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LINDEL�OF �-PROPERTY IN Cp(X) AND
p(Cp(X)) = ! DO NOT IMPLY COUNTABLE

NETWORK WEIGHT IN X

O. G. OKUNEV and V. V. TKACHUK1 (M�exico)

Abstract. We prove that there are Tychono� spaces X for which p
�
Cp(X)

�

= ! and Cp(X) is a Lindel�of �-space while the network weight of X is uncount-
able. This answers Problem 75 from [4]. An example of a space Y is given such
that p(Y ) = ! and Cp(Y ) is a Lindel�of �-space, while the network weight of Y is
uncountable. This gives a negative answer to Problem 73 from [4]. For a space
X with one non-isolated point a necessary and su�cient condition in terms of the
topology on X is given for Cp(X) to have countable point-�nite cellularity.

0. Introduction

The point-�nite cellularity p(X) of a space X is the supremum of car-
dinalities of point-�nite families of open sets in X [16]. In this paper we
study the point-�nite cellularity of the spaces Cp(X) of continuous functions
endowed with the topology of pointwise convergence.

It is easy to see that always c(X) 5 p(X), and in fact, if X is a Baire
space, then p(X) and c(X) coincide. On the other hand, if � is a calibre of
X, then p(X) 5 � .

It is known [16, Theorem 1] that for a space X, always p(X) = a

�
Cp(X)

�
where a(Z) is the supremum of cardinalities of compact subspaces of Z with

one nonisolated point; it is also true that a(X) 5 p
�
Cp(X)

�
[16], but not

always a(X) = p

�
Cp(X)

�
(in particular, p

�
Cp(X)

�
is countable if X = �!

[16]). However, if X is a Gul'ko compact space (that is, such that Cp(X)
is a Lindel�of �-space), then X is metrizable (see [5, Proposition 2.10] and
[9, Theorem 2]). Note that the Lindel�of �-property of Cp(X) implies that
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X \almost" has this property, (in fact, that the Hewitt extension �X is a
Lindel�of �-space [12]; see also Section IV.9 in [3]), and that every compact
subspace of X is Gul'ko. Arhangel'ski�� points out in [4, Theorem 11.13], that
if !1 is a calibre of X and Cp(X) is a Lindel�of �-space, then under Martin's
Axiom and the negation of the Continuum Hypothesis, the space X has a
countable network. Since \!1 is a calibre" is a stronger condition than the
countability of the point-�nite cellularity, this motivates Problem 73 in [4]:
Does MA+:CH imply the existence of a countable network in a space X with
Cp(X) a Lindel�of �-space and p

�
Cp(X)

�
= !?

Another question is mentioned on page 50 in [4]: Find necessary and

su�cient conditions for p
�
Cp(X)

�
= ! in terms of the topology of a space

X. One criterion was obtained by Arhangel'ski�� and Tkachuk for compact
spaces [5, Proposition 2.7]. In this paper we give a criterion for the spaces
with at most one non-isolated point.

We further present a simple machinery for constructing from a subset B
of a real line an uncountable Lindel�of �-space X(B) with one non-isolated

point so that Cp
�
X(B)

�
is a Lindel�of �-space; the above criterion allows to

establish that for some particular B we have p
�
Cp

�
X(B)

��
= !. This pro-

vides negative answers (in ZFC) to Problems 73 and 75 in [4]. We further

show that it is possible to choose a Bernstein set B so that p
�
Cp

�
X(B)

��
6= !; for this space a

�
Lp

�
X(B)

��
6= a

�
CpCp

�
X(B)

��
. This leads to an ex-

ample related to joint factorization of sets of continuous functions on Cp(X).
Terminology and notation not explained below are as in [7]. All topolog-

ical spaces are assumed to be Tychono�. If X is a space, then T (X) is its

topology, and T (x;X) =
�
U 2 T (X) : x 2 U

	
. The space R is the real line

with its natural topology. If X is a space, then Cp(X) is the set of all real-
valued continuous functions on X endowed with the topology of pointwise
convergence. The last statement means that the sets of the form

[x1; : : : ; xn;O1; : : : ; On] =
�
f 2 Cp(X) : f(xi) 2 Oi i = 1; : : : ; n

	
;

where n 2 !; x1; : : : ; xn 2 X, and O1; : : : ;On are open subsets of R (see [3]),
constitute a base in Cp(X). The point-�nite cellularity p(Z) of a space Z is
the supremum of the cardinalities of point-�nite families of non-empty open
subsets of Z. A space X is called an Eberlein{Grothendieck space (shortly,
an EG-space) if X can be embedded into Cp(Y ) for some compact space Y .
A space Z is called !-monolithic if the closure of every countable subset of
Z has a countable network [3] (see also Section II.6 in [3]). A subspace A of
a topological space X is C-embedded (C�-embedded) in X if every (bounded)
continuous function g : A! R has a continuous extension over X.

A space X is called a Lindel�of �-space if it is a continuous image of a
space Y that can be perfectly mapped onto a separable metrizable space.

The symbol c denotes the cardinality of the continuum.
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1. Countable point-�nite cellularity in Cp(X)

We start with establishing a criterion that characterizes the inequality
Cp(X) 5 � in terms of the topology of a space X when X has a unique non-
isolated point.

1.1. Theorem. Let X be a space with one non-isolated point: X = fag

[Y , where all points of Y are isolated and a 62 Y . For every in�nite cardinal
� the following conditions are equivalent:

(1) p
�
Cp(X)

�
5 � ;

(2) if fA� : � < �
+
g is a disjoint family of �nite subsets of Y , then there

is an in�nite S � �
+ such that a 62

S
fA� : � 2 Sg;

(3) if fA� : � < �
+
g is a family of �nite subsets of Y , then there is an

in�nite S � �
+ such that a 62

S
fA� : � 2 Sg.

Proof. (1) =) (2). Let fA� : � < �
+
g be a disjoint family of �nite

subsets of Y . By an obvious counting argument, we may assume that all A�

have the same cardinality n 2 !; let A� = fx
�

1 ; : : : ; x
n

�
g. Put

V� =
�
a; x

�

1 ; : : : ; x
�

n
; (�1; 1); (2; 3); : : : ; (n+ 1; n+ 2)

�
=
�
f 2 Cp(X) : f(a) 2 (�1; 1); f(x�

i
) 2 (i+ 1; i+ 2); i = 1; : : : ; n

	
:

The sets V� are non-empty and open in Cp(X); by the condition (1), the

family fV� : � < �
+
g cannot be point-�nite, so there is an in�nite S � !1

and a g 2 Cp(X) such that g 2
T
fV� : � 2 Sg.

The set W = g
�1
�
(�1; 1)

�
is open and contains a. If � 2 S then

A� \W = ;, because otherwise we would have g(x) 2 (�1; 1) for some
x 2 A�, while from g 2 V� follows g(A�) � (1; n� k + 2). Thus, a 62S
fA� : � 2 Sg.
(2) =) (3). Let fA� : � < �

+
g be a family of �nite subsets of Y . By

the �-lemma there is a �nite set F � Y and a T � �
+ such that jT j = �

+

and A� \A� = F whenever �; � 2 T and � 6= �. For every � 2 T put
A
0
�
= A� n F . Then fA

0
�
: � 2 Tg is a disjoint uncountable family of �nite

sets in Y . By the condition (2), there is an in�nite S � T such that a is not a
limit point of

S
fA

0
�
: � 2 Sg. Since

S
fA� : � 2 Sg = F [

S
fA

0
�
: � 2 Sg

and F is �nite, a is not a limit point for
S
fA� : � 2 Sg.

(3) =) (1). Suppose that 
 = fU� : � < �
+
g is a family of non-empty

open subsets of Cp(X). Applying the �-lemma once more, considering a
subfamily of 
 and smaller open sets if necessary, we may assume that there
exist natural numbersm;n and open non-empty disjoint subsetsW0; : : : ;Wn,
V1; : : : Vm of R such that

(i) U� = [a; x�1 ; : : : ; x
�

n
; y1; : : : ym;W0;W1; : : : ;Wn; V1; : : : ; Vm] for every

� < �
+;

(ii) the sets A� = fx
�

1 ; : : : ; x
�

n
g are disjoint and disjoint from the set

F = fy1; : : : ; ymg.
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By the condition (3), there is an in�nite S � �
+ such that a 62S

fA� : � 2 Sg. The normality of X and the fact that the set fag [ F
[
S
fA� : � 2 Sg is closed and discrete inX imply the existence of a function

g 2 Cp(X) such that g(a) 2W0; g(x
�

i
) 2Wi, i = 1; : : : ; n and g(yi) 2 Vi, i =

1; : : : ;m for every � 2 S. Then g 2
T
fU� : � 2 Sg, which shows that the

family 
 is not point-�nite. �

1.2. Corollary. Let X be a space with a unique non-isolated point. If
X has no non-trivial convergent sequences, then the point-�nite cellularity of
Cp(X) is countable.

Proof. LetX = fag[Y where all points of Y are isolated inX. Suppose
that A = fA� : � < !1g is a family of disjoint �nite subsets of Y . Choosing
if necessary an appropriate subfamily of A, we may assume that jA�j = n

2 ! for every � < !1. For every � < !1, let A� = fx
�

1 ; : : : ; x
�

n
g. Consider

the set B1 = fx
�

1 : � < !1g. Since the set B1 is in�nite and fag [B1 con-
tains no convergent sequences, there is an in�nite S1 � !1 such that a is not
a limit point for fx�1 : � 2 S1g.

Assume that k < n, and we have already constructed in�nite subsets
S1 � : : : � Sk of !1 so that for every i 5 k, a is not a limit point for the set
fx

�

i
: � 2 Sig. The set Bk+1 = fx

�

k+1 : � 2 Skg is in�nite and fag [Bk+1

contains no convergent sequences, so there exists an in�nite Sk+1 � Sk such
that a is not a limit point for Bk+1.

At the nth step of this process we obtain an in�nite set S = Sn � !1 such
that for every i 5 n, the point a is not in in the closure of the set Di = fx

�

i
:

� 2 Sg. Clearly, a is not a limit point for D1 [ : : : [Dn. By Theorem 1.1,

we have p
�
Cp(X)

�
= !. �

1.3. Remark. It is easy to see from the proof of Theorem 1.1 that
(1) =) (2) is true for any space X and any a 2 X. It is generally not true
that (2) =) (1). Indeed, the condition (2) holds in any �rst countable space
X: given a family A of �nite subsets not containing a, for every A 2 A we
can �nd a basic neighborhood of a disjoint from A. If A is uncountable, some
basic neighborhood of a avoids uncountably many elements of A.

There exist �rst countable compact spaces X such that the point-�nite
cellularity of Cp(X) is uncountable. For example, if X is the Alexandro�

double circumference, then p
�
Cp(X)

�
> !, because Cp(X) is homeomorphic

to Cp(Y ) where Y is the discrete union of the circumference and the Alexan-
dro� one-point compacti�cation of the discrete space of cardinality c [15,

Corollary 1]. Therefore p
�
Cp(X)

�
= p

�
Cp(Y )

�
= a(Y ) = c.

Let us introduce for any in�nite cardinal � a property of a space X which
implies that the point-�nite cellularity of Cp(X) is 5 � .

1.4. Definition. We say that a family A of �nite subsets of X is con-
centrated if there is no in�nite A0

� A such that the set
S
A
0 is discrete (in

itself) and C�-embedded in X.
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Thus, Theorem 1.1 says that if X has one non-isolated point, then
p

�
Cp(X)

�
5 � if and only if every concentrated family of �nite sets in X

has cardinality 5 � .

1.5. Proposition. Let � be an in�nite cardinal. If every concentrated
family of �nite sets in X has cardinality 5 � , then p

�
Cp(X)

�
5 � .

Proof. Suppose that A = fU� : � < �
+
g is a family of non-empty open

subsets of Cp(X). Considering a subfamily of A and smaller open sets if
necessary, we may assume that the family A has the following properties:

(i) there is a natural number n and open non-empty disjoint intervals
W1; : : : ;Wn of R such that U� = [x�1 ; : : : ; x

�

n
;W1; : : : ;Wn] for every � < �

+;
(ii) there is an F � X such that � < � < �

+ implies A� \A� = A where
A� = fx

�

1 ; : : : ; x
�

n
g for each � < � ;

Choose an in�nite S � �
+ so that the set AS =

S
fA� : � 2 Sg is dis-

crete and C�-embedded in X. For every i 5 n pick ti 2Wi and de�ne the
function h : AS ! R by h(x�

i
) = ti for all � 2 S. It is easy to see that h is

a well-de�ned bounded function on AS (continuous, because AS is discrete).
Let h1 2 Cp(X) be a continuous extension of h. Then h1 2

T
fU� : � 2 Sg,

whence A is not point-�nite. �

It was proved in [5] that if X is a dyadic or Gul'ko compact space and

p

�
Cp(X)

�
= !, then X is metrizable. The next example shows that it is

consistent with ZFC that this is not true if X is a perfectly normal compact
space. It is worth mentioning that this appears to be the �rst example of a
compact non-metrizable space X with p

�
Cp(X)

�
= ! that is not extremally

disconnected [5].

1.6. Example. The Jensen's principle (}) implies the existence of a

perfectly normal non-metrizable compact space X such that p
�
Cp(X)

�
= !.

Namely, assuming }, Ivanov constructed an example of a perfectly nor-
mal nonmetrizable compact space X such that Xn is hereditarily separable
for all n 2 ! [10, Theorem 2]. By a theorem of Zenor [17], the space Cp(X)
is hereditarily Lindel�of. In particular, Cp(X) has no uncountable discrete
subspaces. By Proposition 1 in [16], the point-�nite cellularity of Cp(X) is
countable. �

1.7. Remark. The compact space X in 1.6 has uncountable concen-
trated families of one-point sets. Indeed, a subset of a �rst countable com-
pact space is C�-embedded if and only if it is closed. Since there are no
in�nite closed discrete sets in X, any uncountable family of one-point sets is
concentrated.
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2. The spaces X(B)

IfM is a space and A �M , thenMA is the setM with the same topology
at the points of A and with all points of M nA isolated (see e.g., [7, 5.1.22]).
A set B � I = [0; 1] is called a Bernstein set if every compact subset of B
is countable, or, equivalently, if IInB is a Lindel�of space. In [14] it is proved

that there is a set A � I such that (IA)
! is Lindel�of (such sets are called

holding in [14]) and B = I nA has cardinality c, and that for every n 5 !

there is a set An � I such that (IAn
)
m
is Lindel�of for all m < n, but (IAn

)
n

has a closed discrete subset of cardinality c.
Let B be a subspace of I. Let AD(B) be the Alexandro� duplicate of

B (see [8]; we use the notation AD(B) rather than A(B) to avoid colli-
sion with the notation for the one-point compacti�cation of a discrete set).
Thus, AD(B) = B � f0; 1g, all points of B � f1g are isolated in AD(B),

and for every b 2 B, the sets of the form W (U) =
�
U � f0g

�
[

�
U � f1g

�
n

�
(b; 1)

	
where U is an open neighborhood of b in B, form a base of

open neighborhoods of AD(B) at (b; 0). We denote B0 = B � f0g and
B1 = B�f1g. Obviously, B is homeomorphic to the subspace B0 of AD(B),
and B1 is a dense, open discrete set in AD(B). It is easy to see that AD(B)
is �rst-countable (recall that B is a subset of I = [0; 1]).

Let r : AD(B)! B be the projection, r(b; 0) = r(b; 1) = b for every
b 2 B. It is easy to check that r is a perfect map. De�ne r0 : AD(B)

! B0 by r0(x) =
�
r(x); 0

�
. Obviously, r0 is a retraction of AD(B) onto B0,

and the mapping r0 is homeomorphic to r.

2.1. Lemma. A subset P � B1 is closed in AD(B) if and only if r(P )
is closed and discrete in B.

Proof. If P is closed in AD(B), then r(P ) is closed and discrete in B
as the image of a closed discrete set under a perfect map. Conversely, if
r(P ) is closed and discrete, then P [ r0(P ) = r

�1
�
r(P )

�
is closed in AD(B).

Therefore, all limit points of P are in r0(P ). Take any y 2 r(P ). There is
an open neighborhood U of y in B such that U \ r(P ) = fyg. Then W (U)
is an open neighborhood of y � f0g in AD(B) disjoint from P . This proves
that P is closed and discrete. �

2.2. Lemma. AD(B) is a Lindel�of �-space.

Indeed, r is a perfect mapping of AD(B) onto the separable metrizable
space B.

Let X(B) be the space obtained by identifying to a point the set B0 in
AD(B) (formally, X(B) is the quotient space of AD(B) corresponding to the

decomposition
�
B0; fxg : x 2 B1

	
). Let p : AD(B)! X(B) be the natural

projection; obviously, p is closed, and all points of X(B) except the point
x� = B0 are isolated.

2.3. Proposition. X(B) is a Lindel�of �-space.
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This follows from Lemma 2.2 and the fact that X(B) is a continuous
image of AD(B).

2.4. Proposition. Cp
�
X(B)

�
is a Lindel�of �-space.

Proof. The fact that B is an EG-space (it is homeomorphic to a sub-
space of Cp(K) where K is a singleton) and Proposition 1.11 in [13] imply

that AD(B) is an EG-space. By Corollary 2.11 in [13], the space Cp
�
AD(B)

�
is a Lindel�of �-space.

Since X(B) is a quotient of the space AD(B), the space Cp
�
X(B)

�
is

homeomorphic to a closed subspace of Cp
�
AD(B)

�
(see e.g. Corollary 0.4.8

in [3]). The statement of the proposition now follows from the fact that the
class of Lindel�of �-spaces is hereditary with respect to closed subspaces. �

Obviously, nw
�
X(B)

�
=
��X(B)

�� = jBj. The following statement gives

a direct description of the neighborhoods of x� in X(B).

2.5. Proposition. Suppose that x� 2 V � X(B), and F = X(B) n V .

Then V is a neighborhood of x� in X(B) if and only if the set r
�
p
�1(F )

�
is

closed and discrete in B.

Proof. If V is a neighborhood of x�, then F = X(B) n V is closed; since
p is continuous, p�1(F ) is closed in AD(B). Since x� 62 F , we have p

�1(F )

� B1. By Lemma 2.1, the set r
�
p
�1(F )

�
is closed and discrete in B.

Conversely, if r
�
p
�1(F )

�
is closed and discrete in B, then by Lemma 2.1,

the set p�1(F ) is a closed subset of AD(B), and F is closed in X(B) because
p is quotient. �

Thus, X(B) may be viewed as the union of B and a singleton fx�g en-
dowed with the topology in which all points of B are isolated and a set
containing x� is open if and only if its complement is closed and discrete in
the original topology of B.

2.6. Proposition. If every compact subspace of B is countable, then
every compact subspace of X(B) is countable.

Proof. It is su�cient to verify that every uncountable set C in X(B)
such that x� 62 C contains an in�nite subset closed in X(B). By Proposition
2.5, this is equivalent to a statement that every uncountable subset of B
contains an in�nite closed discrete set, which is obviously true given that
every compact set in B is at most countable. �

Let A = I n B.

Proposition 2.7. If for every n 2 ! the space (IA)
n
is Lindel�of, then

p

�
Cp

�
X(B)

��
= !.

Proof. Suppose that for every n 2 ! the space (IA)
n is Lindel�of. To

prove p
�
Cp

�
X(B)

��
= !, by Theorem 1.1, it is enough to prove that for
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every disjoint family fA� : � < !1g of �nite sets in X(B) n fx�g there is an
in�nite S � !1 such that x� is not a limit point of

S
fA� : � 2 Sg.

Without loss of generality, there is an n 2 ! such that jA�j = n for all

� < !1. Let A� = fx
�

1 ; : : : ; x
�

n
g for each � < !1. The map p0 = pj

�
AD(B)

n B0

�
is a bijection, so (p0)

�1
is a function. For all � < !1 and i = 1; : : : ; n

put b�
i
= r

�
(p0)

�1
(x�

i
)
�
and z� = (b�1 ; : : : ; b

�

n
) 2 In.

Consider the subset H = fz� : � < !1g � B
n of the space (IA)

n. Obvi-
ously, all points of H are isolated in (IA)

n. Since H is uncountable, it has
a limit point z = (z1; : : : ; zn) in the Lindel�of space (IA)

n. The projection to
each factor of (IA)

n restricted to H is injective, because the sets A� are dis-
joint, and the image of H under each projection is contained in the set B of
isolated points of IA; it follows that none of the coordinates of the point z
can lie in B. Thus, z 2 An. Pick a sequence

�
hk = (h1

k
; : : : ; h

n

k
) : k 2 !

	
of

points of H that converges to z (note that the topologies at z 2 An are the
same in the spaces In and (IA)

n, so the character of (IA)
n at z is countable).

For each i = 1; : : : ; n the sequence Hi = fh
i

k
: k 2 !g converges to zi, hence

the set Hi is closed and discrete in B. For each k 2 ! there is an �k < !1

such that hk = z�k ; let S = f�k : k 2 !g. Then we have

Hi = r

�
p
�1
�
fx

�

i
: � 2 Sg

��
;

and by Proposition 2.5, the set Ti = fx
�

i
: � 2 Sg is closed and discrete in

X(B). Hence, x� is not a limit point for each Ti, i = 1; : : : ; n, and therefore
is not a limit point for the set

S
fA� : � 2 Sg =

S
fTi : i = 1; : : : ; ng. �

The following corollaries answer Problems 73 and 75 from [4].

2.8. Corollary. There exists a Lindel�of �-space X with a unique non-
isolated point such that Cp(X) is a Lindel�of �-space, p

�
Cp(X)

�
= ! and

nw(X) = c.

Proof. As shown in [14], there exists a subset B of I such that jBj = c

and all �nite powers of IInB are Lindel�of. Let X = X(B). The required
properties of X follow from Propositions 2.3, 2.4 and 2.7. �

2.9. Corollary. There exists a space Y such that Cp(Y ) is a Lindel�of
�-space, p(Y ) = !, and nw(Y ) = c.

Proof. Let X be the space as in Corollary 2.8. Put Y = Cp(X). We
already know that p(Y ) = !. Since X and Y = Cp(X) are Lindel�of �-spaces,

we can apply Theorem 2.12 in [12] to conclude that Cp(Y ) = Cp

�
Cp(X)

�
is

a Lindel�of �-space. Finally, nw(Y ) = nw(X) = c (see [3], Theorem I.1.1).
�

The network weight of the space X constructed in Corollary 2.8 is equal
to c. In fact, this is the maximum network weight such a space can have.

Acta Mathematica Hungarica 90, 2001



LINDEL�OF �-PROPERTY IN Cp(X) 127

2.10. Proposition. Suppose that X is a Lindel�of �-space such that
Cp(X) is a Lindel�of �-space and p

�
Cp(X)

�
= !. Then jXj 5 c.

Proof. Any Lindel�of �-space is a union of at most c compact subspaces.
This follows easily from the fact that Z is a Lindel�of �-space if and only if
there exists a family F = fFn : n 2 !g of closed subsets of Z such that for
some cover C of Z with compact elements, the family F is a network at each
C 2 C, i.e. if U 2 T (Z) and C � U , then P � Fn � U for some n 2 ! [11].
Let F be a compact subspace of the space X. The restriction mapping gives
is a continuous mapping of Cp(X) onto Cp(F ). Hence, Cp(F ) is a Lindel�of

�-space and p
�
Cp(F )

�
= !. Therefore, F is a Gul'ko compact space, so it

follows from p

�
Cp(F )

�
= ! that F is metrizable (see [5, Proposition 2.10]

and [9, Theorem 2]). Thus, X is a union of 5 c of metrizable compact sub-
spaces, whence jXj 5 c. �

3. A set B with p

�
Cp

�
X(B)

��
= c

It is not clear whether the inverse of Proposition 2.7 is true, that

is, whether p
�
Cp

�
X(B)

��
= ! implies that all �nite powers of IInB are

Lindel�of. It is not immediately clear in fact that any condition on B stronger
than that B is a Bernstein set is needed here at all. In this section we give

an example of a Bernstein set B � I such that p
�
Cp

�
X(B)

��
> !.

We say that a subset D of a Polish space M is n-big for some n 2 ! if
the space (MD)

n is Lindel�of. Thus, B is a Bernstein set if and only if M nB

is 1-big. Obviously, if D1 � D2, then the identity mapping MD1
!MD2

is
continuous; it follows that a superset of an n-big set is n-big.

We denote by C the Cantor cube 2! (with the usual product topology).
The next statement is a reformulation of Theorem 1.12 in [14]:

Theorem 3.1. Suppose M is a Polish space and n 2 !, n = 1. Then a
set D �M is n-big if and only if for every family of n continuous one-to-one
functions f1; : : : ; fn : C!M , we have

\�
f
�1
i

(D) : i = 1; : : : ; n
	
6= ;: �

Lemma 3.2. Let M be an uncountable Polish space, n 2 ! and n > 1. If
D is an n-big set in M , then there is a D1 � D such that D1 is (n� 1)-big
and not n-big.

Proof. Note that for every family of n continuous one-to-one functions
f1; : : : ; fn : C!M , the intersection

T�
f
�1
i

(D) : i = 1; : : : ; n
	
has cardi-

nality c. Indeed, C contains c disjoint homeomorphic copies of C, and by
Theorem 3.1, the intersection of the preimages of D under f1; : : : ; fn must
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meet each of them (otherwise the criterion will fail for the restrictions of fi
to one of these copies of C).

Fix a family � = fg1; : : : ; gng of continuous one-to-one functions from C
toM so that gi(C)\ gj(C) = ; if i 6= j (this is possible, because the uncount-
able Polish space M contains c disjoint copies of C). Let f	� : � < cg be
an enumeration of all families of n� 1 continuous one-to-one functions from
C to M .

For every P � C, Q �M and a family 	 of continuous functions from
C to M denote

	(P ) =
[�

f(P ) : f 2 	
	

and 	�1(Q) =
[�

f
�1(Q) : f 2 	

	
:

Construct by induction on � < c sets A� �M and points x� 2 C so that
(1) A� = 	�

�
fx�g

�
, and

(2) x� 2
�T�

f
�1(D) : f 2 	�

	�
n

�S�
	�1
�
	��

�1(A�) : � < �
	�

for all � < c.
Thus, at the step � we pick a point x� in P� =

T�
f
�1(D) : f 2 	�

	
that does not belong to

S�
	�1
�
	��

�1(A
) : 
 < �

	
; the choice of x� is

possible, because jP�j = c, and the cardinality of the union does not exceed
! � j�j < c. Since x� 2 P� the set A� is contained in D.

Let D1 =
S
fA� : � < cg. Then D1 � D. If 	 is a family of n� 1 contin-

uous one-to-one functions from C to M , then 	 = 	� for some � < c. Since
A� � D1, we have x� 2

T�
f
�1(D1) : f 2 	

	
, so

T�
f
�1(D1) : f 2 	

	
6= ;,

and by Theorem 3.1, D1 is (n� 1)-big.
Let us now check that D1 is not n-big. By Theorem 3.1, it su�ces

to check that
T�

g
�1
i
(D1) : i = 1; : : : ; n

	
= ;. Suppose for contradiction

that x 2
T�

g
�1
i
(D1) : i = 1; : : : ; n

	
. Then gi(x) 2 D1 and there are �i < c,

i = 1; : : : ; n, such that gi(x) 2 A�i
= 	�i

(x�i). Since the images of C un-
der gi, i = 1; : : : ; n are disjoint, we have gi(x) 6= gj(x) whenever i 6= j. Fur-

thermore,
��	�(x)

�� 5 n� 1 for all � < c and x 2 C. It follows that the

set f�1; : : : ; �ng contains at least two distinct ordinals. Let j; k < n be

such that �j < �k. But then x�k 2 	�1
�k

�
�(x)

�
, and x 2 ��1(A�j

), so

x�k 2 	�k
���1(A�j

), in contradiction with the property (2) of the con-
struction. �

Example 3.3. There exists a Bernstein set B in I such that
p

�
Cp

�
X(B)

��
= c.

Namely, by Theorem 1.13 in [14], there are disjoint 2-big sets B1 and B2

in I. Let A be a 1-big subset of B1 that is not 2-big, and let B = I nA.
Since B2 � B, the set B is 2-big. The set B is Bernstein, because A = I nB

is 1-big.
By Theorem 1.2, to show that the point-�nite cellularity of Cp

�
X(B)

�
is

equal to c, it su�ces to �nd a family A of cardinality c of two-point subsets
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in X(B) n fx�g so that for every in�nite subfamily S of A, the point x� is in
the closure of

S
S.

By Theorem 3.2, there are continuous one-to-one functions g1; g2 : C!

I such that g�11 (A) \ g�12 (A) = ;. On the other hand, since B is 2-big, the

intersection of g�11 (B) \ g�12 (B) with every set in C homeomorphic to C is

not empty, so the set P = g
�1
1 (B) \ g�12 (B) has the cardinality c.

For each c 2 P put Bc =
�
g1(c); g2(c)

	
and Ac = p

�
Bc � f1g

�
where

p : AD(B)! X(B) is the natural projection.
Let us verify that the family A = fAc : c 2 Pg is as required. Let

H =
��

g1(c); g2(c)
�
: c 2 P

	
� I � I. The set

K = (g1 � g2)(C�C) =
��

g1(c); g2(d)
�
: c; d 2 C

	

is compact and contains H. On the other hand, the intersection of K with
A�A is empty, because g�11 (A) \ g�12 (A) = ;. Hence, the closure of H in
I � I is disjoint with A.

Suppose B is an in�nite subfamily of in A. Then there is an in�nite set

S � P such that B = fAc : c 2 Sg. The set HS =
��

g1(c); g2(c)
�
: c 2 S

	

is in�nite, and hence has a limit point (a0; b0) in the compact space I � I.
Since HS � H and the closure of H does not meet A�A, either a0 or b0
is in B. This implies that at least one of the sets

�
g1(c) : c 2 S

	
,
�
g2(c) :

c 2 S

	
has a limit point in B, and hence the union

S
fBc : c 2 Sg is not

closed discrete in B. By Proposition 2.5, the point x� is in the closure of the
set

S
fAc : c 2 Sg. �

Recall that Lp(X) is the subspace of Cp(X) formed by all linear continu-
ous functions on Cp(X). For every x 2 X de�ne bx : Cp(X)! R by the rule:

bx(f) = f(x) for all f 2 Cp(X). The set bX = fbx : x 2 Xg is a Hamel base of
the space Lp(X) (see [3], Section 0.5).

For every M � Lp(X) de�ne the set suppM as the minimum subset L
of X such that M lies in the linear hull of L. A subset A of a topological
space X is called bounded in X if every real-valued continuous function on
X is bounded on A.

The next assertion is proved in [2].

Theorem 3.4. If K is a compact set in Lp(X), then the set suppK is
bounded in X. �

Example 3.5. There exists a space X with a unique non-isolated point
such that

(1) X and Cp(X) are Lindel�of �-spaces,

(2) Every compact set in Lp(X) is metrizable, in particular, a
�
Lp(X)

�
= !;

(3) p
�
Cp(X)

�
= c, and hence, a

�
Cp

�
Cp(X)

��
= c.
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Namely, let B be as in Theorem 3.3 and X = X(B). Then X and
Cp(X) are Lindel�of �-spaces by Propositions 2.3 and 2.4. By the choice

of X, we have p
�
Cp(X)

�
= c, and by Theorem 1 in [16], we conclude that

a

�
Cp

�
Cp(X)

��
= c.

Let K be a compact set in Lp(X). Then suppK is bounded in X, and
since X has only one non-isolated point, the closure of suppK in X is com-
pact. It follows from Proposition 2.6 that suppK is countable. Hence, K lies
in a linear subspace of Lp(X) generated by a countable set, so the network
weight of K is countable. Since K is compact, it is metrizable. �

Let K be a subset of Cp
�
Cp(X)

�
and L � X. We say that K admits a

(continuous) factorization through L if for every � 2K there is a (continuous)

function  : Cp
�
XjL

�
! R such that � =  � rL; here rL : Cp(X)! Cp(L)

is the restriction mapping, and Cp
�
XjL

�
= rL

�
Cp(X)

�
. It is easy to see that

if L � L1 and K admits a (continuous) factorization through L, then it also
admits a (continuous) factorization through L1. Note that if L is closed, then
every factorization through L is continuous, because the restriction mapping
rL is open (see Proposition 0.4.1 in [3]).

Theorem 3.4 implies that every compact subset of Lp(X) admits a contin-
uous factorization through a bounded set in X, and by the factorization the-
orem in [1], every singleton in Cp

�
Cp(X)

�
admits a continuous factorization

through a countable set. This led the �rst author to conjecture some time
ago that every compact set in Cp

�
Cp(X)

�
admits a factorization through a

�-bounded set in X (that is, a countable union of bounded sets in X). It
turns out that this conjecture fails for X as in Example 3.5.

Example 3.6. There exist a space X with one non-isolated point and a
compact set K � Cp

�
Cp(X)

�
such that

(1) X and Cp(X) are Lindel�of �-spaces,
(2) K is homeomorphic to the one-point compacti�cation A(c) of the dis-

crete space of cardinality c,
(3) K does not admit factorization through a �-bounded subset of X.

Namely, let X be as in Example 3.5; since a
�
Cp(Cp(X)

�
= c, there is

a compact set K in Cp(X) homeomorphic to A(c). Suppose L0 is a �-
bounded subset of X. Then L0 is countable. Indeed, it is easy to see
that in a space with one non-isolated point the closure of every bounded
set is compact; by Proposition 2.6, every compact set in X is count-
able. Let L = L0 [ fx�g; then L is closed in X and L0 � L. Since L is

countable, the weight of the space Cp

�
XjL

�
� Cp(L) is countable. Let

r
#
L

: Cp
�
Cp

�
XjL

��
! Cp

�
Cp(X)

�
be the dual mapping of rL (de�ned by

r
#
L
( ) =  � rL for every  2 Cp

�
Cp

�
XjL

��
; see Section 0.4 in [3]). Since

r
#
L

is continuous and nw

�
Cp

�
Cp(XjL)

��
= nw

�
Cp

�
XjL

��
= !, we have
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nw

�
r
#
L

�
Cp

�
Cp

�
XjL

����
5 !, and since nw(K) = c, there is a function �0

2 K such that �0 62 r
#
L

�
Cp

�
Cp(XjL)

��
. This means that there is no con-

tinuous function  : Cp
�
XjL

�
! R such that �0 =  � rL, and since rL is

open, there is no function  : Cp
�
XjL

�
! R such that �0 =  � rL (if there

were one, it would be continuous). Thus, K does not admit a factorization
through L, and hence through L0. �

4. Unsolved problems

The most intriguing one is to characterize for an arbitrary Tychono�
space X the countability of the point-�nite cellularity of Cp(X) in terms of
the topology of the space X. Since there is no general criterion yet, many
questions on particular cases remain open.

5.1. Question. Is it consistent with ZFC that every perfectly normal
compact space X with p

�
Cp(X)

�
= ! is metrizable?

5.2. Question. Let X be a Souslin continuum, i.e. a non-separable lin-
early ordered perfectly normal compact space. Is it true that p

�
Cp(X)

�
= !?

5.3. Question. Is there a ZFC example of a non-metrizable �rst count-
able compact space X such that p

�
Cp(X)

�
= !?

5.4. Question. Let X be a Corson compact space such that p
�
Cp(X)

�
= !. Must X be metrizable?

5.5. Question. Suppose that p
�
Cp(X)

�
= ! and Cp(X) is a Lindel�of

�-space. Is it true that jXj 5 c?

5.6. Question. Suppose that p(X) = ! and Cp(X) is a Lindel�of
�-space. Is it true that nw(X) 5 c?

5.7. Question. Suppose that p
�
Cp(X)

�
= !. Is it true that p

�
Cp(�X)

�
= !?
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