Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On the structure of strong 3-quasi-transitive digraphs

Hortensia Galeana-Sánchez^a, Ilan A. Goldfeder^{a,*}, Isabel Urrutia^b

^a Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Distrito Federal, 04510, Mexico ^b Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Distrito Federal, 04510, Mexico

ARTICLE INFO

Article history: Received 19 February 2010 Received in revised form 1 June 2010 Accepted 3 June 2010 Available online 5 July 2010

Keywords: 3-quasi-transitive digraphs Arc-locally semicomplete digraphs Generalization of tournaments Hamiltonian digraphs

ABSTRACT

In this paper, D = (V(D), A(D)) denotes a loopless *directed graph* (digraph) with at most one arc from *u* to *v* for every pair of vertices *u* and *v* of *V*(*D*). Given a digraph *D*, we say that *D* is 3-quasi-transitive if, whenever $u \rightarrow v \rightarrow w \rightarrow z$ in *D*, then *u* and *z* are adjacent or u = z. In Bang-Jensen (2004) [3], Bang-Jensen introduced 3-quasi-transitive digraphs and claimed that the only strong 3-quasi-transitive digraphs are the strong semicomplete digraphs and strong semicomplete bipartite digraphs. In this paper, we exhibit a family of strong 3-quasitransitive digraphs distinct from strong semicomplete digraphs and strong semicomplete bipartite digraphs and provide a complete characterization of strong 3-quasi-transitive digraphs.

© 2010 Elsevier B.V. All rights reserved.

Classes of graphs characterized by forbidding families of induced graphs play an important role in Graph Theory. Given a family of graphs \mathcal{F} , we say that a graph *G* is \mathcal{F} -free if *G* has no induced subgraph in \mathcal{F} . Perfect graphs are probably the best known class of such graphs.

The class of connected graphs with no induced 2-paths are the complete graphs. The class of connected graphs with no induced 3-paths are the so-called cographs or complement-reducible graphs which were characterized in [7].

In this paper we study a directed version of \mathcal{F} -free graphs. In order to do this, given \mathcal{F} , a family of oriented graphs, we say that *D* is an *orientedly* \mathcal{F} -free digraph if there is no digraph in \mathcal{F} isomorphic to any induced subdigraph of any orientation of *D* (an *orientation* of a digraph *D* is a spanning subdigraph of *D* in which we choose only one arc between any two adjacent vertices of *D*; for example, any orientation of any semicomplete digraph is a tournament). If $\mathcal{F} = \{F\}$, we say orientedly \mathcal{F} -free instead of orientedly \mathcal{F} -free.

There are three different possible orientations of the 2-path, see Fig. 1. In \mathcal{J}_1 , \mathcal{J}_2 , and \mathcal{J}_3 any arc between the two vertices with a dotted edge between them is forbidden. Orientedly \mathcal{J}_1 -free digraphs (respectively orientedly \mathcal{J}_2 -free digraphs) were introduced by Bang-Jensen in [1] as a generalization of semicomplete digraphs. They are known as *locally in-semicomplete* (resp. *locally out-semicomplete*) digraphs. Orientedly $\{\mathcal{J}_1, \mathcal{J}_2\}$ -free digraphs were introduced in the same paper and were characterized by Bang-Jensen, Guo, Gutin, and Volkmann in [4]. Orientedly \mathcal{J}_3 -free digraphs were introduced by Ghouila-Houri in [9]. Observe that orientedly \mathcal{J}_3 -free digraphs are the same family which were characterized by Bang-Jensen and Huang in [6].

There are four different possible orientations of the 3-path, see Fig. 2. In \mathcal{H}_1 , \mathcal{H}_2 , \mathcal{H}_3 , and \mathcal{H}_4 , any arc between the two vertices with a dotted edge between them is forbidden. Orientedly { \mathcal{H}_1 , \mathcal{H}_2 }-free digraphs were introduced by Bang-Jensen as a common generalization of both semicomplete digraphs and semicomplete bipartite digraphs in [2]. They are the *arc-locally semicomplete* digraphs which were characterized by Galeana-Sánchez and Goldfeder in [8]. Orientedly \mathcal{H}_1 -free digraphs (resp. orientedly \mathcal{H}_2 -free digraphs) were introduced by Wang and Wang as *arc-locally in-semicomplete*

^{*} Corresponding author.

E-mail addresses: hgaleana@matem.unam.mx (H. Galeana-Sánchez), ilan.goldfeder@gmail.com, ilan@ciencias.unam.mx (I.A. Goldfeder), ihurruti@math.uwaterloo.ca (I. Urrutia).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter 0 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2010.06.008

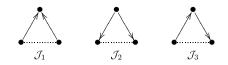


Fig. 1. Different possible orientations of the 2-path.

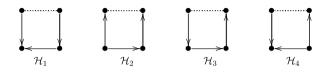


Fig. 2. Different possible orientations of the 3-path.

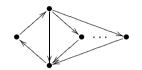


Fig. 3. A family of strong 3-quasi-transitive digraphs.

digraphs (resp. *arc-locally out-semicomplete* digraphs) in [10]. This paper also characterized strong arc-locally in- and outsemicomplete digraphs. Orientedly \mathcal{H}_3 -free digraphs are the so-called 3-*quasi-transitive* digraphs, introduced in [3] by Bang-Jensen. This paper claims that the only strong 3-quasi-transitive digraphs are the strong semicomplete digraphs and the strong semicomplete bipartite digraphs. The orientedly \mathcal{H}_4 -free digraphs remain unknown.

In [3], Bang-Jensen conjectured that an orientedly \mathcal{H}_i -free digraph, for i = 1, 2, 3, 4, is Hamiltonian if and only if it is strong and has a cycle factor, where a *cycle factor* in a digraph *D* is a collection of vertex disjoint cycles which cover V(D). Wang and Wang proved the conjecture true for i = 1, 2 in [10].

Consider the family of digraphs which appear in Fig. 3. These digraphs are strong 3-quasi-transitive digraphs which are not semicomplete digraphs, nor semicomplete bipartite digraphs. This family of digraphs is missing from Bang-Jensen's characterization. In this paper we show that any strong 3-quasi-transitive digraph is either a semicomplete digraph, a semicomplete bipartite digraph, or belongs to the family of Fig. 3. This proves Bang-Jensen's conjecture for i = 3.

1. Preliminaries

For general concepts we refer the reader to [5]. In this paper, D = (V(D), A(D)) denotes a loopless *directed graph* (digraph) with at most one arc from *u* to *v* for every pair of vertices *u* and *v* of V(D). For each vertex *u* in D, $N^+(u)$ (respectively $N^-(u)$) denotes the *out-neighborhood* (resp. *in-neighborhood*) of *u*. For any $x, y \in V(D)$, we will write \overrightarrow{xy} or $x \to y$ if $xy \in A(D)$, and also, we will write \overrightarrow{xy} if \overrightarrow{xy} or \overrightarrow{yx} . For disjoint subsets *X* and *Y* of V(D) or subdigraphs of $D, X \to Y$ means that every vertex of *X* dominates every vertex of *Y*, $X \Rightarrow Y$ means that there is no arc from *Y* to *X* and $X \mapsto Y$ means that both of $X \to Y$ and $X \Rightarrow Y$ hold. All our paths and cycles are directed. An *n*-path (respectively *n*-cycle) is a path (resp. cycle) of length *n*. An *independent set* is a set of pairwise nonadjacent vertices of *D*.

If S is a set of vertices of D, we denote the subdigraph induced by S in D by D[S].

Let *D* and *E* be digraphs. *E* is a subdigraph of *D* (denoted by $E \le D$) if $V(E) \subseteq V(D)$ and $A(E) \subseteq A(D)$.

2. On the structure of strong 3-quasi-transitive digraphs

Lemma 2.1. Let *D* be a 3-quasi-transitive digraph. For a pair x, y of V(D), if there exists an (x, y)-path of odd length, then x and y are adjacent.

Proof. Let $P = x_0x_1 \cdots x_{2k+1}$ be an (x, y)-path, where $x_0 = x$ and $x_{2k+1} = y$. The case k = 0 is trivial. Since D is 3-quasitransitive, x_i and x_{i+3} are adjacent, for $i = 0, 1, \ldots, 2k - 2$. So the case k = 1 is verified. The proof for the case $k \ge 2$ is by induction on k. By induction, x_0 and x_{2k-1} are adjacent. If $x_0 \to x_{2k-1}$, then $x_0 \to x_{2k-1} \to x_{2k} \to x_{2k+1}$ implies that $\overline{x_0x_{2k+1}}$. Next we assume that $x_{2k-1} \to x_0$. Note that $\overline{x_{2k-2}x_{2k+1}}$. If $x_{2k+1} \to x_{2k-2}$, then $x_{2k-2} \to x_{2k-1} \to x_0$ implies that $\overline{x_{2k+1}x_0}$. Now we assume that $x_{2k-2} \to x_{2k+1}$. Note that $x_0x_1 \cdots x_{2k-2}x_{2k+1}$ is a path of length 2(k-1) + 1. Hence, by the induction hypothesis, $\overline{x_0x_{2k+1}}$. The proof of Lemma 2.1 is complete. \Box

Lemma 2.2. Let *D* be a strong 3-quasi-transitive digraph with at least three vertices. If *D* is not a bipartite digraph, then it contains a 3-cycle *T*. Moreover, every vertex of V(D) is adjacent to at least two vertices of V(T). Finally, suppose that $|V(D)| \ge 4$ and let $T = x_1x_2x_3x_1$. For every $s \in V(D) \setminus V(T)$, if $s \to x_i$, then *s* and x_{i+2} are adjacent; if $x_i \to s$, then x_{i-2} and *s* are adjacent, where subscripts are taken modulo 3.

Proof. Since *D* is a strong non-bipartite digraph, *D* contains an odd cycle. Let $C = x_1x_2 \cdots x_{2k+1}x_1$ be an odd cycle in *D*. We will proceed by induction on *k*. If k = 1, then we are done. Next, we assume $k \ge 2$. Note that $x_2x_3 \cdots x_{2k+1}$ is an (x_2, x_{2k+1}) -path of odd length. By Lemma 2.1, $\overline{x_2x_{2k+1}}$. If $x_2 \to x_{2k+1}$, then $x_2x_{2k+1}x_1x_2$ is a 3-cycle. Now assume $x_{2k+1} \to x_2$. Since $x_{2k+1} \to x_1 \to x_2 \to x_3$, it follows from Lemma 2.1 that $\overline{x_{2k+1}x_3}$. If $x_3 \to x_{2k+1}$, then $x_{2k+1}x_2x_3x_{2k+1}$ is a 3-cycle. Now assume $x_{2k+1} \to x_3$. Note that $x_3x_4 \cdots x_{2k+1}x_3$ is an odd cycle of length 2(k-1) + 1. By the induction hypothesis, the assertion is true.

Let $T = x_1x_2x_3x_1$ and $s \in V(D)$ be any. If $s \in V(T)$, then the assertion is true. Next assume $s \notin V(T)$. First, we show that s and one vertex of V(T) are adjacent. Since D is strong, there exists a path from s to T. Let $P = sy_1 \cdots y_k$ be a shortest path from s of T, where $y_k \in V(T)$. If k is odd, then, by Lemma 2.1, we have $\overline{sy_k}$. Suppose that k is even. Since T is strong, there exists $u \in V(T) \setminus \{y_k\}$ such that $y_k \to u$. Observe that Pu is an (s, u)-path of odd length. If follows from Lemma 2.1 that \overline{su} . Hence, s and one vertex of V(T) are adjacent, say x_1 . If $s \to x_1$, then we have $s \to x_1 \to x_2 \to x_3$, which implies $\overline{sx_3}$. If $x_1 \to s$, then we have $x_2 \to x_3 \to x_1 \to s$, which implies that $\overline{sx_2}$. By the arbitrariness of s, the assertion is true.

Finally, if $s \to x_i$, then, since $s \to x_i \to x_{i+1} \to x_{i+2}$, we have $\overline{sx_{i+2}}$. If $x_i \to s$, then, since $x_{i-2} \to x_{i-1} \to x_i \to s$, we have $\overline{sx_{i-2}}$. The proof of Lemma 2.2 is complete. \Box

Lemma 2.3. Let *D* be a strong 3-quasi-transitive digraph of order $n \ge 4$. If *D* contains a 3-cycle *T* as a subdigraph and there exists a vertex $u \in V(D) \setminus V(T)$ such that *u* and every vertex of *T* are adjacent, then *D* is a semicomplete digraph.

Proof. Let $T = x_1 x_2 x_3 x_1$. From now on, all subscripts appearing in this proof are taken modulo 3.

Claim 1. For any $w \in V(D) \setminus V(T)$, if w and every vertex of V(T) are adjacent, then w and every vertex of $V(D) \setminus (V(T) \cup \{w\})$ are adjacent.

Since *w* and every vertex of V(T) are adjacent and |V(T)| = 3, there exist two arcs in the same direction between *w* and *T*. Since the converse of a 3-quasi-transitive digraph is also a 3-quasi-transitive digraph. We may, without loss of generality, assume that $w \to x_1$, $w \to x_2$. If $V(D) \setminus (V(T) \cup \{w\}) = \emptyset$, then there is nothing more to prove. Now assume $V(D) \setminus (V(T) \cup \{w\}) \neq \emptyset$. Let $v \in V(D) \setminus (V(T) \cup \{w\})$ be arbitrary. First, we claim that there exists a path of odd length between *w* and *v*. Since *D* is strong, there exists a path from *T* to *v*. Let $P = yy_1 \cdots y_s$ be a shortest path from *T* to *v*.

Suppose that *s* is even. If $y = x_1$ or $y = x_2$ then wP is a (w, v)-path of odd length. If $y = x_3$, then wx_1x_2P is a (w, v)-path of odd length.

Suppose that *s* is odd. If $y = x_3$, then wx_2P is a (w, v)-path of odd length. If $y = x_1$, then x_2x_3P is an (x_2, v) -path of odd length, which implies that $\overline{vx_2}$ form Lemma 2.1. If $x_2 \rightarrow v$, then wx_1x_2v is a (w, v)-path of odd length. Now assume $v \rightarrow x_2$. By the hypothesis, $\overline{wx_3}$. If $\overline{wx_3}$, then wx_3P is a (w, v)-path of odd length. If $\overline{x_3w}$, then vx_2x_3w is a (v, w)-path of odd length. If $y = x_2$, then wx_1P is a (w, v)-path of odd length. Hence there exists a path of odd length between w and v. Combining this with Lemma 2.1, we have \overline{wv} . By the arbitrariness of v, the claim is true.

Claim 2. Every vertex of $V(D) \setminus V(T)$ is adjacent to every vertex of V(T).

If $V(D) \setminus (V(T) \cup \{u\}) = \emptyset$, then there is nothing to prove. Now assume that $V(D) \setminus (V(T) \cup \{u\}) \neq \emptyset$. Let $v \in V(D) \setminus (V(T) \cup \{u\})$ be arbitrary. By the hypothesis and Claim 1, \overline{uv} . Without loss of generality, assume that $v \to u$. By Lemma 2.2, v and at least two vertices of V(T) are adjacent, say x_1 and x_2 . Next we will show that v and x_3 are also adjacent. If $v \to x_1$ or $x_2 \to v$, then, by Lemma 2.2 we have that $\overline{vx_3}$. So assume that $x_1 \to v$ and $v \to x_2$. If there exists a path of odd length between v and x_3 , then, by Lemma 2.1, $\overline{vx_3}$. Now we will show that there exists such a path. We consider two cases:

Case 1. There exists an arc from *u* of *T*.

If $u \to x_2$, then vux_2x_3 is a (v, x_3) -path of odd length. Now assume that $x_2 \mapsto u$. If $u \to x_3$, then vx_2ux_3 is a (v, x_3) -path of odd length. So assume $x_3 \mapsto u$ and it must be $u \to x_1$. Observe that x_3ux_1v is an (x_3, v) -path of odd length.

Case 2. There exists no arc from *u* to *T*.

Hence $V(T) \mapsto u$. Let $W = \{x \in V(D) : V(T) \mapsto x\}$. Clearly, $u \in W$. If there exists $u' \in W$ such that $u' \to v$, then $x_3x_1u'v$ is an (x_3, v) -path of odd length. So assume $(W, v) = \emptyset$. Combining this with Claim 1, we have that $v \mapsto W$. Since D is strong, $N^+(W) \neq \emptyset$. Let $w \in N^+(W)$ be arbitrary. Then there exists $u'' \in W$ such that $u'' \to w$. By $V(T) \mapsto u''$ and $u'' \to w$, it is not difficult to obtain that w and every vertex of V(T) are adjacent. Then, by Claim 1, w and v are adjacent. If $w \to v$, then $x_3u''wv$ is an (x_3, v) -path of odd length. So assume that $v \mapsto w$. Since $w \notin W$, there exists an arc from w to T. By a similar argument to Case 1, we can find a path of odd length between x_3 and v.

The proof of Lemma 2.3 is complete. □

Consider the digraph F_n with vertex set $\{x_1, x_2, ..., x_n\}$ and arc set $\{x_1x_2, x_2x_3, x_3x_1\} \cup \{x_1x_{i+3}, x_{i+3}x_2 : i = 1, 2, ..., n-3\}$, where $n \ge 4$.

Lemma 2.4. Let *D* be a 3-quasi-transitive digraph of order $n \ge 4$. If *D* contains a 3-cycle *T* as a subdigraph and there exists no vertex $V(D) \setminus V(T)$ adjacent to every vertex of *T*, then *D* is isomorph to F_n .

Proof. Let $T = x_1x_2x_3x_1$. Since $n \ge 4$, we have $U = V(D) \setminus V(T) \ne \emptyset$. For any $x \in U$, by Lemma 2.2, x and at least two vertices V(T) are adjacent, say x_1, x_2 . If either $x \rightarrow x_1$ or $x_2 \rightarrow x$, then, by Lemma 2.2, $\overline{xx_3}$, a contradiction. So assume that $x_1 \rightarrow x$ and $x \rightarrow x_2$. First we show that, for any $x' \in U \setminus \{x\}$, we have that $x_1 \rightarrow x'$ and $x' \rightarrow x_2$. By Lemma 2.2 and the hypothesis, x' and exactly two vertices of V(T) are adjacent. Suppose that the arcs between x' and T are in the same direction and, without loss of generality, assume that the arcs between x' and $\{x_1, x_2\}$ are in the same direction. If $x' \rightarrow \{x_1, x_2\}$, then $x' \rightarrow x_1 \rightarrow x_2 \rightarrow x_3$ implies that $\overline{x'x_3}$, a contradiction. If $\{x_1, x_2\} \rightarrow x'$, then $x_3 \rightarrow x_1 \rightarrow x_2 \rightarrow x'$ implies that $\overline{x'x_3}$, a contradiction. Next assume that the arcs between x' and T are in different direction. If $x' \rightarrow x_1$, then, by $x' \rightarrow x_1 \rightarrow x_2 \rightarrow x_3$ and $x' \rightarrow x_1 \rightarrow x \rightarrow x_2$, we have that $\overline{x'x_3}$ and $\overline{x'x_2}$, respectively, a contradiction. If $x' \rightarrow x_3$, then, by Lemma 2.2, $\overline{x'x_2}$ and so $x_2 \rightarrow x'$. Then $x \rightarrow x_2 \rightarrow x' \rightarrow x_3$ implies that $\overline{x'x_3}$, a contradiction. So $x' \rightarrow x_2$. By Lemma 2.2, $\overline{x'x_1}$ and so $x_1 \rightarrow x'$. Next we claim that U is an independent set. If |U| = 1, the claim is trivial. Now assume $|U| \ge 2$. Suppose, on the contrary, there exists a pair u, v of U such that \overline{uv} . Without loss of generality, assume that $u \rightarrow v$. Then $u \rightarrow v \rightarrow x_2 \rightarrow x_3$ implies $\overline{ux_3}$, a contradiction. So the claim is true and the proof of Lemma 2.4 is complete. \Box

Theorem 2.5. Let *D* be a strong 3-quasi-transitive digraph of order *n*. Then *D* is either a semicomplete digraph, a semicomplete bipartite digraph, or isomorphic to F_n .

Proof. If *D* is a bipartite digraph with bipartition (*X*, *Y*). For any pair $x \in X$, $y \in Y$, since *D* is strong, there exists an (*x*, *y*)-path *P*. Since *x*, *y* belong to different parts, the length of *P* is odd. By Lemma 2.1, *x* and *y* are adjacent. So *D* is a semicomplete bipartite digraph. Now suppose that *D* is a non-bipartite digraph. By Lemma 2.2, *D* contains a 3-cycle *T* as a subdigraph. If n = 3, then *D* is a semicomplete digraph. So assume $n \ge 4$. If there exists a vertex which is adjacent to every vertex of *T*, then, by Lemma 2.3, *D* is a semicomplete digraph. If not, then, by Lemma 2.4, *D* is isomorphic to F_n . The proof of Theorem 2.5 is complete. \Box

Theorem 2.6 ([5]). A semicomplete digraph is Hamiltonian if and only if it is strong.

Theorem 2.7 ([5]). A semicomplete bipartite digraph is Hamiltonian if and only if it is strong and contains a cycle factor.

Corollary 2.8. A 3-quasi-transitive digraph is Hamiltonian if and only if it is strong and has a cycle factor.

Proof. Let *D* be a 3-quasi-transitive digraph. If *D* is Hamiltonian, then it is strong and has a cycle factor. So assume that *D* is strong and has a cycle factor. If *D* is semicomplete or semicomplete bipartite, the result follows from Theorem 2.6 or Theorem 2.7, respectively. Otherwise, *D* is isomorphic to F_n . Since *D* has a cycle factor, every vertex x_i with $i \ge 4$ must be contained in some cycle. But any cycle which contains vertex x_i , must contain vertex x_2 . Therefore, n = 4. Clearly, F_4 is Hamiltonian. \Box

Acknowledgement

The authors are very thankful with the anonymous referee for a thorough review and specially for giving a simplification of the proof of main result which improves substantially the rewriting of this paper.

References

- [1] J. Bang-Jensen, Locally semicomplete digraphs: a generalization of tournaments, J. Graph Theory 14 (3) (1990) 371–390.
- [2] J. Bang-Jensen, Arc-local tournament digraphs: a generalization of tournaments and bipartite tournaments. Technical Report Preprint No. 10, Department of Mathematics and Computer Science, University of Southern Denmark, 1993.
- [3] J. Bang-Jensen, The structure of strong arc-locally semicomplete digraphs, Discrete Math. 283 (2004) 1-6.
- [4] J. Bang-Jensen, Y. Guo, G. Gutin, L. Volkmann, A classification of locally semicomplete digraphs, Discrete Math. 167–168 (1998) 101–114.
- [5] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms, and Applications, in: Monographs in Mathematics, Springer, 2001.
- [6] J. Bang-Jensen, J. Huang, Quasi-transitive digraphs, J. Graph Theory 20 (2) (1995) 141-161.
- [7] D.G. Corneil, H. Lerchs, L. Stewart Burlingham, Complement reducible graphs, Discrete Appl. Math. 3 (1981) 163–174.
- [8] H. Galeana-Sánchez, I.A. Goldfeder, A classification of strong and non-strong arc-locally semicomplete digraphs, Discrete Math. (submitted for publication).
- [9] A. Ghouila-Houri, Caractérisation des graphes non orientés dont on peut orienter les arrêtes de maniere à obenir le graphe d'un relation d'ordre, C. R. Acad. Sci. Paris 254 (1962) 1370–1371.
- [10] S. Wang, R. Wang, The structure of strong arc-locally in-semicomplete digraphs, Discrete Math. 309 (2009) 6555–6562.