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THE IMPORTANCE OF monophyly for defining 
species limits has remained controversial in 
ornithology. Although some systematists insist 
on the reciprocal monophyly of sister species, 
even at the level of their component gene trees 
(e.g. Zink and Blackwell-Rago 2000; but see 

Zink 2002), coalescence theory predicts patterns 
of paraphyly and polyphyly at early stages 
of speciation (Neigel and Avise 1986, Avise 
and Ball 1990, Hudson 1990, Avise 1994). That 
tension underscores the outstanding problem 
of establishing broadly applicable criteria to 
demarcate species boundaries, especially for re-
cently diverged taxa. Here, we examined a pair 
of closely related New World orioles (Icterus).
Rather than apply a particular species concept 

ABSTRACT.—New World orioles (Icterus) include several closely related species and sub-
species pairs that provide excellent opportunities for studying recent speciation. We examined 
a subspecies pair in the Orchard Oriole group: Orchard Oriole (I. spurius spurius), a long-
distance migrant that breeds in eastern North America, and Fuertes’s Oriole (I. s. fuertesi), a 
short-distance migrant that breeds in a restricted range in Veracruz, Mexico. We sequenced 
parts of the mitochondrial cytochrome-b gene (925 base pairs) and control region (344 base 
pairs) from 23 Orchard Orioles and 7 Fuertes’s Orioles. Subspecies are not reciprocally mono-
phyletic. Instead, our data suggest that at least one taxon is paraphyletic or polyphyletic. We 
found little support for any further phylogenetic structure, including whether one subspecies 
might be derived from the other. However, haplotype frequency analysis suggests that there is 
little or no current gene fl ow between the taxa. The phylogenetic relationship between Orchard 
and Fuertes’s orioles is likely a result of recent divergence and incomplete lineage sorting. 
That interpretation is consistent with theoretical models of speciation, which predict patterns 
of nonmonophyly at early stages of taxon divergence. Our fi ndings suggest that Orchard and 
Fuertes’s orioles are separate species and provide a case study for evaluating the importance of 
monophyly in defi ning species limits. Received 25 January 2002, accepted 22 April 2003.

RESUMEN.—Las calandrias del Nuevo Mundo (Icterus) incluyen un conjunto de especies 
cercanamente relacionadas y pares de subespecies que ofrecen oportunidades excelentes para 
el estudio de eventos recientes de especiación. Nosotros examinamos un par de subespecies 
en el grupo de los bolseros cafés: el bolsero castaño (I. spurius spurius), que es un migrante de 
grandes distancias que se reproduce en el este de Norteamérica, y el bolsero de Fuertes (I. s. 
fuertesi), un migrante de corta distancia que se reproduce en un área restringida en Veracruz, 
México. Secuenciamos partes del gen mitocondrial del citocromo-b (925 pares de bases) y la 
región control (344 pares de bases) de 23 I. s. spurius y 7 I. s. fuertesi. Las subespecies no son 
recíprocamente monofi léticas. Por el contrario, los datos sugieren que al menos un taxón es 
parafi lético o polifi lético. Encontramos muy poco apoyo a cualquier otra estructura fi logené-
tica, incluyendo si alguna subespecie pudo derivarse de la otra. Sin embargo, el análisis de 
frecuencia de haplotipos sugiere que hay muy poco fl ujo genético actual entre los taxa. La 
relación fi logenética entre los bolseros castaño y de Fuertes es más bien resultado de una 
divergencia reciente y una división incompleta de los linajes. Esta interpretación es consistente 
con los modelos teóricos de especiación reciente, los cuales predicen patrones de no-monofi lia 
en etapas tempranas de la especiación. Nuestros resultados presentan un estudio de caso para 
evaluar la importancia de la monofi lia en la defi nición de límites de especies.
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to the group, we sought to reconstruct the 
process of genetic divergence. That approach 
provides an opportunity to critically evaluate 
the monophyletic species criterion.

The Orchard Oriole group (Icterus spurius)
presents an interesting case study of recent tax-
on divergence. The two subspecies in the group, 
Orchard Oriole (I. s. spurius, Linnaeus 1766) and 
Fuertes’s Oriole (I. s. fuertesi, Chapman 1911), 
are clearly distinct in adult male plumage. 
Underparts, rump, uppertail coverts, and scap-
ulars of Orchard Orioles are chestnut; whereas 
those of Fuertes’s Orioles are tan or ochre-buff 
(Howell and Webb 1995). The taxa also differ 
widely in their breeding and wintering ranges. 
Orchard Orioles breed in eastern and central 
United States and central plains of Mexico 
(Scharf and Kren 1996) and winter from south-
western Mexico and the Yucatán Peninsula 
through Central America to northern Colombia 
and northwestern Venezuela (American 
Ornithologists’ Union 1998). Hence, most 
Orchard Orioles migrate a long distance from 
temperate breeding grounds to the tropics. In 
contrast, Fuertes’s Orioles breed from southern 
Tamaulipas to southern Veracruz, Mexico, and 
migrate, if at all, only a short distance along the 
southern coasts of Guerrero to Chiapas, Mexico 
(Jaramillo and Burke 1999; but see Scharf and 
Kren 1996). Importantly, breeding grounds of 
Orchard and Fuertes’s orioles are disjunct (see 
Fig. 1). Finally, the taxa may differ in physical 
size (Chapman 1911; but see Graber and Graber 
1954, Monroe 1968). 

Given their differences in plumage coloration 
and breeding range, Orchard and Fuertes’s 
orioles were originally described as separate 
species (Chapman 1911; see also Sclater 1939). 
Blake (1953) was the fi rst to regard the taxa as 
conspecifi c, although Graber and Graber (1954) 
fi rst provided empirical support for lumping. 
Graber and Graber’s (1954) recommendation 
was based on the putative nonsignifi cance of 
observed size differences between Orchard and 
Fuertes’s orioles and on their claim of varia-
tion in adult male plumage coloration within 
each taxon. Although they did not document 
any overlap in plumage coloration between 
taxa and although they suggested that the 
taxa likely do not interbreed, their taxonomic 
recommendation was accepted by Blake (1968) 
(see also American Ornithologists’ Union 1983, 
1998; Sibley and Monroe 1990). In addition, 

Dickerman and Warner (1962) described a third 
subspecies in the group, Icterus spurius phillipsi,
which they attributed to Mexico’s central pla-
teau. However, Monroe (1968) found it to be 
indistinguishable from nominate spurius, and it 
is not recognized by Monroe and Sibley (1993) 
or the American Ornithologists’ Union (1983, 
1998).

Despite the presence of several diagnosable 
differences between Orchard and Fuertes’s 
orioles, a recent mitochondrial DNA study 
of the genus Icterus suggests that the subspe-
cies are very closely related (0.6% different in 
cytochrome-b and ND2 sequences; Omland et 
al. 1999).

Our goals were to study the recent diver-
gence of Orchard and Fuertes’s orioles and 
to determine whether the taxa have evolved 
reciprocal monophyly. In addition, we sought 
to elucidate changes in plumage coloration and 
migration habits that occurred in the Orchard 
Oriole group.

METHODS

Taxon sampling.—Muscle and skin tissues were 
obtained from 23 Orchard and 7 Fuertes’s Orioles, 
collected from throughout their respective breeding 
ranges (Fig. 1, Appendix). For outgroup taxa, we chose 
the Greater Antillean Oriole (Icterus dominicensis) and 
the Black-cowled Oriole (I. prosthemelas; American 
Ornithologists’ Union 2000), which are among the 
closest living relatives of the Orchard Oriole group 
(Omland et al. 1999). All samples were collected dur-
ing the breeding season (15 May to 15 July).

DNA segments.—Given the close relationship be-
tween the Orchard Oriole taxa, we chose to analyze 
mitochondrial DNA, which evolves monophyly 
4× faster than the average nuclear allele (Palumbi 
et al. 2001; also see Hudson and Turelli 2003) and, 
thus, better tracks species-level phylogenies for re-
cently diverged taxa than any single nuclear allele 
(Moore 1995). The mitochondrial cytochrome-b (cyt 
b) gene was sequenced because it has proven useful 
for species-level phylogenies in New World orioles 
(Omland et al. 1999) and other bird groups (Moore 
and DeFilippis 1997) and because its rate of sequence 
divergence has been well characterized (Fleischer et 
al. 1998). Domain I of the mitochondrial control re-
gion (CR) was also sequenced for its rapid mutation 
rate (Tarr 1995).

Laboratory procedures.—DNA was extracted 
from muscle and skin tissue using DNeasy Tissue 
Extraction Kits (Qiagen, Valencia, California). DNA 
samples were amplifi ed and sequenced using the fol-
lowing four primers spanning 925 base pairs (bp) of 
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cyt b: L14990/LB1 (Kocher et al. 1989), H15424/HSH 
(Hackett 1996), L15350/LCBA (J. Klicka pers. comm.), 
and H15916/HB4 (Lanyon 1994); and the following 
two primers spanning 344 bp of CR: LGL2 and H417 
(Tarr 1995). A typical amplifi cation involved an initial 
cycle (4 min at 95°C, 1 min at 50 C, 45 s at 72 C), fol-
lowed by 35 cycles (1 min at 95 C, 1 min at 50 C, 45 s at 
72 C) and a fi nal 10 min extension at 72°C. Polymerase 
chain reaction (PCR) products were cleaned us-
ing QIAquick PCR Purifi cation Kits (Qiagen). 
Cytochrome-b and CR segments were sequenced in 
both directions using the above primers and Big Dye 
Chemistry (version 2, Applied Biosystems, Inc. [ABI], 
Foster, California) following ABI protocols. Cycle-
sequenced products were cleaned using an ethanol 
precipitation protocol recommended by ABI and 
sequenced on an ABI 3100 automated sequencer. All 
30 individuals were sequenced for CR, and a subset 
of 11 Orchard and all Fuertes’s orioles for cyt b. All 
sequences were deposited into GenBank under ac-
cession numbers AY211195–AY211215, AY212245 
(cyt b) and AY211216–AY211247 (CR). Cytochrome-b

sequence for one Black-cowled Oriole was obtained 
from a previous study (Omland et al. 1999, GenBank 
accession no. AF099289).

Genetic analyses.—DNA sequences were aligned 
using SEQUENCHER (version 4.1; Gene Codes 
Corporation, Ann Arbor, Michigan). Uncorrected 
pairwise distance values were computed for both 
cyt-b and CR segments in PAUP* (version 4.0b8, 
Swofford 1999). Cytochrome-b and CR data sets were 
analyzed separately using maximum parsimony and 
the combined data set using maximum parsimony 
and maximum likelihood in PAUP*. A partition ho-
mogeneity test was performed in PAUP* to determine 
whether the cyt-b and CR data sets were signifi cantly 
incongruent. Maximum parsimony analyses were 
conducted using the heuristic search algorithm with 
1,000 random additions. There are no insertions or de-
letions in the data sets, and all characters were equally 
weighted. By using hierarchical likelihood-ratio tests 
in MODELTEST (version 3.04; Posada and Crandall 
1998), it was determined that the HKY85 +  model 
(Hasegawa et al. 1985, Yang 1994) best fi t our data. 

FIG. 1. Ranges of Orchard and Fuertes’s orioles (adapted from Jaramillo and Burke 1999). Orchard Oriole 
breeding range is indicated in light gray; the wintering range, in crosshatching. Fuertes’s Oriole breeding range 
is indicated in dark grey. Black dots indicate approximate locations of collected individuals. Sample size for 
each location is indicated next to each dot.
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We used the heuristic search algorithm with 1,000 
random additions to construct the maximum-likeli-
hood tree, successively estimating tree parameters 
until a stable topology was found.

Control region haplotype data were also analyzed 
using hierarchical analyses of molecular variance 
(AMOVA) (Excoffi er et al. 1992) to test for signifi cant 
population structure. Pairwise fi xation indices (FST)
were calculated for populations at several hierarchical 
levels using ARLEQUIN (version 2.0; Schneider et al. 
2000). Those FST values indicate how molecular varia-
tion is apportioned among hierarchical levels and 
provide an upper bound on the relative amount of 
gene fl ow that occurs among individuals at each level. 
For the purpose of those analyses, Orchard Oriole was 
divided into a Mexican population (corresponding to 
the putative range of Icterus spurius phillipsi) and the 
following US populations: eastern (Pennsylvania, 
Virginia, North Carolina), central (Illinois), southern 
(Louisiana), and western (Colorado, Kansas). We 
divided Fuertes’s Oriole into northern (northern 
Veracruz) and southern (southern Veracruz) popula-
tions (see Fig. 1).

RESULTS

Sequence data.—Of the 925 bp of cyt-b se-
quence, 10 (1.08%) sites were variable and 
3 (0.32%) were parsimony informative. Of the 
344 bp of CR sequence, nine (2.62%) sites were 
variable and three (0.87%) were parsimony 
informative. The minimum, maximum, and 
average genetic distances within and between 
Orchard and Fuertes’s orioles are shown in 
Table 1. The average genetic distance between 
the subspecies for both DNA segments is 
slightly greater than that within taxa. For cyt b,
the average genetic distance between the taxa 
is 0.20%, whereas the average distances within 
Orchard and Fuertes’s oriole are 0.19 and 0.12%, 
respectively.

Phylogenetic analyses.—The equally weighted 
maximum-parsimony search on the CR data 
set produced one most parsimonious topology 
(presented as an unrooted haplotype network 
in Fig. 2). Although that analysis showed that 
the haplotypes of the two subspecies are in-
termixed, it also showed different haplotype 
frequencies between the taxa (see below). We 
also constructed rooted phylograms for cyt-b
and CR data sets separately, again using the 
equally weighted maximum parsimony search 
(e.g. Fig. 3). The partition homogeneity test in 
PAUP* detected no signifi cant incongruence 
between cyt-b and CR data sets (P = 0.092). The 
only obvious incongruence was the placement 

of IL-6, whether within the main haplotype of 
Orchard Oriole (cyt b, Fig. 2) or the main hap-
lotype of Fuertes’s Oriole (CR, Fig. 3); however, 
a single homoplasy in cyt b could account for 
that incongruence. We combined the cyt-b and 
CR data sets for maximum-parsimony and 
maximum-likelihood analyses. The four short-
est trees generated by the equally weighted 
maximum-parsimony search on the combined 
data set was 92 steps long and showed both 
taxa polyphyletic (sensu Avise 1994). When 
constrained to recover only trees that showed 
Fuertes’s or Orchard oriole monophyletic, the 
equally weighted maximum-parsimony search 
generated eight shortest trees of 93 steps. A 
comparison of the two hypotheses using a two-
tailed Wilcoxon signed-ranks test (Templeton 
1983) in PAUP* could not rule out the mono-
phyly of either taxon (P > 0.5), but could rule 
out the reciprocal monophyly of both taxa (P < 
0.0001). The maximum-likelihood search on the 
combined data set found a single tree (–lnl = 
2119.52) with the following parameter values: 
transition–transversion ratio (ti/tv) = 7.2539, 
distribution shape ( ) = 0.1574, and empirical 
base frequencies (Fig. 4). That tree was similar 
to the trees generated by the unconstrained 
maximum-parsimony search on the combined 
data set.

Our phylogenetic analyses of both separate 
and combined data sets revealed intermixing 
of the subspecies’ haplotypes and strongly sug-
gested that the taxa are not reciprocally mono-
phyletic. We found little support for any further 
phylogenetic structure, including whether one 
taxon might be derived from the other.

Analysis of population genetics.—Analysis
of geographic structure using ARLEQUIN 
revealed signifi cant genetic differentiation 

TABLE 1. Genetic distances within and between 
Orchard Oriole taxa (uncorrected percentages for 
cytochrome-b and control-region segments). 

 Cytochrome b Control region 
Between subspecies 

Range (0.00–0.43) (0.00–1.16) 
Mean 0.20 0.77 

Within Orchard Oriole 
Range (0.00–0.43) (0.00–0.87) 
Mean 0.19 0.30 

Within Fuertes's Oriole 
Range (0.00–0.22) (0.00–0.87) 

  Mean 0.12 0.27 
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 between Orchard and Fuertes’s orioles (FST = 
0.608, P < 0.00001), which strongly suggests there 
is little or no current gene fl ow between sub-
species. Using ARLEQUIN, we estimated that 
0.3 migrants per generation could account for 
our fi ndings. In contrast, there is no evidence of 
genetic differentiation within either subspecies 
(P > 0.75) (See Table 2).

DISCUSSION

Lack of reciprocal monophyly.—Our fi ndings 
based on cyt-b and CR sequence data show that 
the haplotypes of Orchard and Fuertes’s Orioles 
are intermixed and that the taxa are not recipro-
cally monophyletic. Those patterns could result 
from recent divergence and incomplete lineage 
sorting (see Moran and Kornfi eld 1993, Seutin et 
al. 1995). Coalescence theory predicts patterns 
of nonmonophyly at early stages of speciation 
(Neigel and Avise 1986, Avise and Ball 1990, 

Hudson 1990, Avise 1994), which is consistent 
with our fi ndings. Lineage sorting at neutral 
sites is a stochastic process, and the probability 
that reciprocal monophyly will evolve in a pair 
of populations increases with smaller effective 
population size and longer time since interrup-
tion of gene fl ow (Hudson 1990). Any pair of 
populations will eventually become reciprocal-
ly monophyletic (or exclusive) after gene fl ow 
has ceased, because ancestral polymorphism 
is sorted and unique mutations are acquired 
(Avise 1994, Baum and Shaw 1995, Shaw 1998). 
For example, after 0.1N generations since the 
interruption of gene fl ow (where N is the effec-
tive population size), 13% of population pairs 
will be reciprocally monophyletic. After N and 
4N generations, 35 and 83% will show that pat-
tern, respectively (table 2.2 in Harrison 1998). 
Thus, if Orchard and Fuertes’s orioles diverged 
recently, the probability that the taxa would be 
reciprocally monophyletic is quite low, even if 

FIG. 2. Unrooted haplotype network based on control-region sequences. Network was obtained using the 
equally weighted maximum-parsimony search in PAUP*, which produced one most parsimonious network. 
Branch lengths are uncorrected and correspond to a single base-pair change. Relative haplotype frequencies 
are indicated by area of circles. Locations are abbreviated as in the appendix. Orchard Orioles collected from 
Mexico (the putative breeding range of I. s. phillipsi) are underlined. Note the blatant differences in haplotype 
frequencies between Orchard and Fuertes’s orioles.
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they do not exchange any genes. Incomplete lin-
eage sorting, therefore, is suffi cient to account 
for our data.

Alternatively, our fi ndings may be accounted 
for by hybridization between subspecies after 
they diverged (Avise et al. 1990, Avise 1994; see 
also Holder et al. 2001, Weckstein et al. 2001). 
Although no hybrids have been observed, there 
has not been suffi cient fi eld work to completely 
reject that hypothesis. Nevertheless, even if 
there is some gene fl ow between subspecies, 
it must be rare given the haplotype frequency 
differences between the taxa (see Table 2). 
Another conceivable partial explanation for our 
data is homoplasy. Unconstrained phylogenies 
based on combined cyt-b and CR data sets, 
which show the polyphyly of both Orchard and 
Fuertes’s orioles, are only one step shorter than 

phylogenies constrained to show the monophy-
ly of either taxon (but not both). Thus, a reversal 
at a single nucleotide site would have rendered 
one of the subspecies monophyletic and the 
other, paraphyletic.

Haplotype sharing.—Despite a low sample size 
for Fuertes’s Oriole (n = 7), we found clear evi-
dence of haplotype sharing and nonmonophyly 
between the Orchard Oriole subspecies. Thus, 
however representative our samples are for 
the taxon, we know that at least some Fuertes’s 
Orioles share haplotypes with some Orchard 
Orioles. Furthermore, additional mitochondrial 
sequence data (e.g. from different gene regions) 
should refl ect the same qualitative pattern (i.e. 
polyphyly), because mitochondria are inherited 
as a single linked locus. Unfortunately, nuclear 

FIG. 3. Phylogram based on cytochrome-b sequenc-
es. Tree was obtained using the equally weighted MP 
search in PAUP*, which produced one most parsimo-
nious tree. Branch lengths are uncorrected. Locations 
are abbreviated as in the appendix. Fuertes’s Orioles 
are highlighted in bold. Note that the haplotypes of 
both subspecies are intermixed.

FIG. 4. Phylogram based on combined cytochrome-
b and control-region sequences. Tree was obtained 
using the maximum-liklihood search in PAUP*. We 
used the HKY85 +  model to construct the tree (–lnl = 
2,119.52), which had the following parameter values: 
ti/tv = 7.2539,  = 0.1574, and empirical base frequen-
cies. Locations are abbreviated as in the appendix. 
Fuertes’s Orioles are highlighted in bold.

TABLE 2. Results of AMOVA (Excoffier et al. 1992). Fixation indices (FST) for Orchard Oriole and Fuertes's Oriole 
based on control-region sequence data. Note the significant differentiation between subspecies. 

 Variance Percent   
Source of variation components variation FST P value 
Between subspecies 0.78589 60.75 0.608 <0.000001 
Among populations/ 
 within subspecies –0.02338 –1.81 –0.046 0.75269 
Among individuals/ 
 within populations 0.53054 41.03 0.590 0.00196 
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genes are much less likely to show fi xed differ-
ences between species, so even rapidly evolving 
regions such as introns are extremely likely to 
show complete sharing of haplotypes at such 
low levels of divergence (Moore 1995, Palumbi 
et al. 2001). The patterns we found, therefore, 
likely refl ect some part of the taxa’s “true” evo-
lutionary history.

Haplotype frequencies.—We found strong evi-
dence from CR haplotype frequency data that 
Orchard and Fuertes’s orioles constitute distinct 
populations that exchange few if any genes with 
each other (Table 2). Similar differences in hap-
lotype frequencies have been found in other 
pairs of recently diverged taxa (e.g. Kahn et al. 
1999; but see Lovette and Bermingham 2001). 
Our data further show that Orchard Oriole is 
a single panmictic population, which supports 
the lumping of the Mexican population (some-
times referred to as Icterus spurius phillipsi) with 
US populations. That fi nding suggests that there 
is extensive gene fl ow across the Orchard Oriole 
breeding range or that the taxon underwent a 
recent range expansion, perhaps following gla-
cial retreat (see below).

Rapid changes in plumage and migration 
habits.—The maximum distance in cyt-b se-
quence in the Orchard Oriole group is 0.43%. 
Assuming a divergence rate in mitochondrial 
coding sequence of 2% Ma–1 (Fleischer et al. 
1998), we estimate that the group began to di-
verge from a common ancestor roughly 200,000 
years ago (see also Barraclough and Nee 2001, 
Nichols 2001). That estimate places the subse-
quent origin of the two subspecies in the recent 
Pleistocene (cf. Klicka and Zink 1997, 1999). 
Because the taxa are not reciprocally mono-
phyletic, we cannot date the actual speciation 
event. Rather, we estimate the date when the 
mitochondrial DNA lineages within the entire 
complex began to diverge. That provides an up-
per-bound estimate on when speciation could 
have fi rst occurred and avoids the need to cor-
rect for ancestral polymorphism.

The tiny genetic distance between Orchard 
and Fuertes’s orioles further suggests that those 
taxa diverged from each other quite recently. 
The mean genetic distance in cyt-b sequence 
between the subspecies (0.20%) is less than that 
between any subspecies pair Avise and Walker 
(1998) reported (see also table 2 in Helbig et al. 
1995). Thus, changes in plumage coloration and 
migration habits must have evolved within a 

relatively short time span. Plumage coloration 
is known to be important in mate choice in 
Orchard Orioles (Enstrom 1993), so sexual se-
lection could have driven that rapid plumage 
change. Previous studies have documented rap-
id evolution in plumage characters across the 
New World orioles (e.g. Omland and Lanyon 
2000) and other bird groups (e.g. Zink 1996, 
Kusmierski et al. 1997, Burns 1998).

Monophyly and species limits.—Biologists and 
philosophers have long debated the defi nition 
of species taxa (reviewed in Hull 1988, 2001; 
Mayden 1997). Among the many species con-
cepts currently in use, phylogenetic species 
concepts in their various forms (Cracraft 1983, 
Donoghue 1985, Mishler and Brandon 1987) 
have recently attracted much attention in or-
nithology (Zink and McKitrick 1995, Cracraft 
1997). According to those accounts, species 
are historical entities that are defi ned in terms 
of their component genic or population-level 
lineages. The monophyly of those component 
lineages is often used as a criterion to defi ne 
species limits (e.g. Donoghue 1985, Mishler 
and Brandon 1987, McKitrick and Zink 1988, 
Baum and Shaw 1995; but see Horvath 1997). 
Yet theoretical models of speciation, including 
coalescence theory (Neigel and Avise 1986, 
Avise and Ball 1990, Avise 1994), predict pat-
terns of nonmonophyly at early stages of spe-
ciation (see also Patton and Smith 1994, Crisp 
and Chandler 1996, Harrison 1998). Recently 
diverged species will not demonstrate recipro-
cal monophyly for some time after they have 
stopped exchanging genes (Hudson 1990). 
Moreover, evolution of reciprocal monophyly 
does not appear to mark the boundary of any 
evolutionarily signifi cant event. Rather, it is a 
pattern caused by the stochastic process of gene 
sorting, which may or may not be correlated 
with changes in behavioral, ecological, or mor-
phological characters. Thus, phylogenetic spe-
cies concepts that require monophyly may inap-
propriately demarcate species limits, especially 
for closely related taxa. Reciprocal monophyly, 
like each proposed species criterion, is perhaps 
best viewed as an imperfect diagnostic tool 
for determining species status (O’Hara 1994; 
de Queiroz 1998, 1999). For both theoretical 
(Kitcher 1984, 1989; Hull 1997; Dupré 1999) and 
empirical (de Queiroz 1998) reasons, the search 
for a single, defi ning species criterion may be a 
search fundamentally misguided.
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Pursuant to that view, we recommend a re-
consideration of the taxonomy of the Orchard 
Oriole group. Orchard and Fuertes’s orioles 
are diagnosably distinct (sensu Cracraft 1983) in 
their breeding ranges and adult male plumage 
coloration, and the taxa likely exchange few if 
any genes with each other. Despite some varia-
tion, there is no overlap in plumage coloration 
between the subspecies, and variation within 
each taxon is less than that between taxa (J. M. 
Baker pers. obs; see also Sharf and Kren 1996). 
In our view, those indications of evolutionary 
divergence are signifi cant. The relationship be-
tween Orchard and Fuertes’s orioles, therefore, 
may be better captured at the generic level. In 
contrast, we found no molecular support for the 
recognition of the Mexican population (or Icterus
spurius phillipsi), as distinct from the US popula-
tions, in the Orchard Oriole. That fi nding sup-
ports their current lumping (Monroe and Sibley 
1993, American Ornithologists’ Union 1998).

Summary.—The Orchard Oriole group pro-
vides an excellent example of recent taxon di-
vergence. Our data suggest that the subspecies 
are polyphyletic, despite the probable lack of 
gene fl ow between the taxa and the presence 
of diagnosable differences in adult male plum-
age coloration, breeding range, and migration 
habits. Those patterns are indicative of recent 
speciation. In our view, Orchard and Fuertes’s 
orioles are evolutionarily distinct taxa and 
should be treated as separate species. Our fi nd-
ings may also have conservation implications 
for Fuertes’s Oriole, whose restricted range 
makes it potentially vulnerable to wide-scale 
habitat changes.
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APPENDIX.

  Accession numbersb
 ______________________  

Taxon Catalogue numbera CR Cyt b Collection locality 
I. spurius fuertesi (NVer-1) MZFC 15595 AY211221 AY211206 Mexico, northern Veracruz, Tecolutla 
I. spurius fuertesi (NVer-2) MZFC 15534 AY211222 AY211207 Mexico, northern Veracruz, Tecolutla 
I. spurius fuertesi (NVer-3) MZFC 15533 AY211223 AY211208 Mexico, northern Veracruz, Tecolutla 
I. spurius fuertesi (NVer-4) MZFC 15532 AY211224 AY211209 Mexico, northern Veracruz, Tecolutla 
I. spurius fuertesi (SVer-1) MZFC 13565 AY211218 AY211214 Mexico, southern Veracruz, Tlacotalpan 
I. spurius fuertesi (SVer-2) BMNH 42538 AY211219 AY211215 Mexico, southern Veracruz, Tlacotalpan 
I. spurius fuertesi (SVer-3) MZFC 13568 AY211220 AY212245 Mexico, southernVeracruz, Tlacotalpan 
I. spurius spurius (CO) LSUMZ B-3980 AY211229 – USA, Colorado, Weld County 
I. spurius spurius (IL-1) FMNH 383513 AY211236 AY211199 USA, Illinois, Cook County 
I. spurius spurius (IL-2) FMNH 383514 AY211231 – USA, Illinois, Cook County 
I. spurius spurius (IL-3) FMNH 389579 AY211232 – USA, Illinois, Cook County 
I. spurius spurius (IL-4) FMNH 384644 AY211233 – USA, Illinois, Cook County 
I. spurius spurius (IL-5) FMNH 390351 AY211235 – USA, Illinois, DuPage County 
I. spurius spurius (IL-6) FMNH 381975 AY211234 AY211197 USA, Illinois, Cook County 
I. spurius spurius (KS) UKNHM 91051 AY211230 AY211198 USA, Kansas, Seward County 
I. spurius spurius (LA-1) LSUMZ B-5929 AY211236 AY211199 USA, Louisiana, Cameron Parish 
I. spurius spurius (LA-2) LSUMZ B-6377 AY211237 – USA, Louisiana, Cameron Parish 
I. spurius spurius (LA-3) LSUMZ B-6378 AY211238 AY211200 USA, Louisiana, Cameron Parish 
I. spurius spurius (LA-4) LSUMZ B-6379 AY211239 AY211201 USA, Louisiana, Cameron Parish 
I. spurius spurius (LA-5) LSUMZ B-6380 AY211240 AY211202 USA, Louisiana, Cameron Parish 
I. spurius spurius (LA-6) LSUMZ B-6382 AY211241 AY211203 USA, Louisiana, Cameron Parish 
I. spurius spurius (LA-7) LSUMZ B-8464 AY211242 AY211204 USA, Louisiana, Cameron Parish 
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APPENDIX. (Continued.) 

  Accession numbersb
 ______________________  

Taxon Catalogue numbera CR Cyt b Collection locality 
I. spurius spurius (NC) NCSM 15229 AY211243 – USA, North Carolina, Pender County 
I. spurius spurius (PA-1) ANSP 10125 AY211244 AY211205 USA, Pennsylvania, Bucks County 
I. spurius spurius (PA-2) ANSP 10147 AY211245 AY211210 USA, Pennsylvania, Bucks County 
I. spurius spurius (VA) ANSP 10210 AY211246 AY211211 USA, Virginia, Accomack County 
I. spurius spurius (Gua-1) MZFC 5439 AY211247 – Mexico, Guanajuato, Santiaguillo 
I. spurius spurius (Gua-2) MZFC 5440 AY211226 – Mexico, Guanajuato, Santiaguillo 
I. spurius spurius (Gua-3) MZFC 5474 AY211227 – Mexico, Guanajuato, San Pedro  
       de los Naranjos 
I. spurius spurius (Gua-4) MZFC 5454 AY211225 – Mexico, Guanajuato, Santiago Maravatis 
I. prosthemelas (1) MZFC 13573 AY211228 – Mexico, Campeche, Xpujil 
I. prosthemelas (2) BMNH 42543 – AY211212 Mexico, Campeche, Xpujil 
I. prosthemelas (3) BMNH 42542 – AF099289 Mexico, Yucatan, Chichen Itza 
I. dominicensis (1) MVZ 178920 – AY211213 Dominican Republic, Samana 
I. dominicensis (2) NKK 1112 AY211216 AY211195 Dominican Republic, Peravia 

aMuseums are abbreviated as follows: ANSP = Academy of Natural Sciences, Philadelphia; BMNH = J. F. Bell Museum of Natural History, 
University of Minnesota; FMNH = Field Museum of Natural History; LSUMZ = Louisiana State University Museum of Zoology; MVZ = Museum of 
Vertebrate Zoology, University of California, Berkeley; MZFC = Museo de Zoología, Facultad de Ciencias, Universidad Nacional Autónoma de 
México; NCSM = North Carolina State Museum; and UKNHM = University of Kansas Natural History Museum. (NKK 1112 was collected by Nedra 
K. Klein 8 July 1998.) 

bGenBank accession numbers are listed for each individual we sequenced. Note that not all individuals were sequenced for both control region and 
cytochrome b (see text). 


