PRODUCTS OF QUASI-*p*-PSEUDOCOMPACT SPACES

M. SANCHIS (Castelló) and A. TAMARIZ-MASCARÚA (México)

Abstract. Given $p \in \beta(\omega) \setminus \omega$, we determine when a product of quasi-*p*-pseudocompact spaces preserves this property. In particular, we analyze the product of quasi-*p*-pseudocompact subspaces of $\beta(\omega)$ containing ω . We give examples of spaces X, Y, X_s, Y_s which are quasi-*p*-pseudocompact for every $p \in \omega^*$, but $X \times Y$ is not pseudocompact, and $X_s \times Y_s$ is pseudocompact and it is not quasi-*s*-pseudocompact for each $s \in \omega^*$. Besides, we prove that every pseudocompact space X of $\beta(\omega)$ with $\omega \subset X$, is quasi-*p*-pseudocompact for some $p \in \omega^*$. Finally, we introduce, for each $p \in \omega^*$, the class \mathcal{P}_p of all spaces X such that $X \times Y$ is quasi-*p*-pseudocompact when so is Y; and we prove: (1) the intersection of classes \mathcal{P}_p ($p \in \omega^*$) coincides with the Frolík class; (2) every class \mathcal{P}_p is closed under arbitrary products; (3) the partial ordered set ($\{\mathcal{P}_p : p \in \omega^*\}, \supset$) is isomorphic to the set of equivalence classes of free ultrafilters on ω with the Rudin–Keisler order. A topological characterization of RK-minimal ultrafilters is also given.

1. Introduction

All spaces considered in this paper will be Tychonoff spaces. ω is the set of natural numbers, $\beta(\omega)$ is its Stone–Čech compactification and $\omega^* = \beta(\omega)$ $\backslash \omega$, that is, the set of all free ultrafilters on ω . The Rudin–Keisler order \leq_{RK} on $\beta(\omega)$ is defined by $p \leq_{RK} q$ if there exists a function $g: \omega \to \omega$ such that $g^{\beta}(q) = p$, where g^{β} is the continuous extension to $\beta(\omega)$ of g. If $p \leq_{RK} q$ and $q \leq_{RK} p$, for $p, q \in \omega^*$, then we say that p and q are RK-equivalent and we write $p \approx_{RK} q$. It is not difficult to verify that $p \approx_{RK} q$ if and only if there is a permutation σ of ω such that $\sigma^{\beta}(p) = q$. For $p \in \omega^*$, we set $P_{RK}(p) =$ $\{r \in \beta(\omega) : r \leq_{RK} p\}$. The type of $p \in \omega^*$ is the set $T(p) = \{r \in \omega^* : p \approx_{RK} r\}$. Finally, we denote by $\Sigma(p)$ the set $T(p) \cup \omega$.

The deduction of topological properties by means of the theory of ultrafilters on ω has been widely studied in the literature. The well-known Frolík's Theorem [5, Theorem 3.6] on pseudocompactness and the techniques developed by Ginsburg and Saks in [9] are just two seminal examples. Recently, another kind of topological properties related to pseudocompactness has been introduced and studied by using the concept of free ultrafilter (see e.g. [7], [8],

 $Key\ words\ and\ phrases:\ {\rm Rudin-Keisler}\ order,\ p-limit\ point,\ pseudocompact\ space,\ M-pseudocompact\ space,\ quasi-p-pseudocompact\ space,\ Frolík\ class.$

¹⁹⁹¹ Mathematics Subject Classification: 54D99, 54A20, 54D80, 54G20.

^{0236-5294/2/\$ 5.00 © 2002} Akadémiai Kiadó, Budapest

[13], [14]); namely the authors consider the notion of M-pseudocompactness for several subsets M of ω^* introduced by García-Ferreira in [7]. The starting point is the following

1.1. DEFINITION. For $p \in \omega^*$, a point $x \in X$ is said to be a *p*-limit point of a sequence $(U_n)_{n < \omega}$ of nonempty subsets of X (in symbols: x = p-lim $(U_n)_{n < \omega}$) if for each neighborhood V of x, the set $\{n < \omega : U_n \cap V \neq \emptyset\}$ belongs to p.

This notion was introduced by Ginsburg and Saks [9] by generalizing the notion of *p*-limit point discovered and investigated by Bernstein in [1]. It should be mentioned that Bernstein's *p*-limit concept was also introduced, in a different form, by Frolík [6] and Katětov [10], [11].

Now, let us agree to say that a space X is M-pseudocompact, where $\emptyset \neq M \subset \omega^*$, if for every sequence $(U_n)_{n < \omega}$ of nonempty open sets in X, there are $p \in M$ and $x \in X$ such that x = p-lim $(U_n)_{n < \omega}$. Thus, X is pseudocompact if and only if X is ω^* -pseudocompact; X is quasi-p-pseudocompact if and only if it is $(P_{RK}(p) \setminus \omega)$ -pseudocompact; and X is p-pseudocompact if and only if it is $\{p\}$ -pseudocompact. In this paper we are interested in analyzing M-pseudocompactness for $M = P_{RK}(p) \setminus \omega$. In particular we are going to study the product of this kind of spaces; besides, we analyze the class \mathcal{P}_p of spaces X for which its product with every quasi-p-pseudocompact space preserves this property. We prove that $\bigcap_{p \in \omega^*} \mathcal{P}_p$ coincides with the class \mathcal{P} of Frolík spaces studied in [5]. We also prove that every pseudocompact subspace of $\beta(\omega)$ containing ω is quasi-p-pseudocompact for some $p \in \omega^*$, and we obtain a topological characterization of RK-minimal free ultrafilters on ω .

2. Products of *M*-pseudocompact spaces

In this section we give some results about products of M-pseudocompact spaces for arbitrary nonempty $M \subset \omega^*$.

The proof of the next theorem follows from a standard argument.

2.1. THEOREM. Let $\emptyset \neq M \subset \omega^*$. Let $\{X_s : s \in S\}$ be a family of topological spaces. Then, the product space $X = \prod_{s \in S} X_s$ is M-pseudocompact if and only if $\prod_{s \in S_0} X_s$ is M-pseudocompact for every countable subset S_0 of S.

So, the problem of knowing when a product of spaces is M-pseudocompact can be reduced to the case of the product of countably many factors.

For a family $\{X_s : s \in S\}$ of topological spaces, we will denote by \mathcal{O}_s the set of nonempty open subsets of X_s for each $s \in S$, and π_s will be the natural projection from $\prod_{s \in S} X_s$ to X_s . The next lemma will be useful.

2.2. LEMMA. Let $\{X_s : s \in S\}$ be a family of topological spaces. Let $x = (x_s)_{s \in S} \in X = \prod_{s \in S} X_s$ be an r-limit of a sequence $(V_n)_{n < \omega}$ of subsets of X, with $r \in \omega^*$. Then $x_s = r$ -lim $(\pi_s(V_n))_{n < \omega}$ for every $s \in S$.

PROOF. Let s be an arbitrary element of S. Let W_s be a neighborhood of x_s . Then $Y = \prod_{g \in S} Y_g$, where $Y_s = W_s$ and $Y_g = X_g$ whenever $g \neq s$, is a neighborhood of x. So,

$$\{n < \omega : V_n \cap Y \neq \emptyset\} \in r.$$

It happens that $V_n \cap Y \neq \emptyset$ if and only if $\pi_s(V_n) \cap W_s \neq \emptyset$. Therefore

$$\left\{ n < \omega : \pi_s(V_n) \cap W_s \neq \emptyset \right\} \in r.$$

This means that $x_s = r - \lim (\pi_s(V_n))_{n < \omega}$. \Box

2.3. THEOREM. Let $\emptyset \neq M \subset \omega^*$, $0 < \mathfrak{t} \leq \omega$ and $\{X_s : s < \mathfrak{t}\}$ be a family of topological spaces. Then the product space $X = \prod_{s < \mathfrak{t}} X_s$ is *M*-pseudocompact if and only if for every sequence $((U_s^n)_{s < \mathfrak{t}})_{n < \omega}$ of elements in $\prod_{s < \mathfrak{t}} \mathcal{O}_s$, there exist $r \in M$ and $(x_s)_{s < \mathfrak{t}} \in X$ such that $x_s = r - \lim (U_s^n)_{n < \omega}$ for every $s < \mathfrak{t}$.

PROOF. Assume that X is M-pseudocompact and let $(U_s^n)_{n < \omega}$ be a sequence of open sets in X_s for each s < t. For each $n < \omega$, let V_n be the open set of X defined as follows:

$$V_n = \begin{cases} \prod_{s \leq n} U_s^n \times \prod_{s > n} X_s & \text{if } \mathfrak{t} = \omega, \\ \prod_{s < \mathfrak{t}} U_s^n & \text{if } \mathfrak{t} < \omega. \end{cases}$$

As X is M-pseudocompact, we can find $x = (x_s)_{s < \mathfrak{t}} \in X$ and $r \in M$ such that $x = r - \lim_{n < \omega} (V_n)_{n < \omega}$. Applying Lemma 2.2 it is an easy matter to see that $x_s = r - \lim_{n < \omega} (U_s^n)_{n < \omega}$ for each $s < \mathfrak{t}$.

Now, we are going to prove the converse. For each $n < \omega$, let $U_n = \prod_{s < \mathfrak{t}} V_s^n$ be a standard open set in X for each $n < \omega$. We shall prove that the sequence $(U_n)_{n < \omega}$ has an r-limit point for some $r \in M$.

For this in turn, we take for each $s < \mathfrak{t}$ the sequence $(V_s^n)_{n < \omega}$. By assumption, there exist $r \in M$ and $(x_s)_{s < \mathfrak{t}} \in X$ such that $x_s = r - \lim (V_s^n)_{n < \omega}$ for every $s < \mathfrak{t}$. We shall finish the proof by showing that $x = (x_s)_{s < \mathfrak{t}} = r - \lim (U_n)_{n < \omega}$. In fact, let $W_{i_1} \times \cdots \times W_{i_k} \times \prod_{j \in \mathfrak{t} \setminus \{i_1, \dots, i_k\}} X_j$ be a standard neighborhood of $(x_s)_{s < \mathfrak{t}}$ in X. Then

$$E = \bigcap_{j=1}^{k} \{ n < \omega : W_{i_j} \cap V_{i_j}^n \neq \emptyset \} \in r.$$

Since

$$E \subset \Big\{ n < \omega : \left(W_{i_1} \times \dots \times W_{i_k} \times \prod_{j \notin \{i_1, \dots, i_k\}} X_j \right) \cap U_n \neq \emptyset \Big\},\$$

the proof is complete. \Box

In [7] the following concept was introduced. A space X is said to be (α, M) -pseudocompact if for every set $\{(V_n^{\xi})_{n < \omega} : \xi < \gamma\}$ of γ -many sequences, for $\gamma \leq \alpha$, of nonempty open subsets of X, there are $p \in M$ and $x_{\xi} \in X$, for each $\xi < \gamma$, such that $x_{\xi} = p$ -lim $(V_n^{\xi})_{n < \omega}$ for all $\xi < \gamma$.

As a consequence of Theorems 2.1 and 2.3 we obtain the following generalization of Theorems 2.2 and 2.3 in [7].

2.4. COROLLARY. Let t be a cardinal number, X a topological space and $M \subset \omega^*$. Then the following assertions are equivalent:

(1) X^t is M-pseudocompact.
(2) X is (t, M)-pseudocompact. Moreover, if t is an infinite cardinal, (1) and (2) are equivalent to
(3) X is (ω, M)-pseudocompact.

M-pseudocompactness for the product of subspaces of $\beta(\omega)$ which contain ω can be determined by sequences of natural numbers as we are going to see in Theorem 2.6. First we present a well-known lemma. We include its proof for the sake of completeness.

2.5. LEMMA. Let $r, p \in \omega^*$ and let $(k_n)_{n < \omega}$ be a sequence in ω . Then r = p-lim $(k_n)_{n < \omega}$ if and only if $f^{\beta}(p) = r$ where $f(n) = k_n$.

PROOF. Assume that r = p-lim $(k_n)_{n < \omega}$. Then, for each $B \in r$, we have that $f^{-1}(B) = \{n < \omega : k_n \in B\} \in p$. On the other hand, $f^{\beta}(p) = \{A \subset \omega : f^{-1}(A) \in p\}$. Thus $r = f^{\beta}(p)$.

Now, assume that $f(n) = k_n$ for every $n < \omega$ and $f^{\beta}(p) = r$. Let $B \in r$. We have that $\{n < \omega : k_n \in B\} = f^{-1}(B)$. Since $r = f^{\beta}(p) = \{A \subset \omega : f^{-1}(A) \in p\}$, then $f^{-1}(B) \in p$. So, r = p-lim $(k_n)_{n < \omega}$. \Box

2.6. THEOREM. Let $\emptyset \neq M \subset \omega^*$, $\mathfrak{t} \leq \omega$ and $\{X_s : s < \mathfrak{t}\}$ be a family of topological spaces such that $\omega \subset X_s \subset \beta(\omega)$ for every $s < \mathfrak{t}$. Then the following assertions are equivalent:

(1) The product space $X = \prod_{s < \mathfrak{t}} X_s$ is M-pseudocompact.

(2) For every $(f_s)_{s < \mathfrak{t}} \in (\omega^{\omega})^{\mathfrak{t}}$, there exist $r \in M$ and $(x_s)_{s < \mathfrak{t}} \in X$ such that $f_s^{\beta}(r) = x_s$ for every $s < \mathfrak{t}$.

(3) For every $(f_s)_{s<\mathfrak{t}} \in (\omega^{\omega})^{\mathfrak{t}}$, $M \cap \bigcap_{s<\mathfrak{t}} (f_s^{\beta})^{-1}(X_s) \neq \emptyset$.

PROOF. (1) \Rightarrow (2). Let $(f_s)_{s < \mathfrak{t}} \in (\omega^{\omega})^{\mathfrak{t}}$. For each $n < \omega$ we take the open set $\left(c \left(\lambda \right) \right)$

$$U_n = \begin{cases} \prod_{s \leq n} \{f_s(n)\} \times \prod_{s > n} X_s & \text{if } \mathfrak{t} = \omega, \\ \prod_{s < \mathfrak{t}} \{f_s(n)\} & \text{if } \mathfrak{t} < \omega. \end{cases}$$

Since X is M-pseudocompact, we can find $x = (x_s)_{s < t}$ and $r \in M$ such that x = r-lim $(U_n)_{n < \omega}$. By Lemma 2.2, $x_s = r$ -lim $(f_s(n))_{n < \omega}$ for every $s < \mathfrak{t}$. By Lemma 2.5, these equalities imply that $f_s^{\beta}(r) = x_s$ for all $s < \mathfrak{t}$. $(2) \Rightarrow (3)$. It is trivial.

 $(3) \Rightarrow (1)$. Let $(U_n)_{n < \omega}$ be a sequence of open sets in X. The set $\omega^{\mathfrak{t}}$ is dense in X; thus, for every $n < \omega$, there exists $(k_s^n)_{s < \mathfrak{t}} \in U_n \cap \omega^{\mathfrak{t}}$. Let f_s : $\omega \to \omega$ be defined by $f_s(n) = k_s^n$. By assumption, there exist $r \in M$ and $(x_s)_{s < \mathfrak{t}} \in X$ such that $f_s^{\beta}(r) = x_s$ for every $s < \mathfrak{t}$. By Lemma 2.5, we have that $x_s = r - \lim_{t \to \infty} (k_s^n)_{n < \omega}$. This means that $(x_s)_{s < t} = r - \lim_{t \to \infty} (U_n)_{n < \omega}$.

3. Products of quasi-*p*-pseudocompact spaces

Now, we are going to reproduce explicitly some corollaries of Theorems 2.1 and 2.3 when $M = P_{RK}(p) \setminus \omega$ and when, for every $s \in S$, X_s is equal to a space X.

Let $(U_n)_{n < \omega}$ be a sequence of subsets of a space X, and let $0 < \mathfrak{t} \leq \omega$. A family $(\mathcal{V}_k)_{k < \mathfrak{t}}^{n, n < \omega}$ of pairwise disjoint subsequences of $(U_n)_{n < \omega}$ is called a \mathfrak{t} -partition of $(U_n)_{n < \omega}$ if every element of $(U_n)_{n < \omega}$ belongs to \mathcal{V}_k for some $k < \mathfrak{t}$.

3.1. THEOREM. Let $p \in \omega^*$ and let X be a topological space. Then the following assertions are equivalent:

- (1) X^t is quasi-p-pseudocompact for every cardinal number t.
 (2) X^t is quasi-p-pseudocompact for an infinite cardinal number t.
- (3) X^{ω} is quasi-p-pseudocompact.

3.2. THEOREM. Let $p \in \omega^*$, $0 < \mathfrak{t} \leq \omega$ and let X be a topological space. Then the following assertions are equivalent:

(1) $X^{\mathfrak{t}}$ is quasi-p-pseudocompact.

(2) For each sequence $(U_n)_{n < \omega}$ of open sets in X and each t-partition $(\mathcal{V}_s)_{s < \mathfrak{t}}$ of $(U_n)_{n < \omega}$, there exist $r \leq_{RK} p$ and $(x_s)_{s < \mathfrak{t}} \subset X$ such that x_s is an r-limit of \mathcal{V}_s for each $s < \mathfrak{t}$.

(3) For each sequence $(\mathcal{V}_s)_{s < \mathfrak{t}}$ of sequences of open sets in X, there exist $r \leq_{RK} p$ and $(x_s)_{s < \mathfrak{t}} \subset X$ such that x_s is an r-limit of \mathcal{V}_s for each $s < \mathfrak{t}$.

PROOF. By virtue of Theorem 2.3 we only have to prove $(1) \Rightarrow (2) \Rightarrow (3)$. (1) \Rightarrow (2). Let $(U_n)_{n < \omega}$ be a sequence of open sets of X. For each $s < \mathfrak{t}$, let $\mathcal{V}_s = (U_{s(n)}^s)_{n < \omega}$ be a subsequence of $(U_n)_{n < \omega}$ such that the family $(\mathcal{V}_s)_{s < \mathfrak{t}}$

is a t-partition of $(U_n)_{n < \omega}$. For each $n < \omega$, let V_n be the open set of $X^{\mathfrak{t}}$ defined as follows:

$$V_n = \begin{cases} \prod_{s \leq n} U_{s(n)}^s \times \prod_{s > n} X_s & \text{if } \mathfrak{t} = \omega, \\ \prod_{s < \mathfrak{t}} U_{s(n)}^s & \text{if } \mathfrak{t} < \omega, \end{cases}$$

where $X_s = X$ for every s > n.

As $X^{\mathfrak{t}}$ is quasi-*p*-pseudocompact, we can find $x = (x_s)_{s < \mathfrak{t}} \in X^{\mathfrak{t}}$ and $r \leq_{RK} p$ such that x = r-lim $(V_n)_{n < \omega}$. By Lemma 2.2 this means that $x_s = r$ -lim $(U^s_{s(n)})_{n < \omega}$ for each $s < \mathfrak{t}$.

(2) \Rightarrow (3). For each $s < \mathfrak{t}$, let $\mathcal{V}_s = (V_s^n)_{n < \omega}$ be a sequence of open sets in X. Let $(A_s)_{s < \mathfrak{t}}$ be a t-partition of ω , and consider a faithful enumeration $\{s(n) : n < \omega\}$ of A_s for each $s < \mathfrak{t}$. Define the sequence $(W_n)_{n < \omega}$ in X as $W_{s(n)} = V_s^n$. Then, the family $\left((W_{s(n)})_{n < \omega} \right)_{s < \mathfrak{t}}$ is a t-partition of $(W_n)_{n < \omega}$. By assumption there exist $(x_s)_{s < \mathfrak{t}}$ and $r \leq_{RK} p$ such that $x_s = r - \lim (W_{s(n)})_{n < \omega} = r - \lim (V_s^n)_{n < \omega} = r - \lim \mathcal{V}_s$ for each $s < \mathfrak{t}$. \Box

3.3. COROLLARY. Let $\omega \subset X \subset \beta(\omega)$ and $0 < \mathfrak{t} \leq \omega$. If X is quasi-ppseudocompact for some $p \in \omega^*$, then the following conditions are equivalent: (1) $X^{\mathfrak{t}}$ is quasi-p-pseudocompact.

(2) For each sequence $(m_n)_{n < \omega}$ in ω and each ω -partition $(\mathcal{V}_k)_{k < \omega}$ of $(m_n)_{n < \omega}$, there exist $r \leq_{RK} p$ and $(x_n)_{n < \omega} \subset X$ such that x_k is an r-limit of \mathcal{V}_k for each $k < \omega$.

(3) For each sequence $(s_k)_{k < \omega}$ of sequences in ω , there exist $r \leq_{RK} p$ and $(x_n)_{n < \omega} \subset X$ such that x_k is an r-limit of s_k for each $k < \omega$.

It is easy to prove the following lemma.

3.4. LEMMA. Let $\emptyset \neq M \subset \omega^*$, and let Y be a dense subspace of X. If Y is M-pseudocompact, then X is M-pseudocompact.

So, we obtain:

3.5. COROLLARY. Let $\omega \subset X \subset Y \subset \beta(\omega)$. If $X^{\mathfrak{t}}$ is quasi-p-pseudocompact for some $p \in \omega^*$ and some cardinal number \mathfrak{t} , then so is $Y^{\mathfrak{t}}$.

In [13] the authors analyzed the quasi-*p*-pseudocompact spaces. In particular, they proved the following result.

3.6. THEOREM. Let $\omega \subset X \subset \beta(\omega)$ and $p \in \omega^*$. Then the following assertions are equivalent:

(1) X is quasi-p-pseudocompact.

(2) $X \cap P_{RK}(p)$ is quasi-p-pseudocompact.

(3) $(X \cap P_{RK}(p)) \setminus \omega$ is dense in ω^* .

Thus, the space $\Sigma(p)$ is a "small" enough quasi-*p*-pseudocompact subspace of $\beta(\omega)$. So it is interesting to know if the powers of $\Sigma(p)$ are quasi-

p-pseudocompact. In this way, the previous results permit us to obtain the following theorem.

3.7. THEOREM. Let $p \in \omega^*$, $0 < \mathfrak{t} \leq \omega$, and for each $s \leq \mathfrak{t}$, let X_s be a subspace of $\beta(\omega)$ containing $\Sigma(p)$. Then $X = \prod_{s \leq \mathfrak{t}} X_s$ is quasi-p-pseudo-compact.

PROOF. This theorem is a consequence of Lemma 3.4 and Corollary 2.4 above, and Theorem 2.6 in [7] which, in particular, establishes that the space $\Sigma(p)$ is $(\omega, P_{RK}(p) \setminus \omega)$ -pseudocompact. \Box

3.8. COROLLARY. For every cardinal number $\mathfrak{t} > 0$, $\Sigma(p)^{\mathfrak{t}}$ is a quasi-p-pseudocompact space.

Related to the previous results, the following example is in order.

3.9. EXAMPLE. There exist $p \in \omega^*$ and countably many ultrafilters $(p_n)_{n < \omega}$ in ω^* such that each $\Sigma(p_n)$ is quasi-*p*-pseudocompact and the product space $\prod_{n < \omega} \Sigma(p_n)$ is not pseudocompact.

PROOF. Choose an increasing (in the Rudin–Keisler order) sequence $(p_n)_{n<\omega}$ in ω^* . Let p be an upper bound of our sequence. Then, for each $n < \omega$, $\Sigma(p_n)$ is quasi-p-pseudocompact but, by a theorem of Comfort (see [3]), the product space $\prod_{n<\omega} \Sigma(p_n)$ is not pseudocompact. \Box

4. Products of subspaces of $\beta(\omega)$

In this section we construct two spaces X' and Y' such that they are quasi-*p*-pseudocompact for every $p \in \omega^*$ and $X' \times Y'$ is not pseudocompact. Besides, for each $s \in \omega^*$, we obtain spaces X_s and Y_s which are quasi-*p*pseudocompact for every $p \in \omega^*$, and $X_s \times Y_s$ is a pseudocompact non-quasi*s*-pseudocompact space. On the other hand, we will prove that if X and Y are subspaces of $\beta(\omega)$ containing ω , and $X \times Y$ is pseudocompact, then $X \times Y$ is quasi-*p*-pseudocompact for some $p \in \omega^*$.

For a subset A of ω , we denote by \widehat{A} the set $\{p \in \omega^* : A \in p\}$. The following results are well known.

4.1. LEMMA. (1) The family $\mathcal{B}' = \{\widehat{A} : A \subset \omega\}$ is a base for the topology of $\beta(\omega)$, and $|\mathcal{B}'| = 2^{\omega}$.

(2) For each infinite subset A of ω and each $p \in \omega^*$, we have $|\widehat{A} \cap T(p)| = 2^{\omega}$.

(3) For each $p \in \omega^*$, T(p) is dense in ω^* .

(4) If $p, q \in \omega^*$ with $p \neq_{RK} q$, then $T(p) \cap T(q) = \emptyset$.

4.2. EXAMPLE. There exist spaces X' and Y' which are quasi-p-pseudocompact for every $p \in \omega^*$ but $X' \times Y'$ is not pseudocompact.

PROOF. Let \mathcal{B}' be as in Lemma 4.1.(1). Let $\mathcal{B} = \{A \subset \omega : \widehat{A} \in \mathcal{B}' \text{ and }$ $|A| = \aleph_0$. Enumerate faithfully the set \mathcal{B} as $\{A_{\lambda} : \lambda < 2^{\omega}\}$.

By Lemma 4.1 we can choose, by induction, points a_{λ}^{p} and b_{λ}^{p} for each $p \in \omega^*$ and $\lambda < 2^{\omega}$ such that

(1) $a_{\lambda}^{p}, b_{\lambda}^{p} \in \widehat{A}_{\lambda} \cap T(p);$ (2) $a_{\lambda}^{p} \neq a_{\xi}^{p}$ if $\lambda \neq \xi$ and $b_{\lambda}^{p} \neq b_{\xi}^{p}$ if $\lambda \neq \xi;$ (3) $\{a_{\lambda}^{p}: \lambda < 2^{\omega}\} \cap \{b_{\lambda}^{p}: \lambda < 2^{\omega}\} = \emptyset.$

We set $X' = \{a_{\lambda}^{p} : p \in \omega^{*}, \lambda < 2^{\omega}\}$ and $Y' = \{b_{\lambda}^{p} : p \in \omega^{*}, \lambda < 2^{\omega}\}$. It happens that for every $p \in \omega^{*}$, both $X' \cap T(p)$ and $Y' \cap T(p)$ are dense in ω^{*} , so they are quasi-p-pseudocompact for every $p \in \omega^*$ (Theorem 3.6). Moreover, $X' \times Y'$ is not pseudocompact because the sequence $((n, n))_{n < \omega}$ of open sets in $X' \times Y'$ does not have a limit point in $X' \times Y'$.

4.3. EXAMPLE. For each $s \in \omega^*$, there exist spaces X_s and Y_s which are quasi-*p*-pseudocompact for every $p \in \omega^*$ and $X_s \times Y_s$ is a pseudocompact non-quasi-s-pseudocompact space.

PROOF. Let X' and Y' be the spaces defined in the previous example. Let p be an element in ω^* such that p is not less or equal to s in the Rudin-Keisler order. For each $L = (f, g) \in (\omega^{\omega})^2$ we are going to take a point $(x_L, y_L) \in \beta(\omega)$ as follows:

If $\mathcal{F} = \{ f^{-1}(n) : n \in \omega \}$ and $\mathcal{G} = \{ g^{-1}(n) : n \in \omega \}$ are finite sets, then we take $(x_L, y_L) = (f^{\beta}(p), g^{\beta}(p))$. Observe that in this case $x_L, y_L \in \omega$.

If \mathcal{F} is infinite and there is an infinite subset A of ω such that $f|_A$ and $g \mid A$ are one-to-one functions, then we take $q \in T(p) \cap \widehat{A}$ and (x_L, y_L) $= (f^{\beta}(q), g^{\beta}(q))$. In this case $x_L, y_L \in T(p)$.

If \mathcal{F} is infinite and there is no infinite subset A of ω in which both f and g are one-to-one, then there exist $k_1, k_2 \in \omega$ such that either

- (1) for all $n > k_2$, we have $g^{-1}(n) \subset f^{-1}(k_1)$, or (2) for all $n > k_2$, $f^{-1}(n) \subset g^{-1}(k_1)$.

If (1) happens, we take $A \subset \omega$ with $|A| = \aleph_0$ and $|A \cap f^{-1}(m)| = 1$ for all $m > k_1$. Then we take $q \in T(p) \cap \widehat{A}$, and $(x_L, y_L) = (f^\beta(q), g^\beta(q))$. In this case $x_L \in T(p)$ and $y_L \in \omega$.

If (2) happens, we take an infinite subset A of ω such that $|A \cap f^{-1}(m)|$ = 1 for all $m > k_2$. Then we take $q \in T(p) \cap \widehat{A}$, and $(x_L, y_L) = (f^{\beta}(q), g^{\beta}(q))$. Again, in this case $x_L \in T(p)$ and $y_L \in \omega$.

The last possible case is when \mathcal{F} is finite and \mathcal{G} is infinite. In this case we take an infinite subset A of ω such that $g|_A$ is an one-to-one function. Then, we choose $q \in T(p) \cap \widehat{A}$, and we take $(x_L, y_L) = (f^{\beta}(q), g^{\beta}(q))$. In this case $x_L \in \omega$ and $y_L \in T(p)$.

Let $N = \{ (x_L, y_L) : L \in (\omega^{\omega})^2 \}$, $X_s = X' \cup \pi_1(N)$ and $Y_s = Y' \cup \pi_2(N)$ where, for $i = 1, 2, \pi_i$ is the *i*-th-projection map.

Acta Mathematica Hungarica 94, 2002

296

Since X' and Y' are dense subspaces of X_s and Y_s , respectively, then X_s and Y_s are quasi-*p*-pseudocompact for every $p \in \omega^*$. Notice that $X_s \times Y_s$ is not quasi-*s*-pseudocompact, because the sequence $((n, n))_{n < \omega}$ of open sets in $X_s \times Y_s$ does not have an *s*-limit point. Moreover, due to Theorem 2.6, $X_s \times Y_s$ is quasi-*p*-pseudocompact (so, pseudocompact). \Box

It is not possible to construct a pseudocompact product of subspaces of $\beta(\omega)$ containing ω which is not quasi-*p*-pseudocompact for any $p \in \omega^*$. Indeed, we have:

4.4. THEOREM. Let t be a cardinal number satisfying $0 < t \leq \omega$. For each s < t, let X_s be a subspace of $\beta(\omega)$ such that $\omega \subset X_s$. If $X = \prod_{s < t} X_s$ is pseudocompact, then there is $p \in \omega^*$ such that X is quasi-p-pseudocompact.

PROOF. Since X is pseudocompact, Theorem 2.6 proclaims that for every $L = (f_s)_{s < \mathfrak{t}} \in (\omega^{\omega})^{\mathfrak{t}}$, there exist $r_L \in \omega^*$ and $(x_s)_{s < \mathfrak{t}} \in X$ such that $f_s^{\beta}(r_L) = x_s$ for every $s < \mathfrak{t}$. The set $\{r_L : L \in (\omega^{\omega})^{\mathfrak{t}}\}$ has cardinality 2^{ω} . Thus, there exists $p \in \omega^*$ such that $r_L \leq p$ for every $L \in (\omega^{\omega})^{\mathfrak{t}}$ (see Proposition 2.6 in [1]). Then, by Theorem 2.6, we conclude that X is quasi-p-pseudocompact. \Box

Again, using the fact that every collection of free ultrafilters on ω having cardinality $\leq 2^{\omega}$ has an upper bound in the \leq_{RK} -order (see Proposition 2.6 in [4]), and using Theorem 4.4, Theorem 2.1 and Theorem 2.6, we obtain:

4.5. THEOREM. Let t be a cardinal number with $0 < t \leq 2^{\omega}$. For each s < t, let X_s be a subspace of $\beta(\omega)$ such that $\omega \subset X_s$. If $\overline{X} = \prod_{s < t} X_s$ is pseudocompact, then there is $p \in \omega^*$ such that X is quasi-p-pseudocompact.

4.6. COROLLARY. Let $\omega \subset X \subset \beta(\omega)$. If X is pseudocompact, then X is quasi-p-pseudocompact for some $p \in \omega^*$.

5. The classes \mathcal{P}_p and \mathcal{P}

A Frolik sequence in a space X is a sequence $(U_n)_{n < \omega}$ of subsets of X such that for each filter \mathcal{G} of infinite subsets of ω ,

$$\bigcap_{F \in \mathcal{G}} \operatorname{cl}_X \left(\bigcup_{n \in F} U_n \right) \neq \emptyset.$$

In the following, we say that a space X is *Frolik* if $X \times Y$ is pseudocompact for every pseudocompact space Y. The Frolik class \mathcal{P} is the class consisting of exactly all Frolik spaces. In Theorem 3.6 in [5] the following result was proved:

5.1. THEOREM. A pseudocompact space belongs to the Frolik class \mathcal{P} if and only if every sequence of disjoint open sets contains a subsequence which is a Frolik sequence.

For $p \in \omega^*$, let \mathcal{P}_p be the class of all spaces X satisfying that $X \times Y$ is quasi-p-pseudocompact whenever Y has this property. Since quasi-ppseudocompactness is a property preserved under continuous functions, then every space in \mathcal{P}_p is quasi-*p*-pseudocompact and $f(X) \in \mathcal{P}_p$ if f is a continuous function and $X \in \mathcal{P}_p$. Besides, every regular closed subspace of a space that belongs to \mathcal{P}_p , is an element of this class too. Also, it is easy to see that \mathcal{P}_p is finitely multiplicative. We say that a sequence $(U_n)_{n<\omega}$ of subsets of X is a *Frolik sequence for p* if

$$\bigcap_{F \in p} \operatorname{cl}_X \left(\bigcup_{n \in F} U_n \right) \neq \emptyset.$$

Notice that, by the basic properties of ultrafilters, each point in $\bigcap_{F \in p}$ $\operatorname{cl}_X\left(\bigcup_{n\in F} U_n\right)$ is a *p*-limit point of the sequence $(U_n)_{n<\omega}$. The following theorem characterizes the class \mathcal{P}_p . Following the pattern given in [2, Theorem 2.1], the starting point of the proof is to construct appropriate pseudocompact subspaces of $\beta(\omega)$ associated with special kinds of sequences of open sets in a space X.

5.2. THEOREM. Let X be a space. Then the following assertions are equivalent:

(1) $X \in \mathcal{P}_p$.

(2) For every sequence $(U_n)_{n < \omega}$ of pairwise disjoint open sets of X, there exists a subsequence $(U_{n_k})_{k < \omega}$ which is a Frolik sequence for every $q \leq_{RK} p$. (3) For every sequence $(U_n)_{n < \omega}$ of pairwise disjoint open sets of X, there exists a subsequence $(U_{n_k})_{k < \omega}$ such that, for each $q \leq_{RK} p$ there exists x_q $\in X \text{ for which } x_q = q \operatorname{-lim}(U_{n_k})_{k < \omega}.$

(4) For each quasi-p-pseudocompact space Y, the product $X \times Y$ is pseudocompact.

(5) For each quasi-p-pseudocompact subspace Y of $\beta(\omega)$ containing ω , the product $X \times Y$ is pseudocompact.

PROOF. (1) \Rightarrow (2). Suppose that there exists a sequence $(U_n)_{n < \omega}$ of pairwise disjoint open sets of X such that, for every infinite subset $N_0 =$ $\{n_1, n_2, \ldots, n_k, \ldots\}$ of natural numbers with $n_k < n_{k+1}$, we can find $q(N_0)$ $\leq_{RK} p$ satisfying

$$\bigcap_{F \in q(N_0)} \operatorname{cl}_X \left(\bigcup_{k \in F} U_{n_k} \right) = \emptyset.$$

Consider now the function $f: \omega \to \omega$ defined by $f(k) = n_k$ for each $k < \omega$, and let f^{β} be the continuous extension of f to $\beta(\omega)$. Let q_{N_0} be such that $f^{\beta}(q(N_0)) = q_{N_0}$. It is clear that $q_{N_0} \leq_{RK} p$. We prove that

$$\bigcap_{G \in q_{N_0}} \operatorname{cl}_X \left(\bigcup_{n \in G} U_n\right) = \emptyset$$

In fact, since $f(F) \in q_{N_0}$ whenever $F \in q(N_0)$, we have that

$$\bigcap_{F \in q(N_0)} \operatorname{cl}_X \left(\bigcup_{k \in F} U_{n_k} \right) = \bigcap_{f(F) \in q_{N_0}} \operatorname{cl}_X \left(\bigcup_{n_k \in f(F)} U_{n_k} \right) \supset \bigcap_{G \in q_{N_0}} \operatorname{cl}_X \left(\bigcup_{n \in G} U_n \right).$$

So,

$$\bigcap_{G \in q_{N_0}} \operatorname{cl}_X \left(\bigcup_{n \in G} U_n \right) = \emptyset.$$

Let Y be the subspace of $\beta(\omega)$ defined as:

$$Y = \omega \cup \{ q_{N_0} : N_0 \subset \omega, |N_0| = \omega \}.$$

We prove that the space Y is quasi-p-pseudocompact. To see this, let $(n_k)_{k < \omega}$ be a subsequence of ω . Consider $N_0 = \{n_1, n_2, \ldots, n_k, \ldots\}$. It is clear that $q_{N_0} = q(N_0)$ -lim $(n_k)_{k < \omega}$. The result follows from the fact that $q(N_0) \leq_{RK} p$.

Now, we finish the proof by showing that $X \times Y$ is not pseudocompact. For this in turn, we prove that the sequence $(U_n \times \{n\})_{n < \omega}$ is locally finite in $X \times Y$. Let $q_{N_0} \in Y$ be a cluster point of $(n)_{n < \omega}$ and let x be a cluster point of $(U_n)_{n < \omega}$. Since $\bigcap_{G \in q_{N_0}} \operatorname{cl}_X (\bigcup_{n \in G} U_n) = \emptyset$, there exists $G \in q_{N_0}$ such that $x \notin \operatorname{cl}_X (\bigcup_{n \in G} U_n)$; that is, there is a neighborhood V of the point x with $V \cap (\bigcup_{n \in G} U_n) = \emptyset$. Then, $\widehat{G} \cap Y$ is an open neighborhood of q_{N_0} such that $V \times \widehat{G}$ does not meet the sequence $(U_n \times \{n\})_{n < \omega}$.

 $(2) \Rightarrow (3)$. Let $(U_n)_{n < \omega}$ be a sequence of pairwise disjoint open sets of X. Then, there exists a subsequence $(U_{n_k})_{k < \omega}$ such that

$$\bigcap_{F \in q} \operatorname{cl}_X \left(\bigcup_{k \in F} U_{n_k} \right) \neq \emptyset$$

for each $q \leq_{RK} p$. Take $x_q \in \bigcap_{F \in q} \operatorname{cl}_X \left(\bigcup_{k \in F} U_{n_k} \right)$. We are going to prove that $x_q = q$ -lim $(U_{n_k})_{k < \omega}$. In fact, let V be a neighborhood of x_q in X, and

assume that $G = \{k < \omega : V \cap U_{n_k} \neq \emptyset\}$ does not belong to q. So, $H = \omega \setminus G \in q$. By assumption, there is $y \in V \cap U_m$ where $m \in H$. But, by definition $V \cap U_m = \emptyset$, a contradiction.

 $(3) \Rightarrow (1)$. Let $(U_n \times V_n)_{n < \omega}$ be a sequence of pairwise disjoint open sets of $X \times Y$ where Y is quasi-p-pseudocompact. Let $(U_{n_k})_{k < \omega}$ be a subsequence of $(U_n)_{n < \omega}$ satisfying the requirements in (3). Now, according to the fact that Y is quasi-p-pseudocompact, the sequence $(V_{n_k})_{k < \omega}$ admits an rlimit with $r \leq_{RK} p$. Because of the properties of $(U_{n_k})_{k < \omega}$, it is clear that $(U_{n_k} \times V_{n_k})_{k < \omega}$ admits an r-limit with $r \leq_{RK} p$.

The implications $(1) \Rightarrow (4) \Rightarrow (5)$ are clear. On the other hand, $(5) \Rightarrow (2)$ is implicit in the proof of $(1) \Rightarrow (2)$. \Box

As an immediate consequence of Theorem 5.2 we have the following corollaries.

5.3. COROLLARY. Let $\omega \subset X \subset \beta(\omega)$. Then the following assertions are equivalent:

(1) $X \in \mathcal{P}_p$.

(2) For every sequence $(a_n)_{n<\omega}$ of natural numbers with $a_n \neq a_m$ if $n \neq m$, there exists a subsequence $(a_{n_k})_{k<\omega}$ which is a Frolick sequence for every $q \leq_{RK} p$.

every $q \leq_{RK} p$. (3) For every sequence $(a_n)_{n < \omega}$ of natural numbers with $a_n \neq a_m$ if $n \neq m$, there exists a subsequence $(a_{n_k})_{k < \omega}$ such that, for each $q \leq_{RK} p$, there is a q-limit point of $(a_{n_k})_{k < \omega}$ in X.

there is a q-limit point of $(a_{n_k})_{k < \omega}$ in X. (4) For every function $s : \omega \to \omega$, there exists a function $f_s : \omega \to \omega$ such that, for every $q \leq_{RK} p$, $(s \circ f_s)^{\beta}(q) \in X$.

5.4. COROLLARY. Every space in the Frolik class \mathcal{P} belongs to \mathcal{P}_p for every $p \in \omega^*$.

The previous result implies, in particular, that every Frolík space is quasi*p*-pseudocompact for every $p \in \omega^*$, as was already pointed out in Theorem 2.6 in [13].

5.5. COROLLARY. If p, q are two elements in ω^* such that $p \leq_{RK} q$, then $\mathcal{P}_q \subset \mathcal{P}_p$.

PROOF. Let $X \in \mathcal{P}_q$, and let $(U_n)_{n < \omega}$ be a sequence of pairwise disjoint open subsets of X. By Theorem 5.2, there is a subsequence $(U_{n_k})_{k < \omega}$ of $(U_n)_{n < \omega}$ such that, for every $r \leq_{RK} q$, we have

$$\bigcap_{F \in r} \operatorname{cl}_X \left(\bigcup_{k \in F} U_{n_k} \right) \neq \emptyset.$$

In particular, the previous equality holds for every $r \leq_{RK} p$. But this means that $X \in \mathcal{P}_p$. \Box

Observe that the spaces X' and X_s given in Examples 4.2 and 4.3, respectively, are quasi-*p*-pseudocompact spaces for every $p \in \omega^*$, but they do not belong to $\bigcup_{p \in \omega^*} \mathcal{P}_p$.

By applying Theorem 4.1 in [13] and Theorem 5.2 above, we obtain:

5.6. COROLLARY. Every p-pseudocompact space belongs to \mathcal{P}_p for all $p \in \omega^*$.

So, the space $P_{RK}(p)$ is an example of a space belonging to \mathcal{P}_p (it is *p*-pseudocompact, see [9]) which is not Frolík. On the other hand, the space $\prod_{p \in \omega^*} (\beta(\omega) \setminus \{p\})$ belongs to \mathcal{P} but it is not *p*-pseudocompact for any $p \in \omega^*$ (see Example 2.9 in [13]).

Because of the properties of \mathcal{P}_p , we can use the space $P_{RK}(p)$ to determine the set $\mathcal{P}_p \cap \{X : \omega \subset X \subset \beta(\omega)\}$, as we will show in the following theorem.

5.7. THEOREM. Let $\omega \subset X \subset \beta(\omega)$, and let $p \in \omega^*$. Then the following assertions are equivalent:

(1) The space X belongs to \mathcal{P}_p .

(2) The space $X \times P_{RK}(p)$ is an element of \mathcal{P}_p .

(3) $X \cap P_{RK}(p) \in \mathcal{P}_p$.

PROOF. (1) \Rightarrow (2). $P_{RK}(p)$ is an element of \mathcal{P}_p , and this class is finitely productive.

(2) \Rightarrow (3). The space $X \cap P_{RK}(p)$ is homeomorphic to a regular closed subset of $X \times P_{RK}(p)$.

(3) \Rightarrow (1). The class \mathcal{P}_p is closed under continuous functions. \Box

5.8. CONJECTURE. Let $\omega \subset X \subset \beta(\omega)$, and let $p \in \omega^*$. Then $X \in \mathcal{P}_p$ if and only if for each open subset W of $\beta(\omega)$, there exists an open subset V of W for which $V \cap P_{RK}(p) \subset X$.

Now we are ready to prove that the partial ordered set $(\mathfrak{T}, \leq_{RK})$, where \mathfrak{T} is the set of equivalence classes of free ultrafilters on ω , is isomorphic to (\mathfrak{P}, \supset) , where $\mathfrak{P} = \{\mathcal{P}_p : p \in \omega^*\}$.

5.9. THEOREM. Let $p, q \in \omega^*$. Then the following assertions are equivalent:

(1) $q \leq_{RK} p$. (2) $\mathcal{P}_p \subset \mathcal{P}_q$. (3) $P_{RK}(p) \in \mathcal{P}_q$. (4) $P_{RK}(q) \subset P_{RK}(p)$. (5) $P_{RK}(p)$ is q-pseudocompact.

PROOF. The implication $(1) \Rightarrow (2)$ is Corollary 5.5. The equivalence $(1) \Leftrightarrow (4)$ is trivial and the equivalence $(4) \Leftrightarrow (5)$ is a consequence of Lemma 1.9 in [9]. Since $P_{RK}(p) \in \mathcal{P}_p$ always holds, then $(2) \Rightarrow (3)$. So, we only have to prove that $(3) \Rightarrow (1)$.

Assume that $P_{RK}(p) \in \mathcal{P}_q$; so, the space $P_{RK}(p) \times \Sigma(q)$ is pseudocompact. Thus, $P_{RK}(p) \cap T(q) \neq \emptyset$. That is, $q \leq_{RK} p$. \Box

Observe that, even for a subspace X of $\beta(\omega)$ containing ω , the fact of being quasi-q-pseudocompact for every $q \leq_{RK} p$, does not imply that X belongs to \mathcal{P}_p . Indeed, the space $X = \beta(\omega) \setminus T(p)$, where p is not RK-minimal, is quasi-p-pseudocompact for every $p \in \omega^*$ (see Example 3.2 in [13]), but it is not a member of \mathcal{P}_p , because $Y = \Sigma(p)$ is quasi-p-pseudocompact (Corollary 3.8) though $X \times Y$ is not pseudocompact; in fact, the sequence $((n, n))_{n < \omega}$ of open sets, in $X \times Y$, does not have a cluster point in $X \times Y$. Nevertheless, by Theorem 5.7 and Lemma 3.4, $X \in \mathcal{P}_r$ if $r <_{RK} p$.

Theorem 5.10 produces a topological characterization of RK-minimal ultrafilters.

5.10. THEOREM. Let $p, q \in \omega^*$. The space $\Sigma(q)$ belongs to \mathcal{P}_p if and only if q is RK-minimal and $q \approx_{RK} p$.

PROOF. If q is RK-minimal and $q \approx_{RK} p$, then $\Sigma(q) = \Sigma(p) = P_{RK}(p)$. As we have already seen, $P_{RK}(p) \in \mathcal{P}_p$.

Now, assume $\Sigma(q) \in \mathcal{P}_p$. Since $\Sigma(p)$ is quasi-q-pseudocompact, $\Sigma(p) \times \Sigma(q)$ is pseudocompact. Hence, the sequence $((n, n))_{n < \omega}$ of open sets in $\Sigma(p) \times \Sigma(q)$ has an accumulation point $(s, t) \in T(p) \times T(q)$. But, s has to be equal to t. So, $p \approx_{RK} q$.

Suppose that p is not RK-minimal, and let $r <_{RK} p$. By Theorem 5.9, $\mathcal{P}_p \subset \mathcal{P}_r$, then $\Sigma(p) \in \mathcal{P}_r$. So, $\Sigma(p) \times P_{RK}(r)$ is pseudocompact. But this is not true because the sequence $((n, n))_{n < \omega}$ of open sets in $\Sigma(p) \times P_{RK}(r)$ does not have an accumulation point in $\Sigma(p) \times P_{RK}(r)$. \Box

Now, we are going to prove that $\bigcap_{p \in \omega^*} \mathcal{P}_p$ is precisely the class of Frolík spaces.

5.11. THEOREM. $\mathcal{P} = \bigcap_{p \in \omega^*} \mathcal{P}_p$.

PROOF. Corollary 5.4 establishes that $\mathcal{P} \subset \bigcap_{p \in \omega^*} \mathcal{P}_p$.

Now, assume that $X \notin \mathcal{P}$. Then there exists a pseudocompact subspace Y of $\beta(\omega)$ containing ω , such that $X \times Y$ is not pseudocompact (see [2]). By Corollary 4.6, there is $p \in \omega^*$ for which Y is quasi-p-pseudocompact. Therefore, by Theorem 5.2, $X \notin \bigcap_{p \in \omega^*} \mathcal{P}_p$. \Box

Let $p \in \omega^*$. Let $\mathcal{P}_{F,p}$ denote the class of all spaces X such that every closed subset of X belongs to \mathcal{P}_p . Of course, $\mathcal{P}_p \supset \mathcal{P}_{F,p}$ for every $p \in \omega^*$, but these classes never coincide. Indeed, every compact space belongs to $\mathcal{P}_{F,p}$.

5.12. THEOREM. Let X be a space. Then the following assertions are equivalent:

(1) $X \in \mathcal{P}_{F,p}$.

(2) Every discrete sequence $(a_n)_{n < \omega}$ of points of X admits a subsequence $(a_{n_k})_{k < \omega}$ which is a Frolik sequence for every $q \leq_{RK} p$.

PROOF. (1) \Rightarrow (2). Consider a discrete sequence $(a_n)_{n < \omega}$ in X. Then we can identify $(a_n)_{n < \omega}$ with ω . Let $Y = \operatorname{cl}_X\{a_n : n < \omega\}$. Then $(a_n)_{n < \omega}$ is a sequence of pairwise disjoint open sets in Y. By (1), $Y \in \mathcal{P}_p$. Now the result follows from the theorem of characterization of \mathcal{P}_p .

 $(2) \Rightarrow (1)$. Let Y be a closed subset of X. Consider a sequence $(U_n)_{n < \omega}$ of pairwise disjoint open sets in Y. For each $n < \omega$, let a_n be a point with $a_n \in U_n$. It is clear that $(a_n)_{n < \omega}$ is a discrete sequence in X. By (2), for some subsequence $(a_{n_k})_{k < \omega}$,

$$\bigcap_{G \in q} \operatorname{cl}_X \left(\bigcup_{k \in G} \{a_{n_k}\} \right) \neq \emptyset$$

whenever $q \leq_{RK} p$. Since $a_{n_k} \in U_{n_k}$ and Y is closed in X, we have

$$\bigcap_{G \in q} \operatorname{cl}_Y \left(\bigcup_{k \in G} U_{n_k} \right) \neq \emptyset$$

whenever $q \leq_{RK} p$. The result follows from the characterization theorem of the class \mathcal{P}_p . \Box

It is a well-known result that the Frolík class \mathcal{P} is closed under arbitrary products (see [12]). In the last part of the paper we turn our attention to this question for the classes \mathcal{P}_p for any $p \in \omega^*$.

5.13. LEMMA. Let $p \in \omega^*$ and let $\{V_1, V_2, \ldots, V_l\}$ be a finite family of subsets of X. If $(U_n)_{n < \omega}$ is a Frolik sequence for every $q \leq_{RK} p$, then the sequence $(W_n)_{n < \omega}$ defined as

$$W_i = \begin{cases} V_i & \text{if } i \leq l, \\ U_{i-l} & \text{if } l < i, \end{cases}$$

is also a Frolík sequence for every $q \leq_{RK} p$.

PROOF. Let $q \leq_{RK} p$. Consider the function $f: \omega \to \omega$ defined as

$$f(t) = \begin{cases} t & \text{if } t \leq l, \\ t-l & \text{if } t > l. \end{cases}$$

Let r denote the ultrafilter $f^{\beta}(q)$. Since $r \leq_{RK} q$, there exists $x \in X$ with

$$x \in \bigcap_{F \in r} \operatorname{cl}_X \left(\bigcup_{n \in F} U_n \right).$$

We shall prove that

$$x \in \bigcap_{G \in q} \operatorname{cl}_X \left(\bigcup_{m \in G} W_m\right)$$

In fact, supposing the contrary, we claim that there exist a neighborhood Vof x and $G \in q$ such that

$$V \cap \left(\bigcup_{m \in G^*} W_m\right) = \emptyset,$$

where $G^* = G \setminus \{1, \dots l\}$. Then

$$V \cap \left(\bigcup_{n \in f(G^*)} U_n\right) = \emptyset,$$

which leads us to a contradiction because $f(G^*) \in r$ and $r \leq_{RK} p$.

5.14. LEMMA. Let $p \in \omega^*$. If $X \in \mathcal{P}_p$, then every sequence of open sets in X admits a subsequence which is a Frolik sequence for every $q \leq_{RK} p$.

PROOF. Let $(U_n)_{n < \omega}$ be a sequence of open sets in X. Choose $x_n \in U_n$ for each $n < \omega$. If for some subsequence $(U_{n_k})_{k < \omega}$, there exists $x \in X$ such that every neighborhood of x meets all but finitely many elements of $(U_{n_k})_{k<\omega}$, then $(U_{n_k})_{k<\omega}$ is a Frolík sequence for every $q \leq_{RK} p$. Otherwise, we construct by induction on n two sequences $(V_k)_{k < \omega}$ and $(F_k)_{k < \omega}$ of open sets and of infinite subsets of ω , respectively, and a subsequence $(U_{n_k})_{k < \omega}$ of $(U_n)_{n < \omega}$ satisfying:

- (1) For each $k < \omega$, $V_k \subset U_{n_k}$. (2) For each $k < \omega$, $V_k \cap U_{n_r} = \emptyset$ whenever $r \in F_k$. (3) For each $k < \omega$, $F_k \supseteq F_{k+1}$.
- (4) $V_r \cap V_s = \emptyset$ whenever $r \neq s$.

The induction process is as follows. For n = 1, there exist an infinite subset G of ω and a neighborhood $W \subset U_1$ of x_1 such that $W \cap U_r = \emptyset$ whenever $r \in G$. Then we put $V_1 = W$ and $F_1 = G$. Suppose now that we have $(V_i)_{i \leq m}$, $(F_i)_{i \leq m}$ and $(U_{n_i})_{i \leq m}$ enjoying the required properties. Consider the subsequence $(U_n)_{n \in F_m}$. Let r denote the minimum of F_m . Then there exist a neighborhood $W \subset U_r$ of x_r and an infinite subset G of F_m such that $W \cap U_n$ $= \emptyset$ whenever $n \in G$. The induction step is complete by putting $V_{m+1} = W$, $F_{m+1} = G$ and $U_{n_{m+1}} = U_r$. Now the proof follows from the fact that the elements of the sequence $(V_k)_{k < \omega}$ are pairwise disjoint.

Acta Mathematica Hungarica 94, 2002

304

5.15. LEMMA. Let $p \in \omega^*$. Let $(U_n)_{n < \omega}$ be a Frolik sequence for every $q \leq_{RK} p$. Then every subsequence of $(U_n)_{n < \omega}$ is a Frolik sequence for every $q \leq_{RK} p$.

PROOF. Suppose that there exists a subsequence $(U_{n_k})_{k < \omega}$ of $(U_n)_{n < \omega}$ which is not a Frolik sequence for some $q \leq_{RK} p$; that is

$$\bigcap_{F \in q} \operatorname{cl}_X \left(\bigcup_{k \in F} U_{n_k} \right) = \emptyset$$

Define the function f on ω by the requirement that f(k) be n_k whenever $k < \omega$. Then, if $s = f^{\beta}(q)$, we have $s \leq_{RK} q$ and

$$\bigcap_{F \in q} \operatorname{cl}_X \left(\bigcup_{k \in F} U_{n_k} \right) \supset \bigcap_{F \in q} \operatorname{cl}_X \left(\bigcup_{n \in f(F)} U_n \right) \supset \bigcap_{G \in s} \operatorname{cl}_X \left(\bigcup_{n \in G} U_n \right)$$

which leads us to a contradiction. \Box

5.16. THEOREM. For each $p \in \omega^*$, the class \mathcal{P}_p is closed under arbitrary products.

PROOF. As a product space is quasi-*p*-pseudocompact if and only if each of its countable subproducts is quasi-*p*-pseudocompact, a product space belongs to \mathcal{P}_p if and only if each of its countable subproducts does. Thus it suffices to consider a countable product, say $X = \prod_{i < \omega} X_i$, of members of \mathcal{P}_p .

Let $(U_n)_{n < \omega}$ be a sequence of open sets in X where each $U_n = \prod_{i < \omega} U_n^i$ is a standard open set in X.

Applying Lemma 5.14 and Lemma 5.15, we can find, for each $i < \omega$, an infinite subset $N_i = \{i_1, i_2, \ldots, i_k, \ldots\}$ of ω such that the sequence $(U_{i_k}^i)_{i_k \in N_i}$ is a Frolík sequence for every $r \leq_{RK} p$ and $N_{i+1} \subseteq N_i$. Now define, for each $i < \omega$, n(i) as min N_i . By Lemma 5.13, for each

Now define, for each $i < \omega$, n(i) as $\min N_i$. By Lemma 5.13, for each $i < \omega$, the sequence $(U_{n(1)}^i, U_{n(2)}^i, \dots, U_{n(i)}^i, U_{i_2}^i, U_{i_3}^i, \dots)$ is a Frolík sequence for every $r \leq_{RK} p$. Then, for each $i < \omega$, Lemma 5.15 says that the sequence $(U_{n(k)}^i)_{k < \omega}$ is also a Frolík sequence for every $r \leq_{RK} p$. It is an easy matter to prove that the sequence $(V_k)_{k < \omega}$ defined as

$$V_k = \prod_{i < \omega} U^i_{n(k)},$$

for each $k < \omega$, is a Frolík sequence (in X) for every $r \leq_{RK} p$ which completes the proof. \Box

As a consequence of Theorem 5.11 and Theorem 5.16 we have

5.17. THEOREM [12]. The Frolik class \mathcal{P} is closed under arbitrary products.

References

- A. R. Bernstein, A new kind of compactness for topological spaces, Fund. Math., 66 (1970), 185–193.
- [2] J. L. Blasco, Pseudocompactness and countable compactness of the product of two topological spaces, *Collect. Math.*, 29 (1978), 89–96 (Spanish).
- [3] W. W. Comfort, A non-pseudocompact product space whose finite products are pseudocompact, Math. Ann., 170 (1967), 41-44.
- [4] A. Dow, $\beta(\mathbf{N})$, manuscript.
- [5] Z. Frolík, The topological product of two pseudocompact spaces, Czech. J. Math., 85 (1960), 339-349.
- [6] Z. Frolík, Sums of ultrafilters, Bull. Amer. Math. Soc., 73 (1967), 87-91.
- [7] S. García-Ferreira, Some generalizations of pseudocompactness, Annals New York Academy of Sciences, 728 (1994), 22–31.
- [8] S. García-Ferreira and V. I. Malykhin, p-sequentiality and p-Fréchet-Urysohn property of Franklin compact spaces, Proc. Amer. Math. Soc., 124 (1996), 2267–2273.
- [9] J. Ginsburg and V. Saks, Some applications of ultrafilters in topology, *Pacific J. Math.*, 57 (1975), 403–418.
- [10] M. Katĕtov, Characters and types of point sets, Fund. Math., 50 (1961), 367-380.
- [11] M. Katětov, Products of filters, Comment. Math. Univ. Carolinae, 9 (1968), 173-189.
- [12] N. Noble, Countably compact and pseudocompact products, Czech. Math. Jour., 19 (94) (1969), 390-397.
- [13] M. Sanchis and A. Tamariz-Mascarúa, On quasi-p-bounded subsets, Coll. Math., 80 (1999), 175–189.
- [14] M. Sanchis and A. Tamariz-Mascarúa, p-pseudocompactness and related topics in topological spaces, *Topology Appl.*, 98 (1999), 323-343.

(Received April 17, 2000)

DEPARTAMENT DE MATEMÀTIQUES UNIVERSITAT JAUME I CAMPUS DEL RIU SEC S/N 12071, CASTELLÓ SPAIN E-MAIL: SANCHIS@MAT.UJI.ES

DEPARTAMENTO DE MATEMÁTICAS FACULTAD DE CIENCIAS U.N. A.M. CIUDAD UNIVERSITARIA MÉXICO 04510 MÉXICO E-MAIL: ATAMARIZ@SERVIDOR.UNAM.MX

Acta Mathematica Hungarica 94, 2002

306