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CONDITIONAL WEAK LAWS IN BANACH SPACES

ANA MEDA

(Communicated by Claudia M. Neuhauser)

Abstract. Let (B, ‖ · ‖) be a separable Banach space. Let Y, Y1, Y2, . . . be
centered i.i.d. random vectors taking values on B with law µ, µ(·) = P (Y ∈ ·),
and let Sn =

∑n
i=1 Yi. Under suitable conditions it is shown for every open

and convex set 0 /∈ D ⊂ B that P
(
‖Snn − vd‖ > ε

∣∣∣Snn ∈ D) converges to

zero (exponentially), where vd is the dominating point of D. As applications
we give a different conditional weak law of large numbers, and prove a limit-
ing aposteriori structure to a specific Gibbs twisted measure (in the direction
determined solely by the same dominating point).

1. Introduction

Conditional laws related to dominating points have been studied in recent years
in the context of large deviations. For i.i.d. in Rd see, for example, [19], [12]
and [13], [6]. For general sequences of the Gartner-Ellis type and for the Markov
case in Rd see [14], [15], [16]; for the i.i.d. case in Banach spaces see [4]. Some
authors refine a method developed by Csiszár (1984) [3], that deals directly with
the aposteriori structure (also known as the Gibbs conditioning principle) without
proving conditional laws of large numbers. See also [5] and [14], and references
within, on the study of conditional laws and the Gibbs conditioning principle that
do not deal directly with dominating points.

The main result of this work, Theorem 1, is a Nummelin conditional weak law
of large numbers in Banach spaces that Nummelin (1987) proved first on Rd (see
[19]). The limits are identified in terms of the dominating point. Then we apply
a method developed by Lehtonen and Nummelin ([12] and [13]) to prove another
conditional weak law of large numbers for different functions (Theorem 2), and a
limiting aposteriori structure (Theorem 3).

The last result, Theorem 3, is implied by the results in [4] by Dembo and Kuelbs,
but our approach is interesting because in some situations, as in the Markov case
(which is not the subject of this paper), our treatment allows us to obtain the
most general results to date. For a detailed account one can look at [16], Chap-
ters 1 and 5 of [14] and the bibliography therein. We were able to see in [14],
p. 69, that under a Harris condition and using the large deviations obtained for
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Markov chains by Iscoe, Ney and Nummelin in [10], the kth order empirical mea-
sure of X0, X1, . . . (defined as P̃ (k)

n (A) = 1/n
∑n−1
i=0 δ(Xi+1,Xi+2,...,Xi+k)(A)) satisfies

Ex
(
P̃

(k)
n

∣∣∣ Unn ∈ C;Xn ∈ A
)

b−→ρ(k) for every k, where

ρ(k)(·) =
∫

(·)
π∗(dx1)

k−1∏
i=1

q∗(xi, dxi+1),

and q∗ is a stochastic transition kernel with invariant measure π∗. This means
that the aposteriori distribution bounded converges in a Césaro sense to a Markov
process

1
n

n−1∑
i=0

Px
(
X i+k
i+1 ∈ ·

∣∣∣ Un
n
∈ C;Xn ∈ A

)
b−→ρ(k)(·).

The organization of the work is as follows: In Section 2 we state our results,
in Section 3 we summarize some well-known results we use later. Sections 4, 5,
and 6 are dedicated to proving Theorems 1, 2, and 3, respectively, except for some
lemmas whose proofs we present in Section 7.

2. Hypothesis and statement of results

Let (B, ‖ · ‖) be a separable Banach space. Let Y, Y1, Y2, . . . be i.i.d. random
vectors taking values on B with law µ and underlying probability measure P , i.e.
µ(·) = P (Y ∈ ·). Sn denotes the sum Sn =

∑n
i=1 Yi. B

∗ will denote the dual space
of B, and for a set U ⊆ B whenever we refer to its interior (Uo), closure (U),
boundary (∂U), etc., we use the norm topology.

We state the following assumption because it simplifies the notation and avoids
degenerate situations.

Hypothesis 1. Assume µ is not concentrated on a point and it has mean zero.

Hypothesis 2. Assume that for every t > 0,∫
B

et‖x‖dµ(x) <∞.

Remark 1. Hypothesis 2 is satisfied for example if supp(µ) is bounded, and this
happens when µ is the law of a bounded random vector. This assumption used to be
standard in the study of probability in Banach spaces. Kuelbs, however (see [11]),
was able to construct a dominating point assuming that Hypothesis 2 holds only for
some t > 0 instead of for every t. His result allows the proof of sharp asymptotics for
the Large Deviations Principle (LDP) with minimal assumptions. In the discussion
below we keep Hypothesis 2 because it gives us exponential tightness.

Let λ be, for ζ ∈ B∗, the Laplace transform of µ

λ(ζ) =
∫
B

eζ(x)dµ(x).

We consider Λ(ζ) = logλ(ζ) and Λ∗ the convex conjugate of λ defined for all x ∈ B:

Λ∗(x) = sup
{ζ∈B∗}

{ζ(x) − logλ(ζ)} ,(2.1)
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and for a set U ,

Λ∗(U) = inf
{x∈U}

{Λ∗(x)} .

Hypothesis 3. Let D be an open convex subset of B with 0 /∈ D and D ∩ {x :
Λ∗(x) <∞} 6= ∅.

Remark 2. We assume D to be open and convex in order to have a dominating
point for D, and that is guaranteed by Theorem 1 below, in which the definition of
dominating point is also stated. The rest of the assumption is to avoid degeneracies:
0 /∈ D avoids the case in which the mean of µ is in D. In that case the conditioning
set has probability one and therefore it has no effect on the limit, so we would not
have a conditional law of large numbers. This was noted, among others, in [2].

Einmahl and Kuelbs (1996) in [9] proved the existence of a unique dominating
point (with supporting hyperplane) for every open convex set in separable Banach
spaces, plus asymptotic results. The following is part of their Theorem 1:

Proposition 1. Under Hypotheses 1, 2 and 3 there is a unique point (called the
dominating point of D) that depends only on D and Λ. It is denoted vD and has
the following properties:

vD ∈ ∂D,

Λ∗(vD) = Λ∗(D) = Λ∗(D).

For some ζ = ζD ∈ B∗ that we call the supporting hyperplane,

D ⊆ {x : ζD(x) ≥ ζD(vD)}
and

Λ∗(vD) = ζD(vD)− Λ(ζD).(2.2)

The dominating point has a representation in terms of a Bochner integral

vD =
∫
B

x exp{ζD(x) − Λ(ζD)}dµ(x).(2.3)

Remark 3. The point ζD is called a supporting hyperplane only to shorten notation,
since it should be the functional that generates the supporting hyperplane. Formula
(2.2) means that it is at ζ = ζD that the expression ζ(vD) − Λ(ζ) reaches its
maximum.

Remark 4. The last integral of the Theorem above is the equivalent to the statement
about ∇Λ for the Rd case, where dominating points were first defined by Ney. (See
[17], [18], and also [9], [11], and [7].) In the notation of (2.3), vD is the mean with
respect to the twisted measure

(2.4) dµζ(x) =
eζ(x)

eΛ(ζ)
dµ(x)

in the direction ζ = ζD of its supporting hyperplane.

Definition 1. Let P1,P2, . . . be a sequence of probability measures. We say that
Yn converges exponentially to Y with respect to Pn if for every ε > 0 there is a
constant a > 0 such that

Pn (‖Yn − Y ‖ > ε) < e−an
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for n sufficiently large. In this case we write

Yn
exp−→Y with respect to Pn.

Now we are ready to state a conditional weak law of large numbers. The condi-
tioning implies that the observations are away from the mean (0 /∈ D, in Hypothesis
3), and our conclusion is that the dominating point turns out to be the new mean
in the sense that Sn

n converges to it.

Theorem 1 (Conditional weak law of large numbers). Assume Hypotheses 1, 2
and 3 above. Then Sn

n converges exponentially to vD with respect to the conditional
probabilities

Pn = P

(
·
∣∣∣Sn
n
∈ D

)
.

As applications we shall prove analogous theorems to those in [13] by Lehtonen
and Nummelin. The first one (Theorem 2 below) states exponential convergence
of sums of functions of random elements X,X1, . . . when the converging and the
conditioning functions are different. In order to state those theorems we need more
notation.

Let Bi be separable Banach spaces with norms ‖ · ‖i and dual spaces B∗i , for
i = 1, 2 .

Consider i.i.d. random elements X,X1, X2, . . . with underlying probability space
(Ω,F , P ) taking values on a measurable space (S,S) (an intermediate space, as
will be seen), and with law µ. Take bounded measurable functions g : S → B1 and
u : S → B2.

For a bounded measurable function f : S → B call Mf a bound for ‖f‖
and µf will be the probability measure (on (B,BB), the space B with its Borel
sets) induced by f(X) . Let λf be the Laplace transform

(2.5) λf (ζ) =
∫
B

expζ(x) dµf (x) =
∫
S

expζ(f(x)) dµ(x), ζ ∈ B∗.

As before, we consider Λf (ζ) = log λf (ζ) and Λ∗f the convex conjugate of λf .
We will slightly modify our hypotheses to accommodate our new situation.

Hypothesis 1′. Assume that the laws µu(·) = L(u(X)) = P (u(X) ∈ ·) and µg(·) =
L(g(X)) are not concentrated on a point and µu = L(u(X)) has mean zero.

Hypothesis 3′. Let D be an open convex subset of B2, with 0 /∈ D and D ∩ {y :
Λ∗u(y) <∞} 6= ∅.

Remark 5. We will see that the Hypotheses above and Theorem 1 give that (D,Λu)
has a dominating point (on B2). The dominating point of D will be denoted vD
with ζD its supporting hyperplane and µζD the twisted measure in the direction of
ζD as defined in (2.4). The only hypothesis we are left to verify for the existence
of vD is the analog of Hypothesis 2, but that is a consequence of the boundedness
of the function u, as will be seen in (5.1).

Theorem 2 (Conditioned law for different functions). Let g and u be bounded mea-
surable functions taking values on different Banach spaces. Let Gn =

∑n
i=1 g(Xi)

and Un =
∑n
i=1 u(Xi). Assume Hypotheses 1′ and 3′ with all the notation described

above. Then
Gn
n

exp−→
∫
S

g(x)dµζD (x),
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with respect to the conditional probabilities

Pn = P

(
·
∣∣∣ Un
n
∈ D

)
.

Remark 6. The integral above is a Bochner integral. It is because of the specific
form of the limit in Theorem 2 above that we will be able to prove an aposteriori
limit law that applies when the function g in Theorem 2 above takes values on R.

Definition 2. For measures µ, µn, n = 1, 2, . . ., write µn
b−→µ if

(2.6) lim
n→∞

∫
S

f(x)dµn(x) =
∫
S

f(x)dµ(x)

for all bounded measurable f : S → Rd. In this case we say µn bounded converges
to µ.

Remark 7. Note that bounded convergence is convergence in the τ -topology. Note
also that this convergence is the same if defined for functions f : S → R (instead
of Rd, as we did in [16]).

Theorem 3. Under the same hypotheses as in Theorem 2,

P

(
X1 ∈ ·

∣∣∣ Un
n
∈ D

)
b−→µζD (·).

Remark 8. This theorem is an aposteriori law. With the same method we are able
to prove a weak convergence version of “quasi-independence”, which means that
for every fixed k,

(2.7) P

(
(X1, X2, · · · , Xk) ∈ ·

∣∣∣ Un
n
∈ D

)
b−→µkζD (·).

Regarding quasi-independence we must say there are better results than formula
(2.7): Csiszár (1984) in [3] proved a similar aposteriori law but in a stronger form,
which in particular implies convergence in total variation norm. Later, in 1998,
Dembo and Kuelbs [4] proved a very interesting (and almost surprising) general-
ization of Csiszár’s result, which says that k is allowed to grow with n (up to some
order).

3. Summary of known results

Donsker and Varadhan (1976) [8], proved that Λ∗ is a good rate function and the
LDP holds with rate function Λ∗.

Theorem 4. Under Hypothesis 2, for every closed set F ⊆ B

lim
n→∞

1
n

logP
(
Sn
n
∈ F

)
≤ −Λ∗(F ),

and for every open set G ⊆ B

lim
n→∞

1
n

logP
(
Sn
n
∈ G

)
≥ −Λ∗(G).

Combining Theorems 4 and 1 we obtain that under Hypotheses 1, 2, and 3,

(3.1) lim
n→∞

1
n

logP
(
Sn
n
∈ D

)
= −Λ∗(vD).

The next theorem is part of Lemma (2.2) by de Acosta in [1] (1985).
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Theorem 5. Assume Hypothesis 2. Then for every a > 0 there is a compact set
K = Ka ⊆ B and a constant N = Na such that

P

(
Sn
n

/∈ Ka

)
≤ e−na for every n ≥ N.

The following lemma was stated by Lehtonen and Nummelin [13] (a proof can
be found in [14]). To state the result we need a definition.

Definition 3. Let µ̃n(·, ω) with ω ∈ (Ω,F) and n = 1, 2, . . . be random measures
on (S,S). Let µ be a nonrandom measure and let Pn, n = 1, 2, . . ., be probability
measures on (Ω,F). Say that µ̃n converges exponentially to µ with respect to Pn,
and write

µ̃n
exp−→µ with respect to Pn

if for all bounded measurable f : S → Rd,∫
S

f(x)µ̃n(dx, ω)
exp−→
∫
S

f(x)dµ(x) with respect to Pn.

Remark 9. d in the definition of f above need not be specified.

Lemma 1. Let µ̃n be a sequence of random probability measures and let µ be a
nonrandom probability measure. If µ̃n

exp−→µ with respect to Pn, then

EPn(µ̃n) b−→µ.

4. Proof of Theorem 1

Let ε > 0. Define D(ε) = D ∩ {x : ‖x− vD‖ > ε}.
For each ζ ∈ B∗ and ω > 0 let

H(ζ, ω) = {x : ζ(x) − Λ(ζ) > Λ∗(vD) + ω}
and

HD(ζ, ω) = D ∩H(ζ, ω).

Lemma 2. With the notation above, if ζ ∈ B∗ and ω > 0,

Λ∗(D) < Λ∗
(
HD(ζ, ω)

)
(4.1)

and

D(ε) ⊆ D\{vD} ⊆
⋃

{ζ∈B∗}

⋃
{ω>0}

H(ζ, ω).(4.2)

Let us write, for a measurable set Ka,

P

(∥∥Sn
n
− vD

∥∥ > ε
∣∣∣Sn
n
∈ D

)
≤

P
(∥∥Sn

n − vD
∥∥ > ε; Snn ∈ D ∩Ka

)
P
(
Sn
n ∈ D

)
+

P
(∥∥Sn

n − vD
∥∥ > ε; Snn ∈ D ∩ B\Ka

)
P
(
Sn
n ∈ D

)
= I + II(4.3)

where it is quite general but will be a compact set, as in Theorem 5.
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Let Ka be a compact set as in Theorem 5. Then D(ε) ∩Ka is also compact, and
by (4.2) in Lemma 2 the sets H(ζ, ω) are an open cover. Let

⋃m
i=1 H(ζi, ωi) be a

finite subcover, and rename Hi = H(ζi, ωi) for i = 1, 2, . . . ,m.

Lemma 3. We have

D(ε) ∩Ka ⊆
m⋃
i=1

(Hi ∩D) =
m⋃
i=1

HD(ζi, ωi).(4.4)

It only remains to bound both terms on the right-hand side of inequality (4.3).

lim
n→∞

1
n

log( I ) ≤ lim
n→∞

1
n

logP
(
Sn
n
∈ D(ε) ∩Ka

)
− lim
n→∞

1
n

logP
(
Sn
n
∈ D

)
≤ lim

n→∞

1
n

logP

(
Sn
n
∈

m⋃
i=1

HD(ζi, ωi)

)
− (−Λ∗(D))

≤ lim
n→∞

1
n

logP

(
Sn
n
∈

m⋃
i=1

HD(ζi, ωi)

)
+ Λ∗(vD)

≤ −Λ∗
(

m⋃
i=1

HD(ζi, ωi)

)
+ Λ∗(vD)

= − min
{1≤i≤m}

{
Λ∗
(
HD(ζi, ωi)

)}
+ Λ∗(vD)

= max
{1≤i≤m}

{
−Λ∗

(
HD(ζi, ωi)

)}
+ Λ∗(vD) < 0,(4.5)

by Lemma 3, (3.1), Theorem 4 and Lemma 2. We also have, for similar reasons
plus Theorem 5,

lim
n→∞

1
n

log( II ) ≤ lim
n→∞

1
n

logP
(
‖Sn
n
− vD‖ > ε;

Sn
n
∈ D ∩B\Ka

)
− lim
n→∞

1
n

logP
(
Sn
n
∈ D

)
≤ lim

n→∞

1
n

logP
(
Sn
n
∈ B\Ka

)
+ Λ∗(vD)

≤ −a+ Λ∗(vD) < 0.(4.6)

The last inequality (4.6) holds if a is sufficiently large; a was free until now. This,
plus the previous inequality (4.5), yields Theorem 1.

5. Proof of Theorem 2

The proof of Theorem 2 consists of three parts: First, we verify the existence
of a dominating point for D. Second, in Lemma 4 we use an auxiliary function
f = (g, u) : S → B = B1 × B2 and apply the conditional law in Theorem 1
to Fn

n where Fn =
∑n
i=1 f(Xi), with conditioning set (B1 ×D), dominating point

vB1×D = vB1×D(Λf , B1×D) and supporting hyperplane ζB1×D. Finally, in Lemma
5 we identify the limit in terms of vD = vD(Λu, D), i.e., we will prove that the
twisted measure µζB1×D

determined by vB1×D does not depend on g at all.
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For the existence of vD we only need to verify one condition (Hypothesis 2) to
apply Theorem 1. Let t > 0. The function expt‖u(x)‖2 is bounded (uniformly on S),
so ∫

B2

expt‖x2‖2 dµu(x) =
∫
S

expt‖u(x)‖2 dµ(x) ≤ etMu <∞.(5.1)

Hypothesis 2 holds and this part is done.
To check the convergence of Fn

n we construct the product space B = B1 × B2

in the natural way. For x ∈ B the sub-index i of x represents the coordinate
of x that belongs to Bi for i = 1, 2 or equivalently x = (x1, x2). The norm
of x is ‖x‖ = ‖x1‖1 + ‖x2‖2 and with this structure B is a Banach space. We
use exactly the same notation for elements ζ of B∗:

ζ(x) = ζ(x1, x2) = ζ(x1, 0) + ζ(0, x2) = ζ1(x1) + ζ2(x2), ζi ∈ B∗i ,

and every functional ζi ∈ B∗i induces an element of B∗, e.g. ζ2(x2) = (0, ζ2)(x1, x2).
Abusing the notation, we may omit the sub-index for λ = λf ,Λ = Λf and Λ∗ = Λ∗f ,
whereas when referring to u we will not omit it. Note that

Λ((0, ζ)) = Λu(ζ)(5.2)

follows from the definitions of Λ∗ and Λ∗u, and if µf = L (f(X)) ,

Λ((0, ζ)) = log
∫
B

exp{(0, ζ)(x)}dµf

= log
∫
S

exp{(0, ζ)(f(x))}dµ(x)

= log
∫
S

exp{ζ(u(x))}dµ(x)

= Λu(ζ).

Consequently the corresponding twisting as in (2.4) is

dµ(0,ζ2)(x) =
e(0,ζ2)(x)

eΛ((0,ζ2))
dµ(x)

=
eζ2(x)

eΛu(ζ2)
dµ(x)

= dµζ2(x).(5.3)

Lemma 4. f(X), f(X1), f(X2), . . . and B1×D with Hypotheses 1′ and 3′ satisfy
Hypotheses 1, 2 and 3 of Theorem 1.

With Lemma 4 we can proceed to apply Theorem 1 to get vB1×D, ζB1×D and
µζB1×D

such that

Fn
n

exp−→vB1×D =
∫
B

xdµfζB1×D
(x) =

∫
S

f(x)dµζB1×D
(x)(5.4)

with respect to

Pn = P

(
·
∣∣∣ Fn
n
∈ (B1 ×D)

)
.
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We can simplify (5.4) as follows: The limiting functions∥∥∥∥Fnn − vB1×D

∥∥∥∥ =
∥∥∥∥Gnn − (vB1×D)1

∥∥∥∥
1

+
∥∥∥∥Unn − (vB1×D)2

∥∥∥∥
2

≥
∥∥∥∥Gnn − (vB1×D)1

∥∥∥∥
1

.

The conditioning sets{
Fn
n
∈ (B1 ×D)

}
=
{
Gn
n
∈ B1,

Un
n
∈ D

}
=
{
Un
n
∈ D

}
.

Hence, we have
Gn
n

exp−→(vB1×D)1(5.5)

with respect to

Pn = P

(
·
∣∣∣ Un
n
∈ D

)
.

For the identification of the limit it only remains to use the next lemma to have
the statement of the theorem:

Lemma 5.

(vB1×D)1 =
∫
S

g(x)dµζD (x).(5.6)

Remark 10. We already had by Lemma 4 (but it is not enough),

(vB1×D)1 =
∫
S

g(x)dµζB1×D
(x).

6. The aposteriori structure

In this part we shall prove Theorem 3. The proof uses the empirical measures

P̂n(·) =
1
n

n∑
i=1

δXi(·).

Recall

Fn
n

=
1
n

n∑
i=1

f(Xi) =
∫
f(x)dP̂n(x).(6.1)

Now, by Theorem 2
Gn
n

exp−→
∫
S

g(x)dµζD (x) with respect to Pn = P
(
·
∣∣∣ Unn ∈ D).

Theorem 2 holds for every bounded function g : S → R, so we have by definition
of exponential convergence of measures (Definition 3) and observation (6.1) that

P̂n
exp−→µζD with respect to Pn = P

(
·
∣∣∣ Unn ∈ D) .

Apply Lemma 1 to get EPn P̂n
b−→µζD , but this formula says

1
n

n∑
i=1

P

(
Xi ∈ ·

∣∣∣ Un
n
∈ D

)
b−→µζD (·).
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Independence gives, since each term above is identical,

P

(
X1 ∈ ·

∣∣∣ Un
n
∈ D

)
b−→µζD (·),

and we are done.

7. Proof of the lemmas

Proof of Lemma 2. Note that for all ζ ∈ B∗ and ω > 0 both H(ζ, ω) and HD(ζ, ω)
are open and convex, so by uniqueness of the dominating point, for all x ∈ D\{vD},
Λ∗(x) − Λ∗(vD) > 0. Hence

D\{vD} ⊆
⋃
{ω>0}

{x : Λ∗(x) > Λ∗(vD) + ω}

=
⋃
{ω>0}

⋃
{ζ∈B∗}

H(ζ, ω).(7.1)

The last equality in (7.1) holds because Λ∗(x) is a supremum. Set ζ ∈ B∗ and
ω > 0. Let us see that

vD /∈ HD(ζ, ω).(7.2)

By definition of Λ∗, ζ(vD) − Λ(ζ) ≤ Λ∗(vD), so for all ω > 0, ζ(vD) < Λ∗(vD) +
Λ(ζ) + ω. Since ζ is continuous and the right-hand side of the last equation above
is just a constant, there is an open neighborhood of vD, say U, such that for every
u ∈ U , ζ(u) < Λ∗(vD) + Λ(ζ) + ω. This means U ⊆ B\HD(ζ, ω), so (7.2) holds. If
HD(ζ, ω) ∩ DΛ∗ = ∅, then the claim (4.1) is satisfied trivially. But, if HD(ζ, ω) ∩
DΛ∗ 6= ∅, then Hypothesis 3 is satisfied and HD(ζ, ω) has a dominating point
vHD(ζ,ω). Summarizing, we have vHD(ζ,ω) ∈ HD(ζ, ω) so vHD(ζ,ω) 6= vD by (7.2).
But again vHD(ζ,ω) ∈ HD(ζ, ω) ⊆ D. Because of the uniqueness of the dominating
point vD, we conclude Λ∗(vD) < Λ∗(vHD(ζ,ω)), and as we claimed

Λ∗(D) = Λ∗(vD) < Λ∗(vHD(ζ,ω)) = Λ∗(HD(ζ, ω)).

Note that by (7.1), D(ε) ⊆
⋃
{ω>0}

⋃
{ζ∈B∗}H(ζ, ω). But even more is true: Not

only D(ε) but its closure is contained in that union because

D(ε) ⊆ D ∩ {‖x− vD‖ ≥ ε} ⊆ D\{vD}.
Now, by (7.1),

D(ε) ⊆ D\{vD} ⊆
⋃

{ζ∈B∗}

⋃
{ω>0}

H(ζ, ω).(7.3)

Proof of Lemma 3. Formula (4.4) follows from

D(ε) ∩Ka ⊆ D(ε) ∩Ka ⊆
m⋃
i=1

Hi

D(ε) ∩Ka = D(ε) ∩Ka ∩D ⊆
(

m⋃
i=1

Hi

)
∩D

=
m⋃
i=1

(Hi ∩D) =
m⋃
i=1

(
HD(ζi, ωi)

)
.
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Proof of Lemma 4. First note that f(X) is bounded because g and u are bounded.
It is not concentrated on a point because of Hypothesis 1′. Also, since D does not
contain the mean of u(X), the set B1×D does not contain the mean of f(X), and
that is enough to have an equivalent to Hypothesis 1. (Another way to deal with
this part is to assume the law of g(X) is centered in Hypothesis 1′.) Exactly as in
(5.1), for every t > 0, expt‖f(x)‖ is bounded (uniformly on S) so

(7.4)
∫
B

expt‖x‖ dµf (x) =
∫
S

expt‖f(x)‖ dµ(x) <∞,

and Hypothesis 2 holds for f . D is open and convex in B2, so (B1 × D) is open
and convex in B; 0 /∈ (B1 × D) because 0 /∈ D. To satisfy Hypothesis 3 it only
remains to see (B1 ×D) ∩ DΛ∗ 6= ∅.

Let π : B1 × B2 → B2 be the standard projection π(x1, x2) = x2. It is contin-
uous, and π(f(x)) = u(x). Then the contraction principle (as in [5], p. 110) and
Hypothesis 3′ imply

Λ∗(B1 ×D) = inf
{d∈D}

Λ∗(B1 × {d})

= inf
{d∈D}

inf
{x:π(x)=d}

Λ∗(x)

= inf
{d∈D}

Λ∗u(d) = Λ∗u(D) <∞,(7.5)

where the contraction principle allows us to get from Λ∗ to Λ∗u.
Now (7.5) says Hypothesis 3 holds, and we are done.

Proof of Lemma 5. To prove this Lemma we shall prove something which easily
(using (5.3)) implies (5.6):

vB1×D =
∫
S

f(x)dµ(0,ζD)(x).(7.6)

Call x∗ =
∫
S
f(x)dµ(0,ζD)(x). We will see that the right-hand side above, x∗,

satisfies the properties of the dominating point for (B1 ×D,Λ∗) and then we shall
invoke its uniqueness. Let us see that x∗ ∈ ∂(B1×D), or equivalently, (x∗)2 ∈ ∂D.
But we know even more: (x∗)2 = vD because

(x∗)2 =
(∫

S

f(x)dµ(0,ζD)(x)
)

2

=
(∫

S

f(x) exp{(0, ζD)(f(x)) − Λ((0, ζD))}dµ(x)
)

2

=
(∫

S

f(x) exp{ζD(u(x)) − Λu(ζD)}dµ(x)
)

2

=
∫
S

u(x) exp{ζD(u(x)) − Λu(ζD)}dµ(x)

=
∫
S

u(x)dµζD (x) = vD.(7.7)

We used (5.2), and the last equality above is (2.3) of Theorem 1. By the definition
of dominating point vD ∈ ∂D, so x∗ ∈ ∂(B1 ×D).

Now we want to prove that Λ∗ achieves its infimum Λ∗(B1×D) at x∗. Thus far
we know x∗ ∈ (B1 ×D) so Λ∗(x∗) ≥ Λ∗(vB1×D). It remains to prove the opposite
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inequality. By Theorem 5.2 in Donsker and Varadhan ([8]),

Λ∗(y) = inf {D(ν‖µ) | ν is a probability in (S,S);

and
∫
S

f(x)dν(x) = y

}
.(7.8)

In the special case of ν being a twisted measure ν = µζ , its entropy is easy to
calculate

D(µζ‖µ) =
∫
S

log
(
dµζ
dµ

)
dµζ

=
∫
S

(ζ(f(x)) − Λf (ζ)) dµζ(x).(7.9)

Apply (7.8) to the definition of x∗ with the particular ζ = (0, ζD) in (7.9) to obtain

Λ∗
(∫

S

fdµ(0,ζD)

)
≤
∫
S

(ζD(u(x)) − Λu(ζD)) dµζD (x).(7.10)

We are almost done. We will identify the right-hand side of the equation above with
Λ∗u(vD). Assuming this last step to be true we are done because the contraction
principle assured us in (7.5) that Λ∗u(vD) = Λ∗(B1 ×D).

To check the last step combine (2.2) and (2.3) in Theorem 1 to get

Λ∗u(vD) = ζD(vD)− Λu(ζD)

= ζD

(∫
B2

x exp{ζD(x)− Λu(ζD)}dµu(x)
)
− Λu(ζD)

=
∫
S

ζD(u(x)) exp{ζD(u(x)) − Λu(ζD)}dµ(x)− Λu(ζD)

=
∫
S

(ζD(u(x))− Λu(ζD)) dµζD (x).(7.11)

Finally we note that (7.11) above is the right-hand side of (7.10), so we are done.
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