∈A(D) and (y; x) �∈ A(D). Consider some x1 ∈U , then there exists x2 ∈U such
that (x1; x2)∈A(D) and (x2; x1) �∈ A(D). So for each n∈N; given xn ∈U , there exists
xn+1 ∈U such that (xn; xn+1)∈A(D) and (xn+1; xn) �∈ A(D). It follows from Lemma
2.1 that Tn+1 =(x1; : : : ; xn; xn+1) is a directed path. Consider the sequence T =(xn)n∈N.
For each n∈N; (xn; xn+1)∈A(Tn+1) ⊆ A(D); for n¡m we have {xn; xm} ⊆ V (Tm),
and since Tm is a directed path we obtain xn �= xm; hence T is an in=nite outward
path, a contradiction.

Theorem 2.1. Let D be a digraph. If there exists two subdigraphs of D say D1 and D2

such that D=D1∪D2 (possibly A(D1)∩A(D2) �= ∅), where D1 is a right-pretransitive
digraph, D2 is a left-pretransitive digraph, and Di contains no in:nite outward path
for i∈{1; 2}. Then D is a kernel-perfect digraph.

Proof. It suMces to prove that D has a kernel, as any induced subdigraph of D satis=es
the hypothesis of Theorem 2.1.
For independent sets of vertices of D; S; T ; we write S6T if and only if, for

each s∈ S there exists t ∈T , such that either s= t or (s 1→t and t 19 s). Notice that in
particular S ⊆ T implies S6T .

(1) The collection of all independent sets of vertices of D is partially ordered
by 6.

(1.1) 6 is reNexive.
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This follows from the fact S ⊆ S.
(1.2) 6 is transitive.

Let S; T and R be independent sets of vertices of D, such that S6T and T6R, and

let s∈ S. Since S6T there exists t ∈T such that either, s= t or (s 1→t and t 19 s) and;

T6R implies there exists r ∈R such that either, t = r or (t 1→r and r
19 t). If s= t or

t = r, then s= r or (s 1→r and r
19 s) with r ∈R. So we can assume s �= t; t �= r, (s 1→t

and t
19 s) and (t 1→r and r 19 t). And since D1 is a right-pretransitive digraph it follows

from Lemma 2.1 on the sequence (s; t; r) that s 1→r and r
19 s.

(1.3) 6 is antisymmetrical.

Let S and T be independent sets of vertices of D such that S6T and T6 S, and let

s∈ S. Since S6T there exists t ∈T such that either, s= t or (s 1→t and t 19 s). Suppose
s �= t; the fact T6 S implies that there exists s′ ∈ S such that either, t=s′ or (t 1→s′ and
s′

19 t). When t=s′ we obtain s 1→s′ contradicting that S is an independent set; so t �= s′
and (t 1→s′ and s′

19 t). Now applying Lemma 2.1 on the sequence (s; t; s′), we have

s 1→s′ contradicting that S is an independent set. We conclude t = s and consequently
s∈T and S ⊆ T . Analogously it can be proved T ⊆ S.

Let F be the family of all nonempty independent sets S of vertices of D such that,

S 2→y implies y → S for all vertices y of D2.

(2) (F;6) has maximal elements.

(2.1) F �= ∅.
Since D2 is a left-pretransitive digraph, which has no in=nite outward paths; it follows
from Lemma 2.2 (taking D=D2 and U =V (D2)), that there exists a vertex x∈V (D2)

such that x 2→y implies y → x, for all vertices y of D2, so {x}∈F.

(2.2) Every chain in (F;6) is upper bounded.

Let C be a chain in (F;6), and de=ne S∞ = {s∈⋃
S∈C S | there exists S ∈C such

that s∈T whenever T ∈C and T¿ S} (S∞ consists of all vertices of D that belong
to every member of C from some point on).
We will prove that S∞ is an upper bound of C.

(2.2.1) S∞ �= ∅, and for each S ∈C; S∞¿ S.

Let S ∈C and t0 ∈ S, we will prove that there exists t ∈ S∞ such that either, t0 = t

or (t0
1→t and t

19 t0). If t0 ∈ S∞ we are done, so assume t0 �∈ S∞. We proceed by

contradiction; suppose that if t ∈V (D) with (t0
1→t and t

19 t0), then t �∈ S∞. Take
T0 = S; since t0 �∈ S∞ we have that there exists T1 ∈C, T1¿T0 such that t0 �∈ T1.
Hence there exists t1 ∈T1 such that t0

1→t1 and t1
19 t0. And our assumption implies

t1 �∈ S∞. The fact t1 �∈ S∞ implies t1 �∈ T2 for some T2 ∈C; T2¿T1, and there
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exists t2 ∈T2 such that t1
1→t2 and t2

19 t1. Since D1 is a right-pretransitive digraph, it
follows from Lemma 2.1 on the sequence �2 = (t0; t1; t2), that �2 is a directed path,

t0
1→t2 and t2

19 t0, and t2 �∈ S∞. We may continue that way and we obtain, for each

n∈N;Tn ∈C; tn ∈Tn; (t0 1→tn and tn 19 t0) and tn �∈ S∞, hence there exists Tn+1 ∈C such

that Tn+1¿Tn and tn �∈ Tn+1; so there exists tn+1 ∈Tn+1 with tn
1→tn+1 and tn+1

19 tn.
Since D1 is a right-pretransitive digraph, and (tn

1→tn+1 and tn+1
19 tn) for each n∈N;

it follows from Lemma 2.1 (on the sequence) �n+1 = (t0; t1; : : : ; tn+1), that �n+1 is a

directed path in D1 and (t0
1→tn+1 and tn+1

19 t0). And our assumption implies tn+1 �∈
S∞. Now consider the sequence �=(tn)n∈N, for each n∈N we have tn

1→tn+1, and for
n¡m; {tn; tm} ⊆ V (�m); and since �m is a directed path we have tn �= tm. Hence � is
an in=nite outward path contained in D1. We conclude that there exists t ∈ S∞ such

that (t0
1→t and t 19 t0).

(2.2.2) S∞ is an independent set.

Let s1; s2 ∈ S∞ and suppose without loss of generality that S1; S2 ∈C are such that:
s1 ∈ S1; s1 ∈ S whenever S ∈C and S¿ S1; s2 ∈ S2 and S16 S2. Then s1 ∈ S2 and since
S2 is independent there is no arc between s1 and s2 in D.

(2.2.3) S∞ ∈F.

Suppose S∞ 2→y with y∈V (D2), so there exists s∈ S∞ with s 2→y. Let S ∈C such
that s∈T for all T ∈C; T¿ S.
Since S ∈F we have y → S, so there exists s′ ∈ S with y → s′. When s′ ∈ S∞

we are done. When s′ �∈ S∞ we analyze the two possibilities, y 1→s′ or y 2→s′. First
suppose y 2→s′; since s 2→y, and D2 is a left-pretransitive digraph it follows s 2→s′ or

y 2→s, now the fact S is an independent set and {s; s′} ⊆ S implies s
29 s′, so y 2→s and

consequently y → S∞. Now suppose y 1→s′; since s′ ∈ S and since S6 S∞ by (2.2.1),

and s′ �∈ S∞. There exists t ∈ S∞ such that s′ 1→t and t 19 s′, =nally the fact that D1 is

a right-pretransitive digraph implies y 1→t.
We have proven that any chain in F has an upper bound in F, and so by Zorn’s

Lemma, (F;6) contains maximal elements. Let S be a maximal element of (F;6).

(3) S is a kernel of D.

Since S ∈F; S is an independent set of vertices of D.

(3.1) For each x∈ (V (D)− S) there exists an xS-arc.

Suppose by contradiction there exists x∈ (V (D)− S) such that x 9 S.

(3.1.1) There exists a vertex x0 ∈V (D) such that x0 9 S, and x0 satis=es: x0
2→y

and y 9 S imply y → x0 for all vertices y∈V (D2)

Let U = {z ∈V (D2)− S | z 9 S}. When U �= ∅ it follows from Lemma 2.2 (applied
on D2 and U ) that there exists x0 with the required properties. When U = ∅ it follows
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from our assumption that z 9 S, for some vertex z in V (D1)− (S ∪ V (D2)). And we
take x0 any such a vertex.

Notice that the choice of x0 implies x0 9 S and since S ∈F also we have S
29 x0.

Let T = {s∈ S | s 19 x0}, it follows from above that T ∪{x0} is an independent set of
vertices of D.

(3.1.2) T ∪ {x0}∈F.

Suppose T ∪ {x0} 2→y and y 9 T ; we will prove y → x0. Before to start the proof of
(3.1.2) we make the following observation.

(3.1.2.1) If y 1→(S − T ) then y 1→x0.
Assume y 1→(S − T ); since s 1→x0 for any s∈ (S − T ), and D1 is a right-pretransitive

digraph, we have y 1→x0 or x0
1→(S − T ). Now, we know x0 9 S, so, we conclude

y 1→x0 . We proceed to prove (3.1.2) by considering the two following cases:

Case a: T 2→y.
Since T ⊂ S we have S 2→y and the fact S ∈F implies y → S. So y → (S − T ) (as
we are assuming y 9 T ).

When y 1→(S − T ) it follows from (3.1.2.1) that y 1→x0.
When y 2→(S − T ); since we have T 2→y and D2 is a left-pretransitive digraph, it

follows y 2→T or T 2→(S − T ); now T 2→(S − T ) is impossible as T ⊂ S and S is an

independent set, we conclude y 2→T , a contradiction.

Case b: x0
2→y.

We consider two possible subcases:

Case b.1: y 9 S.

Since x0
2→y we have y∈V (D2) and the choice of x0 (see (3.1.1)) implies y → x0.

Case b.2: y → S.

In this case we have y → (S − T ) (as we are assuming y 9 T ). When y 1→(S − T ) it

follows from (3.1.2.1) that y 1→x0.
When y 2→(S − T ), since x0

2→y and D2 is a left-pretransitive digraph, we obtain

x0
2→(S − T ) or y 2→x0; now recalling that x0 9 S, so, we conclude y 2→x0.
(3.1.3) S ¡T ∪ {x0}.

For s∈ (S − T ) we have s 1→x0 and we have noted x0 9 S; hence S6T ∪ {x0}, and
it follows from the fact x0 �∈ S (by the construction in (3.1.1)) that S ¡T ∪ {x0}.
Clearly propositions (3.1.2) and (3.1.3) contradict that S is a maximal element

of (F;6).
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Remark 2.1. The hypothesis Di has no in=nite outward paths in Theorem 2.1 is
necessary.
Consider the following digraph D; V (D)={un | n∈N} and A(D)={(un; um) | n; m∈N

and n¡m}; D1 = D and D2 = D.
It is easy to see that if H is any right-pretransitive digraph, and we consider D1 and

D2 such that: V (D1)=V (D)∪V (H), A(D1)=A(H)∪{(u; v) | u∈V (H); v∈V (D)} and
D2 = D then D = D1 ∪ D2 has no kernel.

Remark 2.2. The following digraph D is the union of two right-pretransitive digraphs,
D1 and D2, and it has no kernel.

V (D1) = V (D2) = {u; v; w; x}; A(D1) = {(x; u); (u; w); (w; u); (v; w)};
A(D2) = {(u; v); (x; v); (v; x); (w; x)} and D = D1 ∪ D2:

Remark 2.3. There exists a digraph D which is the union of two left-pretransitive
digraphs and has no kernel.

V (D1) = V (D2) = {u; v; w; x}; A(D1) = {(u; v); (u; w); (w; u); (w; x)};
A(D2) = {(x; u); (x; v); (v; x); (v; w)} and D = D1 ∪ D2:

It is easy to see that by adding vertices to this digraphs one can construct arbitrarily
large =nite examples as those given in Remarks 2.2 and 2.3.
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