Acta Math. Hungar., **114 (1–2)** (2007), 91–101. DOI: 10.1007/s10474-006-0515-9

ON THE MULTIPLICITY OF THE EIGENVALUES OF A GRAPH

J. A. DE LA $\rm PE\tilde{N}A^1$ and J. $\rm RADA^2$ *

¹ Instituto de Matemáticas, UNAM. Cd. Universitaria, México 04510 D.F. e-mail: jap@matem.unam.mx

² Departamento de Matemáticas, Facultad de Ciencias, Universidad de los Andes, Mérida, Venezuela e-mail: juanrada@ula.ve

(Received June 20, 2005; revised July 10, 2006; accepted July 12, 2006)

Abstract. Given a graph G with characteristic polynomial $\varphi(t)$, we consider the ML-decomposition $\varphi(t) = q_1(t)q_2(t)^2 \dots q_m(t)^m$, where each $q_i(t)$ is an integral polynomial and the roots of $\varphi(t)$ with multiplicity j are exactly the roots of $q_j(t)$. We give an algorithm to construct the polynomials $q_i(t)$ and describe some relations of their coefficients with other combinatorial invariants of G. In particular, we get new bounds for the energy $E(G) = \sum_{i=1}^n |\lambda_i|$ of G, where $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of G (with multiplicity). Most of the results are proved for the more general situation of a Hermitian matrix whose characteristic polynomial

1. Introduction

Let A be a Hermitian $n \times n$ matrix such that the characteristic polynomial $\varphi_A(t) = \det(tI_n - A)$ has integral coefficients. We consider the *multiplicity layered decomposition* (ML-*decomposition* for short) of $\varphi_A(t)$:

has integral coefficients.

^{*}This work was done during a visit of the second named author to UNAM.

Key words and phrases: Hermitian matrix, eigenvalues, characteristic polynomial, energy of a graph.

²⁰⁰⁰ Mathematics Subject Classification: 05C50, 15A48.

J. A. DE LA PEÑA and J. RADA

(ML1) $\varphi_A(t) = q_1(t)q_2(t)^2 \dots q_m(t)^m$ with $q_j(t) \in \mathbf{Z}[t]$ and $1 \neq q_m(t)$; (ML2) $\lambda \in \mathbf{R}$ is a root of $\varphi_A(t)$ with multiplicity j if and only if $q_j(\lambda) = 0$.

Obviously, if $\varphi_A(t)$ has no roots of multiplicity j, then $q_j(t) = 1$. We shall give an algorithmic construction of the polynomials $q_j(t)$ using the Euclidean algorithm in the family of derivatives $\varphi_A^{(j)}(t)$ of $\varphi_A(t)$. We show that the following properties are satisfied by the ML-decomposition.

(ML3) λ is a root of $q_j(t)$ if and only if for every principal $i \times i$ submatrix B of A with $n - j + 1 \leq i \leq n$, we have $\varphi_B(\lambda) = 0$ and $\varphi_{B'}(\lambda) \neq 0$ for a principal $(n - j) \times (n - j)$ submatrix B' of A.

(ML4) For $1 \leq j \leq m-1$ the derivative $\varphi_A^{(j)}(t)$ accepts an ML-decomposition $\varphi_A^{(j)}(t) = \hat{q}_{j+1}(t)q_{j+2}(t)^2 \dots q_m(t)^{m-j}$ with $\hat{q}_{j+1}(t) = r_j(t)q_{j+1}(t)$ for some $r_j(t) \in \mathbf{Z}[t]$, such that the simple roots of $\varphi_A^{(j)}(t)$ are exactly the roots of $\hat{q}_{j+1}(t)$.

Motivation for considering the ML-decomposition arises from applications to connected graphs G without loops or multiple edges and its characteristic polynomial $\varphi_G(t) = \varphi_{A(G)}(t)$ where A(G) is the adjacency matrix of G. Multiplicities of roots of $\varphi_G(t)$ are related to symmetries of the graph G [3, Ch. 6], regularity properties [3, Ch. 7] and important structural properties of the graph G. Moreover, in this paper we get further elementary applications of the ML-decomposition for $\varphi_G(t)$. Indeed, let $q_j(t) = t^{n_j} + a_{j1}t^{n_{j-1}} + \cdots$ $+ a_{jn_j}$ be the polynomials obtained from the ML-decomposition. We show the following:

(a) $\varphi_G(t) = q_1(t)q_2(t)^2 \dots q_m(t)^m$ with m = m(G) maximal j such that $n_j \ge 1$.

(b) $n_1 \ge 1$, since the spectral radius $\rho(G) = \max \{ \|\lambda\| : \varphi_G(\lambda) = 0 \}$ is a simple root of $\varphi_G(t)$.

(c) If $K = G \setminus \{a_1, \ldots, a_k\}$ is obtained from G by deleting the vertices a_1, \ldots, a_k , then $m(G) \leq m(K) + k$.

(d) $\frac{\varphi'_G(t)}{\varphi_G(t)} = \sum_{j=1}^m j \frac{q'_j(t)}{q_j(t)}$; which implies that a real number λ is a root of

 $\varphi_G(t)$ with multiplicity m_{λ} if and only if $\lim_{t \to \lambda} \frac{(t-\lambda)\varphi'_G(t)}{\varphi_G(t)} = m_{\lambda}$.

(e) The minimal polynomial of A(G) is $\mu_G(t) = q_1(t)q_2(t) \dots q_m(t)$. In particular, $\sum_{j=1}^m n_j \ge \text{diam}(G) + 1$, where diam(G) is the diameter of the graph G. As a consequence we also get $m(G) \le n - \text{diam}(G)$.

Acta Mathematica Hungarica 114, 2007

For any polynomial q(t) with real roots, define the *energy* of q(t) by $E(q(t)) = \sum |\lambda|$, where λ runs over the roots of q(t), counting multiplicities.

(f) $E(G) = \sum_{j=1}^{m} j E(q_j(t))$, which yields the following McClelland-type

bounds for the energy:

$$\sum_{j=1}^{m} j \sqrt{a_{j1}^2 - 2a_{j2} + n_j(n_j - 1)|a_{jn_j}|^{2/n_j}} \leq E(G) \leq \sum_{j=1}^{m} j \sqrt{n_j(a_{j1}^2 - 2a_{j2})}.$$

2. The multiplicity layered decomposition

2.1. Let A be a Hermitian $n \times n$ matrix such that the characteristic polynomial $\varphi_A(t)$ has integral coefficients. Then the eigenvalues of A are the roots of $\varphi_A(t)$, all of them real $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. For any eigenvalue λ of A, we denote by m_{λ} the multiplicity of λ (writing $m(A, \lambda)$ if some confusion arises).

We shall consider irreducible polynomials in $\mathbf{Z}[t]$ (or equivalently in $\mathbf{Q}[t]$).

LEMMA. Let λ be an eigenvalue of A with multiplicity m_{λ} . Let q(t) be an irreducible polynomial such that $q(\lambda) = 0$. Then the following happen:

(a) q(t) has minimal degree among those polynomials $p(t) \in \mathbf{Z}[t]$ with $p(\lambda) = 0$.

(b) If $q(\lambda') = 0$ for some $\lambda' \in \mathbf{C}$, then λ' is an eigenvalue of A with $m_{\lambda'} = m_{\lambda}$.

PROOF. (a) In fact q(t) generates the ideal in $\mathbf{Z}[t]$ of those p(t) with $p(\lambda) = 0$.

(b) q(t) divides $\varphi_A(t)$, hence λ' is an eigenvalue of A. The multiplicity m_{λ} is the maximal i such that $q(t)^i$ divides $\varphi_A(t)$. Therefore $m_{\lambda} = m_{\lambda'}$. \Box

2.2. According to (2.1) we consider irreducible polynomials $p_1(t), \ldots, p_s(t) \in \mathbf{Z}[t]$ such that each λ_i is a root of exactly one $p_j(t), 1 \leq i \leq n$. For each $1 \leq i \leq s$, consider $r(j) = \max \{k : p_j(t)^k \text{ divides } \varphi_A(t)\}$. Set

$$q_i(t) = \prod_{r(j)=i} p_j(t),$$

which yields an ML-decomposition $\varphi_A(t) = q_1(t)q_2(t)^2 \dots q_m(t)^m$.

Since $\varphi_A(t)$ is a monic polynomial, we may assume that each $p_j(t)$ and also $q_j(t)$ are monic polynomials. Set $m(G) = \max\{j : q_j(t) \neq 1\}$. We shall need the following:

LEMMA (cf. [1]). $\varphi_A^{(k)}(t) = k! \sum_{\mathcal{P}_{n-k}(A)} \varphi_B(t)$, where the sum runs over the

set $\mathcal{P}_{n-k}(A)$ of all principal $(n-k) \times (n-k)$ -submatrices of A.

PROOF. The proof in [1] considers the case k = 1. The general statement follows by induction. \Box

2.3. PROPOSITION. For a root λ of $\varphi_A(t)$ the following are equivalent:

(a) λ has multiplicity k.

(b) $q_k(\lambda) = 0.$

(c) For any principal $j \times j$ -submatrix B of A with $n - k + 1 \leq j \leq n$, we have $\varphi_B(\lambda) = 0$ and $\varphi_{B'}(\lambda) \neq 0$ for some $(n - k) \times (n - k)$ -submatrix B'of A.

PROOF. (a) \Leftrightarrow (b) is clear.

(b) \Rightarrow (c) Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be the eigenvalues of A and $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_j$ those of a principal $j \times j$ -submatrix B of A with $n - k + 1 \leq j \leq n$, then by the *interlacing theorem* (see for example [3] for other applications):

$$\lambda_i \leq \mu_i \leq \lambda_{n-j+i}, \ (i=1,\ldots,j).$$

If $\lambda_t = \lambda_{t+1} = \cdots = \lambda_{t+k-1} = \lambda$, then $\lambda_t \leq \mu_t \leq \lambda_{n-j+t}$ with $n-j+t \leq t+k-1$ and $\mu_t = \lambda$.

In case λ is a root of all $B \in \mathcal{P}_k(A)$, then by the lemma above, $\varphi_A^{n-k}(\lambda) = 0$ and λ has multiplicity at least k + 1, a contradiction.

(c) \Rightarrow (a) Apply again the Lemma.

2.4. Let A be a Hermitian matrix with characteristic polynomial $\varphi_A(t) \in \mathbf{Z}[t]$. Let $\varphi_A(t) = \prod_{j=1}^m q_i(t)^i$ the ML-decomposition with $q_m(t) \neq 1$.

LEMMA. $q_m(t) = \operatorname{mcd} \left(\varphi_A(t), \varphi_A^{(1)}(t), \dots, \varphi_A^{(m-1)}(t) \right).$

PROOF. The claim follows from a straightforward but tedious calculation, we shall illustrate only the case m = 3.

 $\varphi_A = q_1 q_2^2 q_3^3$ (omitting the variable t),

$$\varphi'_A = q'_1 q_2^2 q_3^3 + 2q_1 q_2 q'_2 q_3^3 + 3q_1 q_2^2 q_3^2 q'_3 = (q'_1 q_2 q_3 + 2q_1 q'_2 q_3 + 3q_1 q_2 q'_3) q_2 q_3^2,$$

where the polynomial r_1 in parenthesis is not divisible by any q_i , i = 1, 2, 3. (Indeed, if p is an irreducible factor of q_1 dividing also r_1 , then $p \mid q'_1q_2q_3$. By (2.1), $p \nmid q_i$, i = 2, 3 and therefore $p \mid q'_1 = p's + ps'$ where $s \in \mathbb{Z}[t]$ such that $q_1 = ps$. This implies $p \mid p's$ and $p \mid s$, which in turn implies that q_1 has multiple roots, a contradiction. The cases i = 2, 3 are similar.) Now, $\varphi''_A = r_2q_3$ with $r_2 = r'_1q_2q_3 + r_1q'_2q_3 + 2r_1q_2q'_3$ is not divisible by any q_i , i = 1, 2, 3. Hence $q_3 = \text{mcd}(\varphi_A, \varphi'_A, \varphi''_A)$.

Acta Mathematica Hungarica 114, 2007

The inductive construction of the polynomials $q_1(t), \ldots, q_m(t)$ is easily carried out:

$$q_{m}(t) = \operatorname{mcd}\left(\varphi_{A}(t), \varphi_{A}'(t), \dots, \varphi_{A}^{(m-1)}(t)\right),$$

$$q_{m-1}(t) = \operatorname{mcd}\left(\frac{\varphi_{A}(t)}{q_{m}(t)^{m}}, \frac{\varphi_{A}'(t)}{q_{m}(t)^{m-1}}, \dots, \frac{\varphi_{A}^{(m-2)}(t)}{q_{m}(t)^{2}}\right),$$

$$\vdots$$

$$q_{2}(t) = \operatorname{mcd}\left(\frac{\varphi_{A}(t)}{q_{3}(t)^{3} \dots q_{m}(t)^{m}}, \frac{\varphi_{A}'(t)}{q_{3}(t)^{2} \dots q_{m}(t)^{m-1}}\right),$$

$$q_{1}(t) = \frac{\varphi_{A}(t)}{q_{2}(t)^{2}q_{3}(t)^{3} \dots q_{m}(t)^{m}}.$$

2.5. To get more precise information on the derivatives of $\varphi_A(t)$ we need some results of elementary analysis.

PROPOSITION. Let p(t) be a polynomial of degree n whose roots are real. Then the following hold:

(a) For every $1 \leq j \leq n-1$, $p^{(j)}(t)$ has only real roots. (b) If $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ are the roots of p(t) and $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_j$ the roots of $p^{(j)}(t)$, then $\lambda_i \leq \mu_i \leq \lambda_{n-j+i}$ $(i = 1, \dots, j)$. \Box

2.6. Let $\varphi_A(t) = \prod_{i=1}^m q_i(t)^i$ be the ML-decomposition as above.

PROPOSITION. For any $i \ge 1$, the following is an ML-decomposition:

$$\varphi_A^{(i)}(t) = \left(r_i(t)q_{i+1}(t)\right)q_{i+2}(t)^2 \dots q_m(t)^{m-i},$$

that is, λ is a simple root of $\varphi_A^{(i)}(t)$ if and only if $r_i(\lambda) = 0$ or $q_{i+1}(\lambda) = 0$, where $r_i = r'_{i-1}q_iq_{i+1}\dots q_m + \sum_{j=0}^{m-i} (j+1)r_{i-1}q_i\dots q_{i+j-1}q'_{i+j}q_{i+j+1}\dots q_m$, with $r_0(t) = 1.$

PROOF. The given decomposition follows by induction. It is enough to show that λ is a simple root of $\varphi_A^{(i)}(t)$ if and only if $r_i(\lambda) = 0$ or $q_{i+1}(\lambda) = 0$. We show it by induction on *i*, the case i = 0 being clear.

Assume $q_{i+1}(\lambda) = 0$ and λ is not a simple root of $\varphi_A^{(i)}(t)$. Then by (2.1), $r_i(\lambda) = 0$. Hence $r_{i-1}(\lambda)q_i(\lambda)q'_{i+1}(\lambda)q_{i+1}(\lambda)\dots q_m(\lambda) = 0$ and only $r_{i-1}(\lambda)$ = 0 is possible, which contradicts the induction hypothesis.

Assume $r_i(\lambda) = 0$ and λ is not a simple root of $\varphi_A^{(i)}(t)$. By (2.5), λ is also a root of $\varphi_A^{(i-1)}(t) = (r_{i-1}(t)q_i(t))q_{i+1}(t)^2 \dots q_m(t)^{m-i+1}$.

If $r_{i-1}(\lambda) = 0$, by induction hypothesis, λ is a simple root of $\varphi_A^{(i-1)}(t)$. On the other hand, $r'_{i-1}(\lambda)q_i(\lambda)\ldots q_m(\lambda) = 0$ and either $r'_{i-1}(\lambda) = 0$ or $q_{i+j}(\lambda) = 0$ (for any $0 \leq j \leq m-i$) yield a contradiction.

If $q_{i+j}(\lambda) = 0$ for some $0 \leq j \leq m - i$, we get

$$r_{i-1}(\lambda)q_i(\lambda)\dots q_{i+j-1}(\lambda)q'_{i+j}(\lambda)\dots q_m(\lambda) = 0$$

which also yields a contradiction.

The converse of the claim is clear. \Box

2.7. The following result shows an interesting relation between the polynomials $r_i(t)$ as defined in (2.6).

PROPOSITION. For $1 \leq i \leq m-1$, and for any $\lambda \in \mathbf{R}$, we have

$$r_i(\lambda)^2 \ge r_{i-1}(\lambda)q_i(\lambda)r_{i+1}(\lambda).$$

PROOF. Any polynomial p(t) having only real roots $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_n$ satisfies

$$\frac{p'(t)}{p(t)} = \sum_{i=1}^{n} \frac{1}{t - \mu_i} \quad \text{and} \quad \frac{p''(t)p(t) - p'(t)^2}{p(t)^2} = -\sum_{i=1}^{n} \frac{1}{(t - \mu_i)^2}$$

which is negative for any $\lambda \neq \mu_i$ $(1 \leq i \leq n)$. Hence

$$p'(\lambda)^2 \ge p''(\lambda)p(\lambda)$$
 for any $\lambda \in \mathbf{R}$.

Applying this inequality for $p(t) = \varphi_A^{(i)}(t)$ and using (2.6) the result follows.

3. ML-decomposition for graphs

3.1. Let G be a connected graph without loops or multiple edges. Let $1, \ldots, n$ be the vertices of G and A = A(G) its adjacency matrix. The results of Section 2 apply since A is a symmetric matrix and the characteristic polynomial $\varphi_G(t)$ has integral coefficients. Set $\varphi_G(t) = t^n + a_1 t^{n-1} + \cdots + a_n$ and let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be its (real) roots.

Acta Mathematica Hungarica 114, 2007

Consider the ML-decomposition $\varphi_G(t) = \prod_{j=1}^m q_j(t)^j$ with $n_m \ge 1$, where n_j is the degree of $q_j(t)$ (write m(G) := m). The Perron–Frobenius Theorem (see [4]) says that the spectral radius $\rho(G)$ is a simple root of $\varphi_G(t)$. Therefore $q_1(t) \ne 1$.

The minimal polynomial is $\mu_G(t) = \prod_{j=1}^m q_j(t)$.

3.2. EXAMPLES. (1) Let G be the cubic graph

with 10 vertices and characteristic polynomial

$$\varphi(t) = t^{10} - 15t^8 - 4t^7 + 75t^6 + 24t^5 - 157t^4 - 36t^3 + 144t^2 + 16t - 48.$$

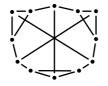
Then

$$q_1(t) = t^2 - 5t + 6 = (t - 3)(t - 2)$$
 and $\rho(G) = 3$,
 $q_2(t) = t + 1$, $q_3(t) = t^2 + t - 2 = (t - 1)(t + 2)$.

The ML-decompositions of the derivatives of $\varphi(t)$ are as follows:

$$\varphi'(t) = \left[(5t^4 - 15t^3 - 10t^2 + 36t + 2)(t+1) \right] \left[(t-1)(t+2) \right]^2$$
$$\varphi''(t) = \left[(15t^6 - 15t^5 - 95t^4 + 37t^3 + 148t^2 + 6t - 24)(t-1)(t+2) \right].$$

(2) Let G be the cubic graph



with 12 vertices and with characteristic polynomial

$$\varphi(t) = t^{12} - 18t^{10} - 2t^9 + 117t^8 + 72t^7 - 339t^6$$
$$- 306t^5 + 414t^4 + 532t^3 - 99t^2 - 324t - 108.$$

Then

$$q_1(t) = t - 3$$
 and $\rho(G) = 3$,

$$q_2(t) = t^3 - t^2 - 5t + 6 = (t - 2)(t^2 + t - 3)$$
 with roots $-2.3 < 1.3 < 2$,
 $q_5(t) = t + 1$.

3.3. Let G be a graph as in (3.1). The principal $(n-k) \times (n-k)$ submatrices of A(G) correspond to the full subgraphs of G obtained by deleting k vertices. Then (2.2) and (2.3) yield:

PROPOSITION. Let λ be a root of $\varphi_G(t)$. The following are equivalent:

(a) λ has multiplicity k.

(b) $q_k(\lambda) = 0.$

(c) For any full subgraph $K = G \setminus \{a_1, \ldots, a_j\}$ with $n - k + 1 \leq j \leq n$ we have $\varphi_K(\lambda) = 0$ and there is a full subgraph $K' = G \setminus \{a_1, \ldots, a_{n-k}\}$ with $\varphi_{K'}(\lambda) \neq 0.$

COROLLARY. Let $K = G \setminus \{a_1, \ldots, a_k\}$ be a full subgraph of G. Then $m(G) \leq m(K) + k.$

3.4. For any polynomial p(t) with (possibly repeated) real roots $\lambda_1 \leq \lambda_2$ $\leq \cdots \leq \lambda_n$, we have

$$\frac{p'(t)}{p(t)} = \sum_{i=1}^{n} \frac{1}{t - \lambda_i}$$

Hence for the ML-decomposition we get

$$\frac{\varphi'_G(t)}{\varphi_G(t)} = \sum_{j=1}^m j \, \frac{q'_j(t)}{q_j(t)}.$$

There are several uses of these rational functions (see [5, Ch. 2]). Two important facts are the following:

- (a) $\lim_{t \to \lambda} \frac{\varphi'_G(t)(t-\lambda)}{\varphi_G(t)} = m_\lambda \text{ is the multiplicity of } \lambda \text{ as a root of } \varphi_G(t).$ (b) $\frac{\varphi'_G(t)}{\varphi_G(t)} = \sum_{r \ge 0} \operatorname{tr} \left(A(G)^r \right) x^{-(r+1)} \text{ is the generating function in the vari-}$

able x^{-1}

Note that tr $(A(G)^r)$ counts the number of closed walks of length r in G.

Acta Mathematica Hungarica 114, 2007

For the polynomials $q_j(t) = t^{n_j} + a_{j1}t^{n_j-1} + \dots + a_{jn_j}$ we define the *companion matrix*

$$A_{j} = \begin{bmatrix} -a_{j1} & -a_{j2} & \dots & -a_{jn_{j-1}} & -a_{jn_{j}} \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ & & \ddots & \vdots & \vdots \\ 0 & & 1 & 0 \end{bmatrix}$$

which satisfies det $(tI_{n_j} - A_j) = q_j(t)$. The trace of the powers A_j^r is easily written as a polynomial in the coefficients a_{j1}, \ldots, a_{jn_j} . For instance:

tr
$$(A_j) = -a_{j1}$$
, tr $(A_j^2) = a_{j1}^2 - 2a_{j2}$, tr $(A_j^3) = -a_{j1}^3 + 3a_{j1}a_{j2} - 2a_{j3}$.
PROPOSITION. tr $(A(G)^r) = \sum_{j=1}^m j \operatorname{tr} (A_j^r)$.

3.5. The *diameter* diam (G) of G is the longest distance between two vertices of G.

PROPOSITION. (a) $\sum_{j=1}^{m(G)} n_j \ge \operatorname{diam}(G) + 1.$ (b) $\sum_{j=2}^{m(G)} (j-1)n_j \le n - \operatorname{diam}(G) - 1.$ (c) $m(G) \le n - \operatorname{diam}(G).$

PROOF. (a) $\sum_{j=1}^{m(G)} n_j$ is the number of distinct eigenvalues of G. This

number is at least diam (G) + 1 (see for example [3, 3.13]).

(b) Since $n = \sum_{j=1}^{m(G)} jn_j$, the inequality follows from (a). (c) Follows from (b). \Box

4. The energy of a graph and the ML-decomposition

4.1. The purpose of this section is to obtain McClelland-type bounds for the energy of a graph as an application of the ML-decomposition.

First observe that McClelland's bounds hold for quite general situations namely:

THEOREM (cf. [7]). Let A be a Hermitian $n \times n$ -matrix and let E(A) $=\sum_{i=1}^{n} |\lambda_i|$ be the energy of A, where $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ are the eigenvalues of A counted with multiplicities. Then

$$\sqrt{\operatorname{tr}(A^2) + n(n-1)} \det A|^{2/n} \leq E(A) \leq \sqrt{n \operatorname{tr}(A^2)}$$

PROOF (cf. [6]). We have

$$E(A)^{2} = \sum_{i=1}^{n} |\lambda_{i}|^{2} + 2\sum_{j < k} |\lambda_{j}| |\lambda_{k}| = \operatorname{tr}(A^{2}) + n(n-1) \operatorname{AM}\{|\lambda_{j}| |\lambda_{k}|\},\$$

where AM denotes the arithmetic mean. Let GM $\{ |\lambda_j| |\lambda_k| \} = |\det A|^{2/n}$ be the geometric mean. Then $GM \leq AM$ yields the first inequality. Moreover, the variance of the numbers $|\lambda_j|, j = 1, 2, ..., n$ is:

$$0 \leq \operatorname{var}\left\{\left|\lambda_{j}\right|\right\} = \operatorname{AM}\left\{\left|\lambda_{j}\right|^{2}\right\} - \left(\operatorname{AM}\left\{\left|\lambda_{j}\right|\right\}\right)^{2}$$
$$= \frac{1}{n}\sum_{j=1}^{n}\left|\lambda_{j}\right|^{2} - \left[\frac{1}{n}\sum_{j=1}^{n}\left|\lambda_{j}\right|\right]^{2} = \frac{1}{n}\operatorname{tr}\left(A^{2}\right) - \left(\frac{E(A)}{n}\right)^{2}$$

and the second inequality holds.

4.2. THEOREM. We have

$$\sum_{j=1}^{m(G)} j\sqrt{[a_{j1}^2 - 2a_{j2}] + n_j(n_j - 1)|a_{jn_j}|^{2/n_j}} \leq E(G) \leq \sum_{j=1}^{m(G)} j\sqrt{n_j[a_{j1}^2 - 2a_{j2}]}.$$

PROOF. Using that

$$\frac{\varphi'_G(t)}{\varphi_G(t)} = \sum_{j=1}^{m(G)} j \frac{q'_j(t)}{q_j(t)} \quad \text{and} \quad n = \sum_{j=1}^{m(G)} j n_j,$$

and Coulson Theorem [2], we get

$$E(G) = \frac{1}{\pi} \int_{-\infty}^{\infty} \left[n - \frac{it\varphi'_G(it)}{\varphi_G(it)} \right] dt = \sum_{j=1}^{m(G)} \frac{j}{\pi} \int_{-\infty}^{\infty} \left[n_j - \frac{itq'_j(it)}{q_j(it)} \right] dt$$
$$= \sum_{j=1}^{m(G)} jE(A_j),$$

Acta Mathematica Hungarica 114, 2007

where A_j is the companion matrix of $q_j(t)$. Here $i = \sqrt{-1}$.

By (3.4), tr $(A_j^2) = a_{j1}^2 - 2a_{j2}$ and det $A_j = a_{jn_j}$. The result follows from (4.1).

4.3. As an example we calculate McClelland bounds and the bounds (4.2) for the graph (3.2 (2)):

McClelland's bounds	lower	Ι	E(G)	Ι	upper
McClelland's bounds	17.94	Ι		Ι	20.19
			19.2	Ι	
(4.2) bounds	19.1	T		Ι	19.48

References

- [1] F. Clarke, A graph polynomial and its applications, Discrete Mathematics, 3 (1972), 305 - 313.
- [2] C. A. Coulson, On the calculation of the energy in unsaturated hydrocarbon molecules, Proc. Cambdrigde Phil. Soc., 36 (1940), 201-203.
- [3] D. Cvetković, M. Doob and H. Sacks, Spectra of Graphs, Academic Press (1979).
- [4] F. R. Gantmacher, Matrix Theory, Vol. II, Chelsea (1974).
- [5] C. D. Godsil, Algebraic Combinatorics, Chapman and Hall Mathematics (1993).
- [6] I. Gutman, The energy of a graph, 10. Steiemarkisches Math. Symposium Graz (1978).
- [7] F. J. McClelland, Properties of the latent roots of a matrix: the estimation of π electron energies, J. Chem. Phys., 54 (1971), 640-643.