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Complete hypersurfaces in R2n+2 with constant negative
2n-th curvature

By

Oscar Palmas

Abstract. We use equivariant geometry methods to show the existence of complete hypersur-
faces in euclidean spaces with constant negative 2n-th curvature.

Introduction. A classic theorem by Hilbert states that there are no complete surfaces
in R3 with constant negative gaussian curvature. Attempting to generalize this theorem to
higher dimensions, it is natural to analyze first some examples of hypersurfaces in euclidean
space with constant negative r-th curvature σr , σr being the r-th symmetric function of the
principal curvatures of the hypersurface. As this universe is still large, we restrict fur-
ther to those such hypersurfaces which are invariant under a given group of isometries
of the euclidean space. Following the classification of the low cohomogeneity isometry
groups given by W. Y. Hsiang and H. B. Lawson in [2], the author studied rotational (i.e.,
SO(n)-invariant) hypersurfaces in space forms in [5], and concluded, on one hand, that
for each r odd and each σ < 0 there exists a 1-parameter family of complete rotational
hypersurfaces in Rn+1 with σr = σ ; and, on the other hand, that there are no complete
rotational hypersurfaces with constant negative σr for r even. It should be mentioned that
these results generalize those obtained by M. L. Leite in [3] and J. Hounie and Leite in [1].

This result would suggest a generalization of Hilbert’s theorem for constant negative
σr and r even, but T. Okayasu [4] built the first example of a complete hypersurface in
R4 with constant negative scalar curvature (so that σ2 < 0), using the cohomogeneity two
isometry group O(2)×O(2). Here we extend Okayasu’s result to higher dimensions. More
precisely, we prove

Theorem. Given an integer n > 1 and σ such that σ � −2n, there exists a complete
hypersurface in R2n+2 with constant negative σ2n = σ .
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1. Notation and results. We will use the standard action of SO(n) × SO(n) over
R2n+2 = Rn+1 × Rn+1. In this case, the orbit space can be identified with Q = {(x, y);
x � 0, y � 0}, in such a way that every interior point of Q corresponds to a principal orbit
given as the product of spheres Sn(x) × Sn(y). We may define a hypersurface M of R2n+2

invariant under this action by giving a generating curve γ (s) = (x(s), y(s)), parametrized
by arc length s and contained in Q, so that M is parametrized by

X(s, φ1, . . . , φn, ψ1, . . . , ψn) = (x(s)�(φ1, . . . , φn), y(s)�(ψ1, . . . , ψn))

where � and � are orthogonal parametrizations of a unit n-dimensional sphere.
Using the parametrization X, it can be shown that the principal curvatures κ0, κi , κj ,

i = 1, . . . , n, j = n + 1, . . . , 2n associated to M are:

κ0 = ẋÿ − ẏẍ, κi = ẏ

x
κj = − ẋ

y

where the dot denotes the derivative with respect to s.
Recall that σ2n is the 2n-th symmetric function of the principal curvatures of M , namely,

σ2n =
∑

0 � i1<i2<...<i2n � 2n

κi1κi2 · · · κi2n

so that the expression for the curvature σ2n of M in the given parametrization is

σ2n =
(

− ẋẏ

xy

)n−1 (
n(ẋÿ − ẏẍ)

(
ẏ

x
− ẋ

y

)
− ẋẏ

xy

)
.(1)

Hereafter, we will suppose that σ2n is constant and negative and, for brevity, write σ

instead.
Suppose further that y may be written as a function of x. Using y′, y′′ to denote the

derivatives of y with respect to x and using the facts ẋ2 + ẏ2 = 1, ẏ = y′ẋ, so that
ẋ2(1 + (y′)2) = 1 and ÿ = y′′ẋ2 + y′ẍ, we express (1) as a differential equation on y,
namely,

σ(xy)n(1 + (y′)2)n+1 = (−y′)n−1(ny′′(yy′ − x) − y′(1 + (y′)2)).(2)

Denote by fσ = fσ (x), x � 1 the solution of (2) satisfying

y(1) = 1 and y′(1) = −1.(3)

The study of this solution is the main objective of this note.
Note that the initial value problem (2)–(3) satisfies the usual conditions for existence and

uniqueness of their solutions, as long as y′ �= 0 and yy′ − x �= 0. When y′ = 0, we obtain
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directly from (2) that y = 0; on the other hand, as the expression yy′ − x is negative at
x = 1, if there is a point for which this expression vanishes, then there must be also another
point where yy′ = 0. So, in both cases we may suppose the existence of a first point xσ > 1
such that fσ (xσ ) = 0 and

0 < fσ (x) < 1 and − 1 < f ′
σ (x) < 0(4)

for every x ∈ (1, xσ ). Note that in this interval we may write

y′′ = 1

n
(1 + (y′)2)(y′ + σ(xy)n(1 + (y′)2)n(−y′)−(n−1))(yy′ − x)−1(5)

and also note that y′′ > 0 in (1, xσ ), since the last two factors are negative.
Using (4) we may estimate (5) as follows:

y′′ � 1

n
(y′ + σ(xy)n(−y′)−(n−1))(yy′ − x)−1

� σ

n
(xy)n(−y′)−(n−1)(yy′ − x)−1 � σ

n
yn(−y′)−(n−1) x

yy′ − x

� − σ

2n
yn(−y′)−(n−1) � yn(−y′)−(n−1)

whenever σ � − 2n. We compare fσ with the solution h to the initial-value problem

y′′ = yn(−y′)−(n−1), y(1) = 1, y′(1) = −1,(6)

which is given explicitly by h(x) = e−(x−1). We shall prove that fσ � h on (1, xσ ). Let
Aσ be the set of x ∈ (1, xσ ) for which

fσ (t) > h(t) and f ′
σ (t) > h′(t) for each t ∈ (1, x).(7)

Note that

f ′′
σ (1) = 1 − 2nσ

n
> 2 = h′′(1).

By continuity, f ′′
σ > h′′ holds at least in a small interval (1, x). Integrating over [1, x] we

have

f ′
σ (t) − f ′

σ (1) > h′(t) − h′(1)

which implies f ′
σ > h′ on (1, x]. Similarly, fσ > h in (1, x], so Aσ is not empty. Let

x1 = sup Aσ and suppose x1 < xσ . Then the strict inequalities (7) hold in (1, x1) and we
have

f ′′
σ � f n

σ (−f ′
σ )−(n−1) > hn(−h′)−(n−1) = h′′.

Integrating and using the initial conditions twice, as before, we have that (7) hold in x1, so
that x1 �= sup Aσ . This contradiction shows that x1 = xσ .
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Suppose now that xσ is finite. From (7) we have

fσ (t) > h(t) � h(xσ ).

This implies fσ (xσ ) � h(xσ ) > 0, a contradiction with the definition of xσ . Then xσ must
be infinite and fσ �= 0 in [1, ∞).

Note that f ′
σ is also everywhere negative, as f ′

σ = 0 would imply, by (2), that x = 0,
fσ = 0 or σ = 0 somewhere in [1, ∞).

P r o o f o f t h e T h e o r e m. We use the function fσ constructed above. Since fσ (1) = 1
and f ′

σ (1) = −1, we can reflect the graph of fσ with respect to the line y = x to obtain
a curve γ contained in the interior of the first quadrant, with infinite length, which gives
rise to a complete SO(n)× SO(n)-invariant hypersurface M in R2n+2 with 2n-th curvature
equal to σ . �

By taking the standard embedding of R2n+2 into Rm for m � 2n + 2, we get

Corollary. Given n > 1, σ � −2n as above and an integer m � 2n + 2, there exists a
complete hypersurface in Rm with σ2n = σ .

F i n a l r e m a r k s a n d q u e s t i o n s. The behaviour of our differential equation (2) is
quite different from that of Okayasu’s (n = 1); in this last case, he proved the existence of
just one value σ < 0 for which fσ (in our notation) defines a complete hypersurface, and
conjectured that this value may be the only one with this property. For n > 1, we obtain
a 1-parameter family of such complete hypersurfaces (σ � −2n being the parameter). As
the case n = 1 shows, our bound −2n may not be optimal, so the existence of complete
hypersurfaces with σ2n ∈ (−2n, 0) is still an open question.
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