On the structure of strong 3-quasi-transitive digraphs

Hortensia Galeana-Sánchez ${ }^{\text {a }}$, Ilan A. Goldfeder ${ }^{\text {a,* }}$, Isabel Urrutia ${ }^{\text {b }}$
${ }^{\text {a }}$ Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Distrito Federal, 04510, Mexico
${ }^{\mathrm{b}}$ Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Distrito Federal, 04510, Mexico

A R TICLE INFO

Article history:

Received 19 February 2010
Received in revised form 1 June 2010
Accepted 3 June 2010
Available online 5 July 2010

Keywords:

3-quasi-transitive digraphs
Arc-locally semicomplete digraphs
Generalization of tournaments
Hamiltonian digraphs

Abstract

In this paper, $D=(V(D), A(D))$ denotes a loopless directed graph (digraph) with at most one arc from u to v for every pair of vertices u and v of $V(D)$. Given a digraph D, we say that D is 3-quasi-transitive if, whenever $u \rightarrow v \rightarrow w \rightarrow z$ in D, then u and z are adjacent or $u=z$. In Bang-Jensen (2004) [3], Bang-Jensen introduced 3-quasi-transitive digraphs and claimed that the only strong 3-quasi-transitive digraphs are the strong semicomplete digraphs and strong semicomplete bipartite digraphs. In this paper, we exhibit a family of strong 3-quasitransitive digraphs distinct from strong semicomplete digraphs and strong semicomplete bipartite digraphs and provide a complete characterization of strong 3-quasi-transitive digraphs.

© 2010 Elsevier B.V. All rights reserved.

Classes of graphs characterized by forbidding families of induced graphs play an important role in Graph Theory. Given a family of graphs \mathcal{F}, we say that a graph G is \mathcal{F}-free if G has no induced subgraph in \mathcal{F}. Perfect graphs are probably the best known class of such graphs.

The class of connected graphs with no induced 2-paths are the complete graphs. The class of connected graphs with no induced 3-paths are the so-called cographs or complement-reducible graphs which were characterized in [7].

In this paper we study a directed version of \mathcal{F}-free graphs. In order to do this, given \mathcal{F}, a family of oriented graphs, we say that D is an orientedly \mathcal{F}-free digraph if there is no digraph in \mathcal{F} isomorphic to any induced subdigraph of any orientation of D (an orientation of a digraph D is a spanning subdigraph of D in which we choose only one arc between any two adjacent vertices of D; for example, any orientation of any semicomplete digraph is a tournament). If $\mathcal{F}=\{F\}$, we say orientedly F-free instead of orientedly \mathcal{F}-free.

There are three different possible orientations of the 2-path, see Fig. 1. In $\mathscr{g}_{1}, \mathscr{g}_{2}$, and \mathscr{g}_{3} any arc between the two vertices with a dotted edge between them is forbidden. Orientedly \mathscr{g}_{1}-free digraphs (respectively orientedly \mathscr{g}_{2}-free digraphs) were introduced by Bang-Jensen in [1] as a generalization of semicomplete digraphs. They are known as locally in-semicomplete (resp. locally out-semicomplete) digraphs. Orientedly $\left\{\mathscr{g}_{1}, \mathscr{g}_{2}\right\}$-free digraphs were introduced in the same paper and were characterized by Bang-Jensen, Guo, Gutin, and Volkmann in [4]. Orientedly \mathscr{g}_{3}-free digraphs were introduced by GhouilaHouri in [9]. Observe that orientedly \mathcal{g}_{3}-free digraphs are the same family which were characterized by Bang-Jensen and Huang in [6].

There are four different possible orientations of the 3-path, see Fig. 2. In $\mathscr{H}_{1}, \mathscr{H}_{2}, \mathscr{H}_{3}$, and \mathscr{H}_{4}, any arc between the two vertices with a dotted edge between them is forbidden. Orientedly $\left\{\mathscr{H}_{1}, \mathscr{H}_{2}\right\}$-free digraphs were introduced by BangJensen as a common generalization of both semicomplete digraphs and semicomplete bipartite digraphs in [2]. They are the arc-locally semicomplete digraphs which were characterized by Galeana-Sánchez and Goldfeder in [8]. Orientedly \mathscr{H}_{1}-free digraphs (resp. orientedly \mathscr{H}_{2}-free digraphs) were introduced by Wang and Wang as arc-locally in-semicomplete

[^0]

Fig. 1. Different possible orientations of the 2-path.

Fig. 2. Different possible orientations of the 3-path.

Fig. 3. A family of strong 3-quasi-transitive digraphs.
digraphs (resp. arc-locally out-semicomplete digraphs) in [10]. This paper also characterized strong arc-locally in- and outsemicomplete digraphs. Orientedly \mathscr{H}_{3}-free digraphs are the so-called 3-quasi-transitive digraphs, introduced in [3] by BangJensen. This paper claims that the only strong 3-quasi-transitive digraphs are the strong semicomplete digraphs and the strong semicomplete bipartite digraphs. The orientedly \mathscr{H}_{4}-free digraphs remain unknown.

In [3], Bang-Jensen conjectured that an orientedly \mathscr{H}_{i}-free digraph, for $i=1,2,3,4$, is Hamiltonian if and only if it is strong and has a cycle factor, where a cycle factor in a digraph D is a collection of vertex disjoint cycles which cover $V(D)$. Wang and Wang proved the conjecture true for $i=1,2$ in [10].

Consider the family of digraphs which appear in Fig. 3. These digraphs are strong 3-quasi-transitive digraphs which are not semicomplete digraphs, nor semicomplete bipartite digraphs. This family of digraphs is missing from Bang-Jensen's characterization. In this paper we show that any strong 3-quasi-transitive digraph is either a semicomplete digraph, a semicomplete bipartite digraph, or belongs to the family of Fig. 3. This proves Bang-Jensen's conjecture for $i=3$.

1. Preliminaries

For general concepts we refer the reader to [5]. In this paper, $D=(V(D), A(D))$ denotes a loopless directed graph (digraph) with at most one arc from u to v for every pair of vertices u and v of $V(D)$. For each vertex u in $D, N^{+}(u)$ (respectively $N^{-}(u)$) denotes the out-neighborhood (resp. in-neighborhood) of u. For any $x, y \in V(D)$, we will write $\overrightarrow{x y}$ or $x \rightarrow y$ if $x y \in A(D)$, and also, we will write $\overline{x y}$ if $\overrightarrow{x y}$ or $\overrightarrow{y x}$. For disjoint subsets X and Y of $V(D)$ or subdigraphs of $D, X \rightarrow Y$ means that every vertex of X dominates every vertex of $Y, X \Rightarrow Y$ means that there is no arc from Y to X and $X \mapsto Y$ means that both of $X \rightarrow Y$ and $X \Rightarrow Y$ hold. All our paths and cycles are directed. An n-path (respectively n-cycle) is a path (resp. cycle) of length n. An independent set is a set of pairwise nonadjacent vertices of D.

If S is a set of vertices of D, we denote the subdigraph induced by S in D by $D[S]$.
Let D and E be digraphs. E is a subdigraph of D (denoted by $E \leq D$) if $V(E) \subseteq V(D)$ and $A(E) \subseteq A(D)$.

2. On the structure of strong 3-quasi-transitive digraphs

Lemma 2.1. Let D be a 3-quasi-transitive digraph. For a pair x, y of $V(D)$, if there exists an (x, y)-path of odd length, then x and y are adjacent.
Proof. Let $P=x_{0} x_{1} \cdots x_{2 k+1}$ be an (x, y)-path, where $x_{0}=x$ and $x_{2 k+1}=y$. The case $k=0$ is trivial. Since D is 3-quasitransitive, x_{i} and x_{i+3} are adjacent, for $i=0,1, \ldots, 2 k-2$. So the case $k=1$ is verified. The proof for the case $k \geq 2$ is by induction on k. By induction, x_{0} and $x_{2 k-1}$ are adjacent. If $x_{0} \rightarrow x_{2 k-1}$, then $x_{0} \rightarrow x_{2 k-1} \rightarrow x_{2 k} \rightarrow x_{2 k+1}$ implies that $\overline{x_{0} x_{2 k+1}}$. Next we assume that $x_{2 k-1} \rightarrow x_{0}$. Note that $\overline{x_{2 k-2} x_{2 k+1}}$. If $x_{2 k+1} \rightarrow x_{2 k-2}$, then $x_{2 k+1} \rightarrow x_{2 k-2} \rightarrow x_{2 k-1} \rightarrow x_{0}$ implies that $\overline{x_{2 k+1} x_{0}}$. Now we assume that $x_{2 k-2} \rightarrow x_{2 k+1}$. Note that $x_{0} x_{1} \cdots x_{2 k-2} x_{2 k+1}$ is a path of length $2(k-1)+1$. Hence, by the induction hypothesis, $\overline{x_{0} x_{2 k+1}}$. The proof of Lemma 2.1 is complete.

Lemma 2.2. Let D be a strong 3-quasi-transitive digraph with at least three vertices. If D is not a bipartite digraph, then it contains a 3-cycle T. Moreover, every vertex of $V(D)$ is adjacent to at least two vertices of $V(T)$. Finally, suppose that $|V(D)| \geq 4$ and let $T=x_{1} x_{2} x_{3} x_{1}$. For every $s \in V(D) \backslash V(T)$, if $s \rightarrow x_{i}$, then s and x_{i+2} are adjacent; if $x_{i} \rightarrow s$, then x_{i-2} and s are adjacent, where subscripts are taken modulo 3.

Proof. Since D is a strong non-bipartite digraph, D contains an odd cycle. Let $C=x_{1} x_{2} \cdots x_{2 k+1} x_{1}$ be an odd cycle in D. We will proceed by induction on k. If $k=1$, then we are done. Next, we assume $k \geq 2$. Note that $x_{2} x_{3} \cdots x_{2 k+1}$ is an $\left(x_{2}, x_{2 k+1}\right)$-path of odd length. By Lemma 2.1, $\overline{x_{2} x_{2 k+1}}$. If $x_{2} \rightarrow x_{2 k+1}$, then $x_{2} x_{2 k+1} x_{1} x_{2}$ is a 3-cycle. Now assume $x_{2 k+1} \rightarrow x_{2}$. Since $x_{2 k+1} \rightarrow x_{1} \rightarrow x_{2} \rightarrow x_{3}$, it follows from Lemma 2.1 that $\overline{x_{2 k+1} x_{3}}$. If $x_{3} \rightarrow x_{2 k+1}$, then $x_{2 k+1} x_{2} x_{3} x_{2 k+1}$ is a 3-cycle. Now assume $x_{2 k+1} \rightarrow x_{3}$. Note that $x_{3} x_{4} \cdots x_{2 k+1} x_{3}$ is an odd cycle of length $2(k-1)+1$. By the induction hypothesis, the assertion is true.

Let $T=x_{1} x_{2} x_{3} x_{1}$ and $s \in V(D)$ be any. If $s \in V(T)$, then the assertion is true. Next assume $s \notin V(T)$. First, we show that s and one vertex of $V(T)$ are adjacent. Since D is strong, there exists a path from s to T. Let $P=s y_{1} \cdots y_{k}$ be a shortest path from s of T, where $y_{k} \in V(T)$. If k is odd, then, by Lemma 2.1, we have $\overline{s y_{k}}$. Suppose that k is even. Since T is strong, there exists $u \in V(T) \backslash\left\{y_{k}\right\}$ such that $y_{k} \rightarrow u$. Observe that $P u$ is an (s, u)-path of odd length. If follows from Lemma 2.1 that $\overline{s u}$. Hence, s and one vertex of $V(T)$ are adjacent, say x_{1}. If $s \rightarrow x_{1}$, then we have $s \rightarrow x_{1} \rightarrow x_{2} \rightarrow x_{3}$, which implies $\overline{s x_{3}}$. If $x_{1} \rightarrow s$, then we have $x_{2} \rightarrow x_{3} \rightarrow x_{1} \rightarrow s$, which implies that $\overline{s x_{2}}$. By the arbitrariness of s, the assertion is true.

Finally, if $s \rightarrow x_{i}$, then, since $s \rightarrow x_{i} \rightarrow x_{i+1} \rightarrow x_{i+2}$, we have $\overline{s x_{i+2}}$. If $x_{i} \rightarrow s$, then, since $x_{i-2} \rightarrow x_{i-1} \rightarrow x_{i} \rightarrow s$, we have $\overline{s x_{i-2}}$. The proof of Lemma 2.2 is complete.

Lemma 2.3. Let D be a strong 3-quasi-transitive digraph of order $n \geq 4$. If D contains a 3 -cycle T as a subdigraph and there exists a vertex $u \in V(D) \backslash V(T)$ such that u and every vertex of T are adjacent, then D is a semicomplete digraph.

Proof. Let $T=x_{1} x_{2} x_{3} x_{1}$. From now on, all subscripts appearing in this proof are taken modulo 3 .
Claim 1. For any $w \in V(D) \backslash V(T)$, if w and every vertex of $V(T)$ are adjacent, then w and every vertex of $V(D) \backslash(V(T) \cup\{w\})$ are adjacent.

Since w and every vertex of $V(T)$ are adjacent and $|V(T)|=3$, there exist two arcs in the same direction between w and T. Since the converse of a 3-quasi-transitive digraph is also a 3-quasi-transitive digraph. We may, without loss of generality, assume that $w \rightarrow x_{1}, w \rightarrow x_{2}$. If $V(D) \backslash(V(T) \cup\{w\})=\emptyset$, then there is nothing more to prove. Now assume $V(D) \backslash(V(T) \cup\{w\}) \neq \emptyset$. Let $v \in V(D) \backslash(V(T) \cup\{w\})$ be arbitrary. First, we claim that there exists a path of odd length between w and v. Since D is strong, there exists a path from T to v. Let $P=y y_{1} \cdots y_{s}$ be a shortest path from T to v.

Suppose that s is even. If $y=x_{1}$ or $y=x_{2}$ then $w P$ is a (w, v)-path of odd length. If $y=x_{3}$, then $w x_{1} x_{2} P$ is a (w, v)-path of odd length.

Suppose that s is odd. If $y=x_{3}$, then $w x_{2} P$ is a (w, v)-path of odd length. If $y=x_{1}$, then $x_{2} x_{3} P$ is an $\left(x_{2}, v\right)$-path of odd length, which implies that $\overline{v x_{2}}$ form Lemma 2.1. If $x_{2} \rightarrow v$, then $w x_{1} x_{2} v$ is a (w, v)-path of odd length. Now assume $v \rightarrow x_{2}$. By the hypothesis, $\overrightarrow{w x_{3}}$. If $\overrightarrow{w x_{3}}$, then $w x_{3} P$ is a (w, v)-path of odd length. If $\overrightarrow{x_{3} w}$, then $v x_{2} x_{3} w$ is a (v, w)-path of odd length. If $y=x_{2}$, then $w x_{1} P$ is a (w, v)-path of odd length. Hence there exists a path of odd length between w and v. Combining this with Lemma 2.1, we have $\overline{w v}$. By the arbitrariness of v, the claim is true.

Claim 2. Every vertex of $V(D) \backslash V(T)$ is adjacent to every vertex of $V(T)$.
If $V(D) \backslash(V(T) \cup\{u\})=\emptyset$, then there is nothing to prove. Now assume that $V(D) \backslash(V(T) \cup\{u\}) \neq \emptyset$. Let $v \in V(D) \backslash(V(T) \cup\{u\})$ be arbitrary. By the hypothesis and Claim $1, \overline{u v}$. Without loss of generality, assume that $v \rightarrow u$. By Lemma 2.2, v and at least two vertices of $V(T)$ are adjacent, say x_{1} and x_{2}. Next we will show that v and x_{3} are also adjacent. If $v \rightarrow x_{1}$ or $x_{2} \rightarrow v$, then, by Lemma 2.2 we have that $\overline{v x_{3}}$. So assume that $x_{1} \rightarrow v$ and $v \rightarrow x_{2}$. If there exists a path of odd length between v and x_{3}, then, by Lemma 2.1, $\overline{v x_{3}}$. Now we will show that there exists such a path. We consider two cases:
Case 1. There exists an arc from u of T.
If $u \rightarrow x_{2}$, then $v u x_{2} x_{3}$ is a (v, x_{3})-path of odd length. Now assume that $x_{2} \mapsto u$. If $u \rightarrow x_{3}$, then $v x_{2} u x_{3}$ is a (v, x_{3})-path of odd length. So assume $x_{3} \mapsto u$ and it must be $u \rightarrow x_{1}$. Observe that $x_{3} u x_{1} v$ is an (x_{3}, v)-path of odd length.
Case 2. There exists no arc from u to T.
Hence $V(T) \mapsto u$. Let $W=\{x \in V(D): V(T) \mapsto x\}$. Clearly, $u \in W$. If there exists $u^{\prime} \in W$ such that $u^{\prime} \rightarrow v$, then $x_{3} x_{1} u^{\prime} v$ is an $\left(x_{3}, v\right)$-path of odd length. So assume $(W, v)=\emptyset$. Combining this with Claim 1 , we have that $v \mapsto W$. Since D is strong, $N^{+}(W) \neq \emptyset$. Let $w \in N^{+}(W)$ be arbitrary. Then there exists $u^{\prime \prime} \in W$ such that $u^{\prime \prime} \rightarrow w$. By $V(T) \mapsto u^{\prime \prime}$ and $u^{\prime \prime} \rightarrow w$, it is not difficult to obtain that w and every vertex of $V(T)$ are adjacent. Then, by Claim $1, w$ and v are adjacent. If $w \rightarrow v$, then $x_{3} u^{\prime \prime} w v$ is an $\left(x_{3}, v\right)$-path of odd length. So assume that $v \mapsto w$. Since $w \notin W$, there exists an arc from w to T. By a similar argument to Case 1 , we can find a path of odd length between x_{3} and v.

The proof of Lemma 2.3 is complete.
Consider the digraph F_{n} with vertex set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\operatorname{arc} \operatorname{set}\left\{x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{1}\right\} \cup\left\{x_{1} x_{i+3}, x_{i+3} x_{2}: i=1,2, \ldots, n-3\right\}$, where $n \geq 4$.

Lemma 2.4. Let D be a 3-quasi-transitive digraph of order $n \geq 4$. If D contains a 3-cycle T as a subdigraph and there exists no vertex $V(D) \backslash V(T)$ adjacent to every vertex of T, then D is isomorph to F_{n}.

Proof. Let $T=x_{1} x_{2} x_{3} x_{1}$. Since $n \geq 4$, we have $U=V(D) \backslash V(T) \neq \emptyset$. For any $x \in U$, by Lemma $2.2, x$ and at least two vertices $V(T)$ are adjacent, say x_{1}, x_{2}. If either $x \rightarrow x_{1}$ or $x_{2} \rightarrow x$, then, by Lemma $2.2, \overline{x x_{3}}$, a contradiction. So assume that $x_{1} \rightarrow x$ and $x \rightarrow x_{2}$. First we show that, for any $x^{\prime} \in U \backslash\{x\}$, we have that $x_{1} \rightarrow x^{\prime}$ and $x^{\prime} \rightarrow x_{2}$. By Lemma 2.2 and the hypothesis, x^{\prime} and exactly two vertices of $V(T)$ are adjacent. Suppose that the arcs between x^{\prime} and T are in the same direction and, without loss of generality, assume that the arcs between x^{\prime} and $\left\{x_{1}, x_{2}\right\}$ are in the same direction. If $x^{\prime} \rightarrow\left\{x_{1}, x_{2}\right\}$, then $x^{\prime} \rightarrow x_{1} \rightarrow x_{2} \rightarrow x_{3}$ implies that $\overline{x^{\prime} x_{3}}$, a contradiction. If $\left\{x_{1}, x_{2}\right\} \rightarrow x^{\prime}$, then $x_{3} \rightarrow x_{1} \rightarrow x_{2} \rightarrow x^{\prime}$ implies that ${\overline{x^{\prime}} x_{3}}^{\prime}$, a contradiction. Next assume that the arcs between x^{\prime} and T are in different direction. If $x^{\prime} \rightarrow x_{1}$, then, by $x^{\prime} \rightarrow x_{1} \rightarrow x_{2} \rightarrow x_{3}$ and $x^{\prime} \rightarrow x_{1} \rightarrow x \rightarrow x_{2}$, we have that $\overline{x^{\prime} x_{3}}$ and $\overline{x^{\prime} x_{2}}$, respectively, a contradiction. If $x^{\prime} \rightarrow x_{3}$, then, by Lemma 2.2, $\overline{x^{\prime} x_{2}}$ and so $x_{2} \rightarrow x^{\prime}$. Then $x \rightarrow x_{2} \rightarrow x^{\prime} \rightarrow x_{3}$ implies that $\overline{x x_{3}}$, a contradiction. So $x^{\prime} \rightarrow x_{2}$. By Lemma 2.2, $\overline{x^{\prime} x_{1}}$ and so $x_{1} \rightarrow x^{\prime}$. Next we claim that U is an independent set. If $|U|=1$, the claim is trivial. Now assume $|U| \geq 2$. Suppose, on the contrary, there exists a pair u, v of U such that $\overline{u v}$. Without loss of generality, assume that $u \rightarrow v$. Then $u \rightarrow v \rightarrow x_{2} \rightarrow x_{3}$ implies $\overline{u x_{3}}$, a contradiction. So the claim is true and the proof of Lemma 2.4 is complete.

Theorem 2.5. Let D be a strong 3-quasi-transitive digraph of order n. Then D is either a semicomplete digraph, a semicomplete bipartite digraph, or isomorphic to F_{n}.
Proof. If D is a bipartite digraph with bipartition (X, Y). For any pair $x \in X, y \in Y$, since D is strong, there exists an (x, y) path P. Since x, y belong to different parts, the length of P is odd. By Lemma 2.1, x and y are adjacent. So D is a semicomplete bipartite digraph. Now suppose that D is a non-bipartite digraph. By Lemma $2.2, D$ contains a 3 -cycle T as a subdigraph. If $n=3$, then D is a semicomplete digraph. So assume $n \geq 4$. If there exists a vertex which is adjacent to every vertex of T, then, by Lemma $2.3, D$ is a semicomplete digraph. If not, then, by Lemma $2.4, D$ is isomorphic to F_{n}. The proof of Theorem 2.5 is complete.

Theorem 2.6 ([5]). A semicomplete digraph is Hamiltonian if and only if it is strong.
Theorem 2.7 ([5]). A semicomplete bipartite digraph is Hamiltonian if and only if it is strong and contains a cycle factor.
Corollary 2.8. A 3-quasi-transitive digraph is Hamiltonian if and only if it is strong and has a cycle factor.
Proof. Let D be a 3-quasi-transitive digraph. If D is Hamiltonian, then it is strong and has a cycle factor. So assume that D is strong and has a cycle factor. If D is semicomplete or semicomplete bipartite, the result follows from Theorem 2.6 or Theorem 2.7, respectively. Otherwise, D is isomorphic to F_{n}. Since D has a cycle factor, every vertex x_{i} with $i \geq 4$ must be contained in some cycle. But any cycle which contains vertex x_{i}, must contain vertex x_{2}. Therefore, $n=4$. Clearly, F_{4} is Hamiltonian.

Acknowledgement

The authors are very thankful with the anonymous referee for a thorough review and specially for giving a simplification of the proof of main result which improves substantially the rewriting of this paper.

References

[1] J. Bang-Jensen, Locally semicomplete digraphs: a generalization of tournaments, J. Graph Theory 14 (3) (1990) 371-390.
[2] J. Bang-Jensen, Arc-local tournament digraphs: a generalization of tournaments and bipartite tournaments. Technical Report Preprint No. 10, Department of Mathematics and Computer Science, University of Southern Denmark, 1993.
[3] J. Bang-Jensen, The structure of strong arc-locally semicomplete digraphs, Discrete Math. 283 (2004) 1-6.
[4] J. Bang-Jensen, Y. Guo, G. Gutin, L. Volkmann, A classification of locally semicomplete digraphs, Discrete Math. 167-168 (1998) 101-114.
[5] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms, and Applications, in: Monographs in Mathematics, Springer, 2001.
[6] J. Bang-Jensen, J. Huang, Quasi-transitive digraphs, J. Graph Theory 20 (2) (1995) 141-161.
[7] D.G. Corneil, H. Lerchs, L. Stewart Burlingham, Complement reducible graphs, Discrete Appl. Math. 3 (1981) 163-174.
[8] H. Galeana-Sánchez, I.A. Goldfeder, A classification of strong and non-strong arc-locally semicomplete digraphs, Discrete Math. (submitted for publication).
[9] A. Ghouila-Houri, Caractérisation des graphes non orientés dont on peut orienter les arrêtes de maniere à obenir le graphe d'un relation d'ordre, C. R. Acad. Sci. Paris 254 (1962) 1370-1371.
[10] S. Wang, R. Wang, The structure of strong arc-locally in-semicomplete digraphs, Discrete Math. 309 (2009) 6555-6562.

[^0]: * Corresponding author.

 E-mail addresses: hgaleana@matem.unam.mx (H. Galeana-Sánchez), ilan.goldfeder@gmail.com, ilan@ciencias.unam.mx (I.A. Goldfeder), ihurruti@math.uwaterloo.ca (I. Urrutia).

