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WEST'S PROBLEM ON EQUIVARIANT HYPERSPACES 
AND BANACH-MAZUR COMPACTA 

SERGEY ANTONYAN 

ABSTRACT. Let G be a compact Lie group, X a metric G-space, and exp X the 
hyperspace of all nonempty compact subsets of X endowed with the Hausdorff 
metric topology and with the induced action of G. We prove that the following 
three assertions are equivalent: (a) X is locally continuum-connected (resp., 
connected and locally continuum-connected); (b) exp X is a G-ANR (resp., a 

G-AR); (c) (expX)/G is an ANR (resp., an AR). This is applied to show that 
(expG)/G is an ANR (resp., an AR) for each compact (resp., connected) Lie 
group G. If G is a finite group, then (expX)/G is a Hilbert cube whenever 
X is a nondegenerate Peano continuum. Let L(n) be the hyperspace of all 
centrally symmetric, compact, convex bodies A C In, n > 2, for which the 
ordinary Euclidean unit ball is the ellipsoid of minimal volume containing A, 
and let Lo(n) be the complement of the unique O(n)-fixed point in L(n). We 
prove that: (1) for each closed subgroup H C O(n), Lo(n)/H is a Hilbert cube 
manifold; (2) for each closed subgroup K C O(n) acting non-transitively on 
Sn-l, the K-orbit space L(n)/K and the K-fixed point set L(n)[K] are Hilbert 
cubes. As an application we establish new topological models for tha Banach- 
Mazur compacta L(n)/O(n) and prove that Lo(n) and (expSn-1) \ {Sn-1} 
have the same O(n)-homotopy type. 

1. INTRODUCTION 

In 1976 J. E. West [33] asked the following question: Let G be a compact, 
connected Lie group. Is the orbit space (exp G)/G an absolute retract, and if so, is 
it always homeomorphic to the Hilbert cube? In a more general form this problem 
appeared also in [34, Problem 1022]. 

These questions have remained open except when G = S1, the circle group, 
where the answers are "Yes" and "No", respectively. Torunczyk and West proved 
in [29] that the orbit space (expo S1)/S1 is an Eilenberg-MacLane space K(Q, 2), 
where S1 is the circle group and Q stands for the rationals. 

Recall that if G is a compact group and X a metrizable G-space, then expX 
denotes the hyperspace of all non-void compact subsets of X, equipped with the 
Hausdorff metric topology and with the induced action of G. We use expo X for 
the complement (exp X) \ {X}. 

Received by the editors May 1, 2000 and, in revised form, September, 15, 2002. 
2000 Mathematics Subject Classification. Primary 57N20, 57S10, 54B20, 54C55, 55P91, 

46B99. 
Key words and phrases. Banach-Mazur compacta, G-ANR, Q-manifold, hyperspace, orbit 

space, homotopy type, G-nerve. 
The author was supported in part by grant IN-105800 from PAPIIT (UNAM). 

(2003 American Mathematical Society 

3379 



SERGEY A. ANTONYAN 

In the first part of the present paper we give a positive answer to the first question 
of West's problem as a corollary to the following general result. 

Theorem 1.1. Let G be a compact Lie group and X a metrizable G-space. Then 
the following are equivalent: 

(1) X is locally continuum-connected (resp., connected and locally continuum- 
connected), 

(2) expX is a G-ANR (resp., a G-AR), 
(3) The orbit space (expX)/G is an ANR (resp., an AR). 

The proof of this theorem is given in Section 3. 
Since each compact Lie group G is locally path-connected, Theorem 1.1, in par- 

ticular, yields a positive answer to the first question of West's Problem (Corollary 
3.8). 

Remark 1.2. As is shown in Section 3, the implications (1) = (2) == (3) in Theo- 
rem 1.1 are true also for arbitrary compact (not necessarily Lie) groups; (1) == (2) 
and (1) = (3) can be regarded as equivariant versions of Wojdyslawski's Theorem 

[35] as sharpened by D. Curtis [13]. 

In Heisey and West [17] it was proved that if G is a finite group and X is a 
nondegenerate Peano continuum, then (expX)/G is a Hilbert cube if it is an AR. 
Consequently, in combination with Theorem 1.1, this implies that (expX)/G is 

always a Hilbert cube whenever X is a nondegenerate Peano continuum (Corollary 
3.9). 

The second part of this paper is devoted to the Banach-Mazur compacta. 
In his 1932 book Theorie des Operations Lineaires, S. Banach [10] introduced, 

for each n > 2, the space of isometry classes [E] of n-dimensional Banach spaces 
equipped with the metric 

d([E], [F]) = lninf{llTll * IIT-111 | T: E -- F is a linear isomorphism}. 

These spaces are now denoted by BM(n) and called the Banach-Mazur compacta. 
The topology of these spaces continues to be of interest, and the following questions 
of A. Pelczyniski were included in J. West's list of problems in the 1990 book Open 
Problems in Topology [34, Problem 899]: (1) Are the Banach-Mazur compacta 
BM(n) AR's? (2) Are they Hilbert cubes? 

The AR part of Pelczyniski's problem has been solved affirmatively due to efforts 
of P. Fabel [16] and the author [8]. While the question of whether the Banach- 
Mazur compacta BM(n) are homeomorphic to the Hilbert cube remains open for 
all n > 3, it was answered negatively for n = 2 in [9]. 

In the second part of the paper we establish some new properties of the Banach- 
Mazur compacta and consider their relation to West's problem above. It turns out 
that Pelczyniski's problem and West's problem are of the same nature, and both 
problems can be considered from a unified point of view. 

We recall some necessary notation first. By B(n) we denote the hyperspace of all 
centrally symmetric (about the origin), compact, convex bodies in Rn. We consider 
the Hausdorff metric topology on B(n) and the natural induced action of the full 
linear group GL(n) on it. As usual, we shall use O(n) for the orthogonal group. 
It is well known that BM(n) is homeomorphic to the orbit space B(n)/GL(n) (see 
[34, p. 544]). 
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According to a classical theorem of F. John [21], for any A E B(n) there is a 
unique minimal-volume ellipsoid l(A) containing A (respectively, maximal-volume 
ellipsoid j(A) contained in A). Usually j(A) is called the John ellipsoid of A and 
l(A) is called the L6wner ellipsoid of A. 

Let J(n) and L(n) be the O(n)-invariant subsets of B(n) consisting of all bodies 
A E B(n) for which the ordinary Euclidean unit ball 

Bn = {(x,..., Xn) E Rnl X+ + x2< 1} 

is the John ellipsoid and the Lowner ellipsoid, respectively. Some properties of 
these O(n)-spaces are studied in [9]. It was proved in [9, Theorem 4 and Remark 
1] that J(n) and L(n) are global compact O(n)-slices for the GL(n)-space B(n). It 
then follows from a result of H. Abels [1, Lemma 2.3] that J(n) and L(n) are O(n)- 
homeomorphic. The Banach-Mazur compactum BM(n) is just the orbit space 
J(n)/O(n) [9, Corollary 1] or, equivalently, the orbit space L(n)/O(n) (see [9, 
Remark 1]). In what follows we shall use the model BM(n) = L(n)/O(n). By 
Lo(n) we denote the complement L(n) \ {Bn}, and BMo(n) =Lo(n)/O(n). As 
usual, we reserve the letter Q for the Hilbert cube. 

Here we prove four basic properties about the Banach-Mazur compacta BM(n), 
n > 2. 

Theorem 1.3. For any closed subgroup H C O(n), the orbit space Lo(n)/H is a 
[0, 1)-stable Q-manifold. In particular, BMo(n) is a [0,1)-stable Q-manifold. 

Recall that a Q-manifold is said to be [0,1)-stable if it is homeomorphic to its 
product with the half-open interval [0, 1) (see [12, Ch. V]). 

Theorem 1.4. For each closed subgroup K C O(n) acting non-transitively on 
Sn-l, the K-orbit space L(n)/K, as well as the K-fixed point set L(n)[K], is a 
Hilbert cube. In particular, L(n) is a Hilbert cube. 

These theorems are proved in Section 5. However, Section 4 should also be 
considered as a part of those proofs, because the technique we develop there is 
further applied to Theorems 1.3 and 1.4. 

Remark 1.5. Below, in Lemma 7.4, the hypothesis that K acts non-transitively on 
the sphere Sn-l is shown to be equivalent to the condition Lo(n)[K] = 0. 

Next, in Section 6 we apply Theorem 1.3 to establish a new topological model 
for the Banach-Mazur compacta BM(n) for arbitrary n > 2. 

Namely, assume that (H1), (H2), ... is the sequence of all 0(n)-orbit types oc- 
curring in Lo(n). Let Cone(O(n)/Hi) denote the cone over O(n)/Hi endowed with 
the quotient topology and with the translation action of O(n) on the levels. Let 

00 

H(n) = rQ(Hi), where Q(Hi) = (Cone(O(n)/Hi))0, 
i=l 

each equipped with the diagonal O(n)-action. 
Denote Ho(n)= H(n) \ {a}, where a is the unique O(n)-fixed point of H(n). 

Since Cone(O(n)/Hi) E AR, i > 1, it then follows from a result of West [32] that 
H(n) is a Hilbert cube. 

Theorem 1.6. For each closed subgroup H C O(n), the two H-orbit spaces 
Lo(n)/H and IHo(n)/H are homeomorphic. In particular, the Banach-Mazur com- 
pactum BM(n) is homeomorphic to the orbit space H(n)/O(n). 
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Remark 1.7. In combination with [9, Corollary 10], Theorem 1.6 gives yet simpler 
topological models for BM(2). 

The idea that Pelczyniski's problem on Banach-Mazur compacta is closely related 
to West's problem on equivariant hyperspaces was expressed in [9] in the following 
form: 

Conjecture 1.8. For each closed subgroup H C O(n), n > 2, the orbit spaces 
Lo(n)/H and (expo Sn-1)/H are homeomorphic Q-manifolds. In particular, the 
Banach-Mazur compactum BM(n) is homeomorphic to (expSn-l)/O(n). 

Since the sphere Sn-l is O(n)-homeomorphic to the coset space O(n)/O(n- 1), 
we see that (expSn-1)/O(n) is just of the form (exp(G/H))/G. So, if Con- 
jecture 1.8 were proved, the Banach-Mazur compacta would be just of the form 

(exp(G/H))/G (with G = O(n) and H = O(n - 1)). On the other hand, the 

space (expG)/G in West's problem is also of the form (exp(G/H))/G (with H 
the trivial subgroup). This shows how close are, in fact, Pelczyniski's problem and 
West's problem. 

Here is our fourth result on Banach-Mazur compacta, which is proved in Sec- 
tion 7: 

Theorem 1.9. expo Sn-1 and Lo(n) have the same O(n)-homotopy type. 

It follows immediately from Theorem 1.9 that Lo(n)/H and (expo Sn-1)/H 
have the same homotopy type for any closed subgroup H C O(n). This result and 
Theorem 1.3 constitute essential steps in proving Conjecture 1.8. However, we do 
not prove Conjecture 1.8 in this paper. The only step we lack to complete its proof 
is that (expo Sn-1)/H, n > 2, is a Q-manifold. The details of this reduction are 
also presented in Section 6 (Theorem 7.9). 

The paper is divided as follows: 

?1. Introduction. 
?2. Preliminaries. 
?3. Proof of Theorem 1.1 and its corollaries. 
?4. The G-nerve. 
?5. Proofs of Theorems 1.3 and 1.4. 
?6. Proof of Theorem 1.6. 
?7. Proof of Theorem 1.9 and reduction of Conjecture 1.8. 

2. PRELIMINARIES 

For a given topological group G, we denote by G-A(N)R (resp., by G-A(N)E) 
the class of all G-equivariant absolute (neighborhood) retracts (resp., extensors) for 
all metrizable G-spaces. These concepts are straightforward extensions to the case 
of G-spaces of the corresponding concepts of ordinary A(N)R's and A(N)E's (see, 
for example, [2]-[6]). We refer to the monographs [11] and [26] for basic notions of 
the theory of G-spaces. 

If G is a topological group and X is a G-space, for any x E X we denote the 
stabilizer (or stationary subgroup) of x by Gx = {g E G | gx = x}. 

For each subgroup H C G, the H-fixed point set X[H] is defined to be the set 
{x E X | H C Gx}. 

The family of all subgroups of G that are conjugate to H is denoted by (H), i.e., 
(H) = {gHg-ll g E G}. We will call (H) a G-orbit type (or simply an orbit type). 
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For two orbit types (H1) and (H2), one says that (H1) ? (H2) iff H1 C g-1H2g for 
some g E G. The relation - is a partial ordering on the set of all orbit types. Since 
Ggx = gGxg-1 for any x E X and g E G, we have (Gx) = {Ggxl g E G}. 

For a subset S C X, H(S) denotes the H-saturation of S, i.e., H(S)= {hs I h e 
H, s E S}. In particular, H(x) denotes the H-orbit {hx E X h E H} of x. The 
H-orbit space is denoted by X/H. In particular, X/G denotes the orbit space of 
X. 

By G/H we will denote the G-space of cosets {gH I g E G} under the action of 
G induced by left translations. 

A continuous map f : X -- Y of G-spaces is said to be equivariant or G- 
equivariant or, for short, a G-map, if f(gx) = gf(x) for all g E G, x E X. An 
equivariant map f: X - Y is said to be isovariant (or G-isovariant) if GX=Gf(x) 
for all x E X. 

A compatible metric p on a G-space is called invariant or G-invariant if p(gx, gy) 
= p(x, y) for all x, y E X and g E G. 

If X is metrized by a G-invariant metric p, then the formula p(G(x), G(y)) = 
inf{p(x', Y')I x' C G(x), y' E G(y)} defines a metric p, compatible with the quotient 
topology of X/G, whenever G is a compact group. 

Let us recall the well-known and important definition of a slice [26]: 

Definition 2.1. Let G be a topological group, H C G a closed subgroup and X a 
G-space. A subset S C X is called an H-slice in X if 

(1) S is H-invariant, i.e., H(S) = S, 
(2) the saturation G(S) is open in X, 
(3) if G \ H, thengS S = 0, and 
(4) S is closed in G(S). 

If in addition G(S) = X, then we say that S is a global H-slice of X. 

The following is one of the fundamental results in topological transformation 
group theory (see [26, Corollary 1.7.19, Corollary 1.7.20 and Theorem 1.7.7] or 
[11, Ch. II, ??4 and 5]): 

Theorem 2.2 (Slice theorem). Let G be a compact Lie group, X a Tychonoff 
G-space and x E X any point. Then: 

(1) There exists a Gx-slice S C X such that x E S. 
(2) (Gy) < (GC) for each point y E G(S). 
(3) There exists a unique G-map f : G(S) -+ G/Gx such that S = f-1(eGx). 

In [9], using the classical result of John [21] on the minimal-volume ellipsoid, it 
was proved that L(n) is a global O(n)-slice for the GL(n)-space 3(n). In combina- 
tion with a result of H. Abels [1, Theorem 2.1] this yields the following theorem, 
which we will need in the sequel: 

Theorem 2.3. There is an O(n)-equivariant retraction r : B(n) -? L(n) such that 
r(A) belongs to the GL(n)-orbit GL(n)(A) for every A E 13(n). 

In [9, Corollary 2] it was proved that J(n) is a compact O(n)-AR, and since L(n) 
is O(n)-homeomorphic to J(n) [9, Remark 1], we have the following result that will 
often be used in what follows: 

Theorem 2.4 ([9]). L(n) is a compact O(n)-AR. 
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Let fo, fl: X ~ X' be G-maps. A G-homotopy of fo into fi is a homotopy in 
the ordinary sense which is a G-map at each stage of the deformation. A G-space 
X is called G-contractible if there is a G-fixed point * E X such that the constant 
G-map X -- {*} and the identity map lx are G-homotopic. A G-map f: X -- Y 
is a G-homotopy equivalence if there is a G-map f' Y -- X such that f'f is 
G-homotopic to lx and ff' is G-homotopic to ly. 

Theorem 2.5 ([20]). Let G be a compact Lie group and f: T -, Z a G-map 
of G-ANR's. Then f is a G-homotopy equivalence iff for each closed subgroup 
K C G, the restriction of f to the K-fixed point set T[K] is an ordinary homotopy 
equivalence. 

Remark 2.6. In [20, Proposition 4.1] the result originally was stated for paracom- 
pact G-ANE's (even in its fiberwise form). However, the proof in [20] serves for 
metrizable G-ANR's as well. 

Yet another basic result for this paper is the following. 

Theorem 2.7 ([6], [7]). Let G be a compact group, N C G a closed normal subgroup 
and X a G-ANR (resp., a G-AR). Then the N-orbit space X/N, endowed with the 
induced action of the quotient group G/N, is a G/N-ANR (resp., a G/N-AR). In 

particular, X/G is an ANR (resp., an AR). 

Recall that for a metric space (X, d), the Hausdorff metric dH on exp X is defined 

by the formula 

dH(C, D) = max { sup dist(x, C), sup dist(y, D) } for C, DE exp X. 
XED yEC 

The topology generated by dH is an invariant of the topology of X (it does not 

depend on d). 
If G is a compact group and X is a metrizable G-space, then the formula 

(g, A) -> gA; gA = {ga a a E A}, for all g E G, A expX 

defines a continuous G-action on exp X; so exp X naturally becomes a G-space. In 
this case the complement expo X = (expX) \ {X} is an open invariant subset of 

exp X. Clearly, if d is a G-invariant metric on X, then dH is a G-invariant metric 
on exp X. 

For the boundary of a set A c X we will use the notation OA. 

Throughout the paper we will use the following standard notation: 

Bn = {(X1, ... Xn) E n I x + * * * + X2 < 1}, the Euclidean unit ball; 

S-l 
n 

= {(X1,., .,Xn) E IRn I x2 + * * + X2 = 1}, the Euclidean unit sphere; 

An = {(to,..., tn) E lRn+1 I ti > 0, to + * * * + tn = 1}, the standard closed simplex; 

00 

Q = J{Ik I Ik = [0,1]}, the Hilbert cube. 
k=1 
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3. PROOF OF THEOREM 1.1 AND ITS COROLLARIES 

We first prove the following equivariant version of Curtis' generalization [13, 
Theorem 1.6] of the well-known Wojdyslawski Theorem [35], which is just the im- 
plication (1) == (2) in Theorem 1.1. 

Recall that a metric space X is continuum-connected if each pair of points in X 
is contained in a subcontinuum. X is locally continuum-connected if it has an open 
base of continuum-connected subsets [13]. 

Proposition 3.1. Let G be a compact group and X a locally continuum-connected 
(resp., connected and locally continuum-connected) metrizable G-space. Then exp X 
is a G-ANR (resp., G-AR). 

Proof. We shall consider only the "G-ANR" case. The "G-AR" case is similar. 
If exp X is a G-ANR, then it is also an ANR, and then by Curtis' theorem [13], 

X is locally continuum-connected. 
Now assume that (Y, p) is a metric G-space with p an invariant metric on Y, A 

a closed invariant subset of Y, and p : A -* expX a G-map. By Curtis' theorem 
[13], exp X is an ANR. So f has a continuous extension 7p: U -, exp X defined on a 
neighborhood U of A in Y. By compactness of G, there is an invariant neighborhood 
V of A contained in U. Set 

F(y)= U g-1p(gy) for every y E V. 
gEG 

We claim that the map F: V -* exp X is a well-defined continuous G-equivariant 
extension of f. Indeed, for every y E V the set {g-lf(gy)l g E G} is a compact 
subset of expX because it is the image of the continuous map a : G -- expX, 
a(g) = g-lf(gy). Therefore, the union UgeG -1P(gy) is a compact subset of X, 
i.e., F(y) C expX. 

Further, if t, g E G and h = gt, then 

F(ty) = U g-1o(gty) = U t(h-1p(hy)) = t( U h-1'(hy)) = tF(y), 
gEG hEG hEG 

showing the equivariance of F. If a E A, then p(ga) = f(ga) for all g E G, and by 
the equivariance of f we will then have 

F(a) = U g-1(ga) = U g-f(ga) = U g-lgf(a) = U f(a)= f(a), 
geG gEG gEG gEG 

showing that F extends f. 
Let d be an invariant metric on X. 
To see the continuity of F, we fix yo E V and E > 0 arbitrary. By continuity of 

7, for each g E G there is a 69 > 0 such that 

dH(W(gyo), p(z)) < E/2 whenever z E V and p(z,gyo) < 26g. 

By compactness of the orbit G(yo), its open cover {O(gyo, g)l g E G}, where 
O(z, r) stands for the open r-ball in X centered at z, admits a finite subcover 

{O(glYo, 6g9),' ., .O(kYo, g6k)}. 

Let 6 = min{6gl,..., ,gk}. We are going to check that then dH (F(y), F(yo)) < e 
whenever y E V and p(y, yo) < 6. 
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Indeed, for every g E G, gyo belongs to an element of the cover 

{O(glyo, 69g)*, , 0(9k, 69k)}. 

Without loss of generality, one can assume that gyo E 0(glYo, S5g). Then for every 
y E O(yo, 6) we have 

p(gy, g9Yo) < P(gY, gyo) + P(gYo, g1Yo) = P(Y, Yo) + P(gyo, g1Yo) < 6 + 691 < 2691g 

Thus, gyo, gy E O(glYo, 261), which implies that dH ((gy), (gyo)) < E. By the 
invariance of dH, this yields 

dH(g -l(gy),g -l(gyo)) = dH(9(gy),y(gyo)) < e for all g E G, 

which in turn implies that 

dH( U -lP(gy), U g -l(gyo)) 
< . 

gEG gEG 

Thus, dH(F(y),F(yo)) < E for all y E O(yo, 6), proving the continuity of F at 
the point yo. O 

Remark 3.2. Recall that a hyperspace ? C exp X that satisfies the following condi- 
tion is called an inclusion hyperspace: if B E exp X and A E 8 is such that A C B, 
then B E ?. As is clear from the proof, Proposition 3.1 remains true also for any 
invariant inclusion hyperspace ? instead of exp X. 

(2) = (3) follows directly from Theorem 2.7. 
Since every ANR (resp., AR) is locally continuum-connected (resp., connected 

and locally continuum-connected), the implication (3) == (1) follows from the 
following result. 

Proposition 3.3. Let G be a compact group and X a metric G-space. Then: 

(1) X is connected if (expX)/G is connected; and 
(2) if in addition G is a Lie group, then X is locally continuum-connected iff 

(expX)/G is locally path-connected. 

For the proof we need the following three lemmas. 

Lemma 3.4. Let G be a compact group, and X a G-space containing a connected 
invariant subset (e.g., G connected or X[G] 7 0). Then X is connected iff X/G is 
connected. 

Proof. Only the "if" part requires a proof. Let C C X be an invariant connected 
set. Assume the contrary, that X/G is connected and X is not connected. Then 
X = A1 U A2 where the Ai, i = 1, 2, are nonempty, disjoint, closed-open subsets of 
X. Since C is connected, one (and only one) of the sets Ai, i = 1, 2, contains C. 
Suppose C c A1. By compactness of G, the orbit map p: X -- X/G is open and 
closed. Hence the set p(A2) is a nonempty open-closed subset of X/G. Besides, by 
the invariance of C the set p(A2) is disjoint from p(C); so p(A2) f X/G, which 
contradicts the connectedness of X/G. O 

Lemma 3.5. Let G be a compact Lie group, and X a G-space containing a path- 
connected invariant subset (e.g., G connected or X[G] t 0). Then X is path- 
connected if X/G is path-connected. 
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Proof. Only the "if" part requires a proof. Let C C X be an invariant path- 
connected set. It suffices to show that each point x c X can be joined with a point 
of C. Let c E C and let 1: [0,1] -> X/G be a path with l(0) = p(x), 1(1) = p(c), 
where p: X -- X/G is the orbit projection. By [11, Ch. II, Theorem 6.2] there is 
a lifting 1' : [0, 1] - X, pl' = 1. Since 1'(0) belongs to the orbit of x, there is g E G 
such that x = gl'(0). Then the path gl' : [0, 1] - X, (gl')(t) = gl'(t), connects x 
and gl'(1). But gl'(1) E C, because 1'(1) E C and C is invariant. This completes 
the proof. D 

Lemma 3.6. Let G be a compact Lie group. Then a G-space X is locally path- 
connected iff X/G is locally path-connected. 

Proof. Only the "if" part requires a proof. Let x E X and let U be a neighborhood 
of x. Since the action of G is continuous and G is locally path-connected, one can 
choose a path-connected neighborhood 0 of the unity in G and a neighborhood V 
of x such that OV = {gvl g E O, v E V} C U. Without loss of generality, one can 
assume that V is Gx-invariant. Since G is a compact Lie group, there is a Ga-slice 
R containing the point x [26, Corollary 1.7.17]. Then the set T = R n V is also 
a G/-slice containing x. Since X/G is locally path-connected, the neighborhood 

p(G(T)) of the point p(x) contains a path-connected neighborhood Y of p(x) in 

X/G. Let Y = p- (Y). Then Y is a G-invariant neighborhood of the orbit G(x) 
in X. Clearly, the set S - T n Y contains x and is a global G/-slice for the G- 
space Y. Therefore the orbit spaces S/GX and Y/G = Y are homeomorphic [26, 
Proposition 1.7.6]; in particular, S/GX is path-connected. By Lemma 3.5, now S is 
path-connected as well. Consequently, OS is path-connected. Since OS is an open 
neighborhood of x and OS C OT C OV C U, we are done. D 

Proof of Proposition 3.3. 1. It is well known that X is connected iff expX is so; 
this is proved, for instance, in [23, Proposition 5.3.10] for X compact, but the 
same proof is valid for noncompact X as well. Hence, it remains to show that the 
connectedness of (exp X)/G implies that of exp X. If (exp X)/G is connected, then 
the invariant subset F of expX consisting of all invariant, compact subsets of X is 
connected. Indeed, the continuous surjection expX -+ exp(X/G) induced by the 
orbit map X - X/G is invariant, and hence, it induces a continuous surjection 
(expX)/G -- exp(X/G). Therefore, if (expX)/G is connected, then exp(X/G) 
is so, and since F is homeomorphic to exp(X/G), it is connected too. Thus, F 
is an invariant, connected subset of the G-space expX, and the connectedness of 
(exp X)/G implies, by Lemma 3.4, the connectedness of exp X. 

2. Respectively, X is locally continuum-connected iff expX is locally path- 
connected (see [13, Lemma 1.4] and the final part of the proof of [13, Theorem 
1.6]). By Lemma 3.6, exp X is locally path-connected iff (exp X)/G is locally path- 
connected, and the proof is complete. Thus, Theorem 1.1 is completely proved. 

Corollary 3.7. Let G be a compact, metrizable, locally path-connected group, and 
H C G a closed subgroup. Then (exp(G/H))/G is an ANR. If in addition G/H is 

connected, then (exp(G/H))/G is an AR. 

Proof. Under the hypothesis the coset space G/H is locally path-connected, and 
hence, locally continuum-connected. Besides, since the quotient map G -- G/H is 
perfect, G/H is metrizable too (see, e.g., [15, Section XI, Theorem 5.2(3)]). Then 
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by Proposition 3.3, exp(G/H) E G-ANR; if in addition G/H is connected, then 
exp(G/H) E G-AR. Now the result follows immediately from Theorem 2.7. D 

Since every compact Lie group G is locally path-connected (moreover, it is a G- 
ANR [26, Corollary 1.6.7]), we get from Corollary 3.7 the following positive answer 
to the first question of West's Problem: 

Corollary 3.8. Let G be a compact Lie group. Then (exp G)/G is an ANR. If in 
addition G is connected, then (expG)/G is an AR. 

In combination with [17, Corollary 2], Theorem 1.1 yields also the following fact. 

Corollary 3.9. Let G be a finite group acting on a nondegenerate Peano continuum 
X. Then the orbit space (expX)/G is a Hilbert cube. 

4. THE G-NERVE 

In this section we develop a necessary technique involving the notion of a G- 
nerve. The results proved here will be applied in the next section. 

Following Matumoto [22], we define the G-nerve Af(U) of a G-normal cover U. 
Let G be a compact Lie group and H- = {H,HI , E M} a family of closed 

subgroups of G. The Milnor join J of the family of cosets {G/H,] /j E M} is 
defined as follows. Let J' be the following set: 

{(t,,g,Ht,),eM E n (I x G/Hi) tI 0 7 for only finite ,'s and tl, = 1}. 
MEM LEM 

We let 

(t,, gSHO ) EM N (sH, h1HA)J4EM 

iff t, = s, for all , E M, and gm,H, = h,H, whenever t, $ 0. Then ~ is an 
equivalence relation on J', and we shall denote by J the quotient set J'/ . 

In what follows we shall use the convention E t,,g,H, for the equivalence class 
A,EM 

of the point (t,, g,1Hp)1EM. The numbers t, are called barycentric coordinates of 
the point E t,gSH, E cJ. 

1tEM 

For any finite subset { O, .. l , Ln} C M, we consider the following subset of J: 

G/oH,0 * G/H, n ={ t,gH{ E J | t,i 
= 

O for all p , {to,..., In}}. 
tEM 

Observe that each G/H,o * .. * G/Ht,I with its quotient topology is a compact 
metrizable space, which is called the Milnor join of the spaces G/Ho, ..., G/Hn, 
(see [24]). 

We topologize J by the weak topology with respect to the family of all finite 
subjoins, i.e., a set U C J is open in J whenever U n (G/H,o * . * , G/H,n) is 

open in G/H,o * ... * G/H,, for any finite subjoin G/H,o * ... * G/H,n C J. It 
is easy to check that J becomes a G-space if we define the action of G as follows: 

g(- t/gI H) 
= 

- 
tMggH,, g G. 

ftEM tjEM 
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Next, if g,oHgo E G/H,I,..., gnHgn E G/H,n are fixed elements, then we will 
denote by (g0oH,o,... , g,,, H,,) the subspace 

{E tggHHg E 7 | t = 0 for it {p0o,... , n} 
iE M t tgEM 

and g' Hi, = gm,Hm for 0 < i < n} 

of G/Ho * ... * G/HIn, which is called an n-cell. 
Let G be a compact Lie group and X a G-space. For each index A EC M, let H, 

be a closed subgroup of G, and let S, be an H,-slice in X. Then the family 

U= {(gS,, H,H) g E G, u E M} 

consisting of tubular slice-sets gS, with companion groups H, is called a G-normal 
cover of X if the family of open tubes {G(S,) [/ E M} covers X and there exists a 
locally finite invariant partition of unity {(, : X -- [0, 1]| ti E M} subordinated to 
U, i.e., each ,o is an invariant function with ;o1l((0, 1]) C G(S,) and the supports 
{( 1((0, 1])1 / E M} constitute a locally finite family. 

Let A(U) be the ordinary nerve of the invariant cover {G(S,) | ut E M}. In the 
sequel we will denote by (/o,..., An) the simplex of J/(U) constituted by the sets 
G(Sio),..., G(Sm,). Let f,: G(S,) -4 G/H, be the corresponding G-map with 

f,-l(eH,) = S, (see Slice Theorem 2.2). For any simplex L=(/ao,..., In) EE ,(U), 
n 

we define the following subset of the product Il G/H,,: 
i=o 

FL= {(fio (X),... fn (X)) X G(Smi)}. 
i=O 

It follows from the equivariance of f,i that FL is an invariant subset of the 

G-space IH G/ Hi' 
i=O 

Denote by F the family of all these sets FL. Let A(L, FL) be the subset of the 
n 

finite subjoin G/H,o * ...* G/HI, of J consisting of all those points E tigiH, 
i=O 

for which (goH,o,...,gnH,n) E FL and (to,...,tn) E An. Clearly, A(L,FL) is 
invariant in G/Ho * ... * G/Ht,, and hence, in J. 

We call A(L, FL) a G-n-simplex over the simplex L along the set FL. The 
homogeneous G-spaces G/H,o,..., G/H,I are called G-vertices of A(L, FL). 

The G-nerve of the cover U is, by definition, the union 

A(U) = U {A(L, FL) L E A/(U), FL E } 

equipped with the topology induced from J. It is not difficult to check that 
the topology of Nf(U) is the weak one with respect to its closed, invariant cover 
{A(L, FL) L E A/(U),FL E F}. That is to say, a subset W C AS(U) is open iff 
W n A(L, FL) is open in A(L, FL) for each G-simplex A(L, FL) in P(U). Since 
A/(U) is an invariant subset of J, it becomes a G-space with respect to the action 
induced from J. 

The G-n-skeleton Jf(U)L of JA(U) is defined to be the union of all G-k-simplexes 
in nJ(U) with k < n. 
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If gHx is a vertex of the G-nerve J.(U), then its star St(gHx,\f(U) is defined 
to be the union of all cells for which gHx is a vertex. The G-carrier of a point 
x E Af(U) is defined to be the smallest G-simplex of Af(U) containing x. The cell 
in the G-carrier that contains x is called the carrier of x. 

Recall that a cover U of a space X is called a star-refinement of a cover V 
whenever for every U E U there exists an element V E V that contains the star 
St(U,U) of U with respect of U; here St(U,U) = {W E U I W n U y 0}. 

Lemma 4.1. Let X be a paracompact G-space. Then for each open cover V of X 
there exists a G-normal cover U = {(gS, Hx) g E G, A E A} of X such that U is 
a star-refinement of V. 

Proof. Since X is paracompact, one can choose open covers U1 and U2 of X such 
that U1 is a star-refinement of U2 and U2 is a star-refinement of V. 

Let us denote by U the subset of X x X consisting of all those pairs (x, y) such 
that there exists an element O E U1 that contains both x and y. Clearly U is an 
open neighborhood of the diagonal A C X x X. By compactness of G, there is an 
invariant neighborhood V of A in X x X such that V C U. Define 

W = {V[x] I x E X}, where V[x] = {z E X (x,z) E V}. 

Then W is an open G-cover of X, and V[x] c U[x] = St(x,U1) for each x E X. 
Since St(x, U1) is contained in an element of U2, we infer that W is a refinement of 
U2, and hence, a star-refinement of U. 

Next, we fix on each orbit G(x) c X a point, say x E G(x), and choose an 
element Wx E W such that x E Wx. By the continuity of the action of G on X 
there exist a neighborhood Ox of the unity in G and a G,-invariant neighborhood 
Nx of x in X such that OxNx C Wx. By Slice Theorem 2.2, there exists a Gx- 
slice Qx such that x E Q,. Then the set Sx = Qx n Nx is also a Gx-slice, and 
x E Sx C Nx. Hence OxSx c W,. We define U to be the totality of all these slice- 
sets (gSx, Gx), g E G, G(x) E X/G. Since the orbit map X -- X/G is closed, we 
see that X/G is paracompact too [15, Section VIII, Theorem 2.4]. This implies that 
the invariant cover {G(Sx)} admits a locally finite partition of unity subordinated 
to U, and hence, U is an open G-normal cover. Since gSx C gWx and gWx E W, 
we conclude that U is a refinement of W, and since W is a star-refinement of V, we 
infer that U is a star-refinement of V. O 

Lemma 4.2. Let Y be a G-space, and let U = {(gS,, H,) g E G, p e M} be a 
G-normal cover of Y. Then for each locally finite invariant partition of unity subor- 
dinated to U, there exists a G-map p: Y -- Af(U) such that p- (St(gH,, (U))) c 
G(S,) for any g E G and pi E M, where 

St(gH,, (U)) = { t9gAH\ E (U) t, > 0, g, = }. 
AEM 

Proof. Let {f, : Y -* [0, 1] I p E M} be a locally finite invariant partition of unity 
subordinated to U, i.e., (1((0, 1]) c G(S,) for all p E M. Then we define the 
canonical G-map p: Y -- Af(U) as follows. 

Since {f ,: Y -* [0, 1] I| E M} is locally finite, for each y E Y there are only 
a finite number of indices, say p/o, ..., u-n, such that (p,i(y) $ 0, i = 0,..., n. Let 
(fo (Y), * ..., f, n(y)) be the corresponding n-cell in G/H,o * * * G/H,, . Then by 
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definition, p(y) is the point of (f,o (y),... , f, n()) with the barycentric coordinates 

(P,o (Y),v, * * (, (Y), i.e., 
n 

P(Y) -- E W (Y) fi (Y)' 
i=0 

We claim that p is continuous. For, let yo E Y be an arbitrary point. Using the 
local finiteness of the partition of unity {yg, ,u E M}, we take a neighborhood V 
of Yo in Y such that only for a finite number of indices ,uo,... , m is pi i(y) $ 0 
for y E V. Then 

m 

p(y) = p, (y)f, i(y) for all y V 
i=O 

Now the continuity of p in V follows from the continuity of the maps f,i and p,i, 
i = 0,...,m, in V. O 

For a space X we will denote by n (X) the subset of exp X that consists of all 
those sets A C X that have at most n elements. By foo(X) we shall denote the 
union U__ IFn(X). 

Lemma 4.3. Let P be a polyhedron and p1 its 1-dimensional skeleton. Then there 
is a continuous map : P - .oo(P1) such that 

(1) ((z) = {z} for all z E p1, and 

(2) if T is the carrier of x E P and dim r = n, then &(x) is contained in the 
1-skeleton of r and contains at most 3n-1 points. 

Proof. Let pn, n > 1, denote the n-skeleton of P, and let j1 : p1 - p1 be the 
identity map. From the proof of [23, Proposition 8.4.2], we get the following fact. 
Claim. For every n > 1, there is a continuous map n: pn _> f(oo(p1) such that 

a. if r is the carrier of x E P and dim r = n, then Wn(x) is contained in the 
1-skeleton of r and contains at most 3n-1 points, and 

b. ,n+1 extends 5n for all n > 1. 

Now we define the required map ~ to be equal to n on the n-dimensional skeleton 
pn. O 

In the next lemma, for a given simplex L = (/o, ., n) C f(U), a given n-cell 

(g9oH o,..., g,9nHn) C nA(U) and the corresponding G-n-simplex o = A(L, FL), 
we shall use the following notation: 

n 

a9( OMH *... g9Hn)) = { tig,H ,, (to 
... tn) C aAnI}, 

i=O 

where we use the same notation 0An for the ordinary boundary of the standard 
simplex An. Correspondingly, 

n 

Q0= {E tig,i HSi I (to,...tn) E 0An, (,Hpo o ,..,S 9nHn) e 
FL}. 

i=o 

In what follows we shall need the following equivariant version of Lemma 4.3: 

Lemma 4.4. Let Af(U) be a G-nerve and r its G-i-dimensional skeleton. Then 
there is a G-map R: Af(U) - oo (r) such that 

(1) R(z) = {z} for all z E r, and 
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(2) ifs is the carrier of x E A(U), then R(x) is contained in the 1-skeleton of 
s. More precisely, if dims = n, then R(x) E F3n- (s). 

Proof. We are going to apply Lemma 4.3 above. In our case P is the polyhedron 
accompanying the G-nerve M(U), i.e., the polyhedron A(U). Let K be its 1- 
skeleton and : P -+ Fo (K) the continuous map from Lemma 4.3. 

Let x E JA(U) and let the G-simplex 
A = (L, FL) C G/HO * . * * G/H,n 

n 

be the G-carrier of x. Then x = E tig,,Hi,, where s = (gH,0o H ,... g,nH,) is 
i=0 

the carrier of x. 
Define the map R: A(U) - o(rF) by setting 

n 

R(x) = R( tig, H,) = (to ... tn) (g9,o H, ... ,g*nHn) 
i=0 

n 

= 
uigiHpi I (Uo, ---Un) e (to ... 

Itn)} 
i=O 

Since ~(to,..., tn) belongs to TF3n-l(Pl), we see that R(x) belongs to F3n- (s) C 
F3n-1 (F). Continuity and equivariance of R are evident from the definition of R. 
Properties (1) and (2) follow from the analogous properties in Lemma 4.3. D 

5. PROOFS OF THEOREMS 1.3 AND 1.4 

We shall give a sequence of lemmas culminating in proofs of Theorems 1.3 and 
1.4. 

In this section d will always denote the Euclidean metric on In. 
By P(n) we will denote the subset of L(n) consisting of all compact convex 

bodies A such that the contact set dA n oBn has an empty interior in the boundary 
sphere Sn-1 = OBn. 

Lemma 5.1. For each e > 0 and each body E c Lo(n) there exists a body D C P(n) 
such that dH(E,D) < e and the O(n)-stabilizer O(n)E of E coincides with the 
O(n)-stabilizer O(n)D of D. 

Proof. Let r: B(n) -- L(n) be the O(n)-equivariant retraction from Theorem 2.3. 
Because of compactness of L(n) (Theorem 2.4), one can find a real 0 < 6 < e/2 

such that dH(r(A), A) < e/2 for all A belonging to the 6-neighborhood of L(n) 
in B3(n), where dH denotes the Hausdorff metric on B(n). 

Let K be the stabilizer O(n)E. It follows from Slice Theorem 2.2 that there is a 
real 0 < r < 6 such that the inequality dH(E, X) < rj for X E Lo(n) implies that 
the stabilizer O(n)x is conjugate to a subgroup of K, i.e., (O(n)x) _ (K). 

Choose a centrally symmetric, convex polyhedron P C Rn1 with a nonempty 
interior, such that dH(E, P) < rT, P C E and all the vertices i,... ,Pk of P lie on 
the boundary OE. Then the convex hull 

M = conv(K(pl) U .. U K(pk)) 
is a centrally symmetric, compact, convex, K-invariant subset of RW. Since it 
contains P, we see that M has a nonempty interior in IRn, and so M E B(n). 

We claim that the boundary OM does not contain an (n- 1)-dimensional elliptic 
domain, i.e., an open subset V c OM which is at the same time an open subset 
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of some (n - 1)-dimensional ellipsoid surface lying in RIn. It suffices to show that 
none of the orbits K(pi), i = 1,... ,k, contains an (n - 1)-dimensional elliptic 
domain. Assume the contrary, that some K(pi) contains an (n - 1)-dimensional 
elliptic domain V. Since K(pi) lies on the (n - 1)-dimensional sphere dB(O, Ilpill) 
centered at the origin and having the radius Ilpill, then V should be, in fact, a 
domain of the sphere OB(O, Ilpill). Since K(pi) is homogeneous and compact, we 
conclude that there are finitely many open subsets V1,..., Vn of K(pi) such that 
K(pi) = V1 U... U Vn, where each Vj is homeomorphic to V. Next, by the Domain 
Invariance Theorem (see, e.g., [27, Ch. 4, Section 7, Theorem 16]), each Vj should 
be open in the sphere &B(O, |lpill), and hence, the union V1 U ... U Vn is open in 
aB(O, Ipill). But V U ... U Vn is also closed in aB(O, Ilpill), because it is equal 
to K(pi). Now, by connectedness of oB(O, Ilpill), it then follows that K(pi) must 
be the whole sphere aB(O, Ilpill). Consequently, K acts transitively on the sphere 
aB(O, Ilpi l), and hence on the unit sphere Sn-1. This contradiction proves the 
claim. 

In particular, the contact set of M, which is by definition the intersection of 9M 
with the boundary of the Lowner ellipsoid 1(M), also does not contain an elliptic 
domain. 

Now consider the body D = r(M) E L(n). Since D = T(M) for some linear 
nondegenerate operator T: IRn - Rn, the contact set AD n 0Bn is just the image 
under T of the contact set aM n (1l(M)). Consequently, OD n 9Bn has an empty 
interior in the sphere Sn-1 = &Bn, and hence, D E P(n). Since dH(P, E) < rl and 
P C M C E, we see that dH(M, E) < r < 6. Consequently, dH(D, E) < E, which 
implies in turn that (O(n)D) 

- (K). Since M is K-invariant, we have K C O(n)M, 
and since r is O(n)-equivariant, O(n)M C O(n)r(M) = O(n)D. Thus K C O(n)D, 
which implies in combination with (O(n)D) _ (K) that O(n)D = K. D 

The following lemma is the key in the proof of Theorems 1.3 and 1.4: 

Lemma 5.2 (Key lemma). Let E > 0, and let Ve be the e-cover of Lo(n). Then 
there exist a G-normal cover U = {(gSx, Hx) I g E G, A E A} of Lo(n) and G-maps 
p: Lo(n) -- A/(U), : A/f(U) -- P(n) such that 

(1) for each gSx E U there is an element V(g,A) E Ve/2 with gSx c V(g,A) 
and 1(St(gH,A (U))) c V(g,A), and 

(2) the composition I?p is s-close to the identity map of Lo(n). 

Proof. By Lemma 4.1, there is a G-normal cover 

U = {(gSx, H)I g E G,A E A} 

of Lo(n) that is a star-refinement of Ve/4. Fix an invariant locally finite parti- 
tion of unity {fOx}xAE subordinated to U. Let p : Lo(n) -* Af(U) be the G-map 
corresponding to {PA}AEA (see Lemma 4.2). 

For every gSx E U we choose an element V(g, A) E V?/2 such that 

(5.1) St(gSx,U) c V(g, )/2, 

where V(g, A)/2 E V,/4 denotes the open ball in Lo(n) concentric with V(g, A) and 
having half the radius of V(g, A). 

Now we define the map 4 : \f(U) - P(n) as follows. 
First we define a G-map q: r -? p(n), where F is the G-1-skeleton of f(U). 
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For each G-vertex G/H\x E M(U) with H, the subgroup corresponding to the 
Hx-slice Sx E U, we select a point Xx E Sx such that the stabilizer GxX coincides 
with the group HA. 

By Lemma 5.1 above, we choose a body A, E P(n), e/4-close to Xx and having 
the stabilizer GA, = HA. 

Define the G-map q: G/Hx -+ G(Ax) C P(n) by setting 

q(gHx) = gAx for every gH, E G/HA. 
The inclusion HA C GAx guarantees that q is a well-defined G-map. We aim to 
extend q equivariantly to the G-1-skeleton r of JAf(U). It suffices to extend q over 
each G-1-simplex of F. Let A be a G-1-simplex of F with the G-vertices G/HA and 
G/H,. We first define two G-maps si : A -- B(n) and 2 : A -- 13(n). Indeed, 
let y = tgoHx + (1 - t)glH, be an arbitrary point of A, where go, g9 E G and 
goSx n 9g1S, f 0. 

We set 

sl(y) = tgoAA + (1 - t)glA, and s2(y) = goAA. 

Recall that here tW + (1 - t)Z means the Minkowski convex combination of the 
convex sets W, Z c IWn, i.e., 

tW + (1 - t)Z= tw + (1 - t)z w w E W, z E Z}. 

Clearly sl and s2 are continuous G-maps from A to B(n). 
Define q'(y) to be the convex hull of the union sl(y) U s2(y). 
Since sl(y) U s2(y) depends continuously upon y E A, the continuity of q' now 

follows from the continuity of the convex hull operator (see [31, Theorem 2.7.4(iv)]). 
Analogously, let q"(y) be the convex hull of the union 

glA, U (tgoAx + (1 - t)g1A,). 
For the same reason, q"(y) depends continuously upon y E A. 

Now we paste q' and q" to define the desired map q: 

q (t go HA + (i - t) gl Hi,) = q'((1 - 2t)goHA + 2tglH,), if 0 < t < 1/2, 
q(tgoHx + (1 - t)glH 

q"((2t - 1)gH, + (2 - 2t)goHA), if 1/2 < t < 1. 

Since (1 - 2t)goHx + 2tglH, and (2t- l)g1H, + (2- 2t)goHx depend contin- 
uously upon tgoHx + (1 - t)glH, E A and q'(glA,) = q"(goAA), we see that the 
continuity of q' and q" implies the continuity of q. The equivariance of q is evident. 
Let us check that q(y) E P(n). 

Indeed, since for each t E [0, 1/2], 

goAA c q(tgoHx + (1 - t)glH,) C Bn, 

we infer that q(tgoHA +(1-t)glH,) belongs to Lo(n). Further, for each t E [0, 1/2], 
the contact set of q(tgoHx + (1 - t)glH,) is a subset of the contact set of goAx, 
and hence, it has an empty interior in the sphere Sn-1. 

Analogously, for t E [1/2, 1], 

glA, C q(tgoHA + (1 - t)glH,) C Bn, 
which implies that q(tgoHx + (1 - t)glH,) belongs to Lo(n). The contact set of 
q(tgoHx + (1 - t)glH,) is a subset of the contact set of glA,, and hence, it also 
has an empty interior in the sphere Sn-1. 

Thus, we have proved that for arbitrary y E F, q(y) belongs to P(n). 
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By Lemma 4.4, there is a G-map R: NA(U) - Foo(r) satisfying conditions (1) 
and (2) of Lemma 4.4. Observe that for every y E A^(U), R(y) is a finite collection 
of elements of F. Now we define I' : JA(U) -+ exp Rn by 

(y)= Uq(R(y)) = U q(x), y E (U). 
xER(y) 

Then 1' is well-defined, and by [23, Corollary 5.3.7] it is continuous. The equi- 
variance of VI' follows from that of R and of q. 

Let 4((y) be the convex hull of the set V'(y). Since V'(y) C 4I(y) C Bn, we infer 
that 4(y) E Lo(n). 

The continuity of (> now follows from the continuity of I' and of the convex hull 
operator (see [31, Theorem 2.7.4(iv)]). 

Next, since V'(y) is a finite union of bodies from P(n), its contact set, i.e., the 
intersection dB n n aQ(y), is the finite union of the contact sets of these bodies 
from P(n). Therefore, oB1 n ' 0(n) has an empty interior in aBn. It remains to 
observe that 4((y) and V'(y) have the same contact set, and hence, ((y) E P(n). 

Let us check that 4(St(gHx,A(U))) C V(g,A) for all g E G, A E A. Here we 
need the following: 
Claim. Let O(X,a), a > 0, be the open a-ball in B(n) centered at X E B(n). 
If y = tgoHx + (1 - t)glH, is a point of the 1-cell (goH\,glH,) such that the 
corresponding sets goAx and glA, belong to O(X, a), then q(y) E O(X, a) n Lo(n). 

Proof of the Claim. First of all we observe that O(X, a) is always a convex set in 
B(n), i.e., if Y, Z E O(X, a), then for every t E [0, 1] the convex body tX + (1 - t)Z 
belongs to O(X, a). 

Hence, si(y) = tgoAA + (1 - t)A, E O(X,a), due to the convexity of O(X,a). 
One also has s2(y) = goAx E O(X, a). 

On the other hand, according to ([31, Theorem 2.7.4(iv)]), the convex hull op- 
erator is non-expansive. So for 0 < t < 1/2 we have 

dH(q'((l - 2t)goHx + 2tg lH),X) 

< dH(((1 - 2t)goAx + 2tglA) U goAx),X) < a. 

Similarly, for 1/2 < t < 1 we have 

dH (q"((2t - l)glH~ + (2- 2t)goHx),X) 

< dH(((2t - l)glH, + (2 - 2t)goHx) U glA),X) < a. 

Therefore, q(y) belongs to O(X, a). Since q(y) E Lo(n), we infer finally that 
q(y) E O(X, a) n Lo(n), which completes the proof of the claim. 

Now assume that y E St(gHx,J\f(U)) is an arbitrary point. We have to show 
that )(y) E V(g, A). 

Let 
r=( (gHo, .. gnHX ) 

be the carrier of y, where go = g and Ao = A. Since goSXo n ... n gnnS $ 0, it 
follows from (5.1) that 

giXx, E St(goSo,U) C V(go,Ao)/2 
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Let V(go, A0) be the intersection Lo(n)nO(Y, e/2) for some Y E Lo(n). It follows 
from (5.2) that 

(5.3) dH(gx,Xx, Y) < E/4 for all 0 < i < n. 

Since 

dH (giAx,, giXi,) = dH (Ai , XAi) < 5/4, 
it follows from (5.3) that 

(5.4) giAx, E O(Y, e/2) for all 0 < i < n. 

By Lemma 4.4, R(y) belongs to the 1-skeleton of the n-cell (goHx, ... ,gnHxn), 
i.e., to the union 

n 

U (giHAi,gjH%). 
i,j=O 

Now, it follows from (5.4) and the above claim that the image under q of each 
1-cell (giHxi, gjHx), 0 < i, j < n, lies in O(Y, /2). Since 

'l(y)= U q(x), 
xER(y) 

we infer that V(y) also lies in O(Y,e/2). Since 4((y) is the convex hull of I'(y) 
and Y is convex, the inequality dH (conv A, conv B) < dH(A, B) (see [31, Theorem 

2.7.4(iv)]) implies that dH (D(y), Y) < E/2, i.e., I(y) E O(Y, e/2). Consequently, 

?(y) e O(Y, E/2) n Lo(n) = V(go, Ao) = V(g, A), 

as required. 
The second claim of Lemma 5.2 now follows immediately from the first one. 
Indeed, for any A E Lo(n) there is A E A such that o\p(A) > 0. Then A E G(Sx), 

and hence, A E gS\ for some g E G. It then follows from the definition of the map 
p : Lo(n) - Af(U) that p(A) e St(gHx,Af(U)) (see the proof of Lemma 4.2). By 
the first statement, 4(p(A)) E V(g,A). Since A E gSx C V(g,A), we see that A 
and l (p(A)) are e-close. This means that the map (bp is e-close to the identity 
map of L (n), which completes the proof. O 

Let (X, d) be a metric space with a geodesic (or convex) metric d, i.e., for any 
two points x, y E X there is an isometry : [0, d(x, y)] - X such that t(O) = x and 

i(d(x, y)) = y. For any element A E expX the generalized closed r-ball centered 
at A is the set Ar = {x E XI d(x, A) < r}. If X = R' and A E B(n), then Ar is 
just the parallel body A + rBn, and hence, in this case, Ar is a compact, convex, 
centrally symmetric body. 

Lemma 5.3. Let (X, d) be a metric space with a geodesic (or convex) metric d. 
Then for any two elements A, C E expX and any two numbers r, s > 0, the 
following hold: 

(1) dH(Ar,, B) dH(A, B), 
(2) dH(Ar,A,s) < Ir-sl. 

Proof. Since d is a convex metric, the first claim follows from [19, Proposition 10.5]. 
The second one follows from the property (Ap)q = Ap+q for any two nonnegative 
reals p and q (see [25, p. 38, Exercise 0.65.3(c)]). O 
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Lemma 5.4. For each e > 0 there exist O(n)-equivariant maps fe, h : Lo(n) -* 

Lo(n), e-close to the identity map of Lo(n), such that the images of fe and he are 
disjoint. 

Proof. Define a continuous map ?y: Lo(n) -> RI by the rule 

y(A) = (1/2) mindH(Bn,A), } for every A E Lo(n). 

Let f, be just the closed -(A)-neighborhood of A in Bn, i.e., 

f (A) = A^(A)- 

By the choice of y(A), the set f,(A) is different from Bn, and since A C f,(A), 
we see that fe(A) E Lo(n). It is clear from the construction that fe is E-close to 
the identity map of Lo(n). 

Let us check the continuity of f,. We have 

dH (f (A), f (C)) = dH(Ay(A), Cy(C)) < dH (A?(A), Ay(C)) + dH (A_(C), C(C)). 

But by Lemma 5.3, 

dH(A?(A),Ay(c)) < Iy(A) - y(C)I and dH(A?(c), C-(C)) < dH(A, C). 

Thus, 
dH (f (A), fe(C)) < |y(A) - y(C) + dH(A, C). 

Now the continuity of fe follows from that of 7y. The O(n)-equivariance of f, is 
immediate from the invariance of the metric d. 

Next, we define the map he : Lo(n) - Lo(n) to be the composition 4)p from 
Lemma 5.2. Then fe(A) $ he(C) for all A, C E Lo(n), since the contact set of fe(A) 
has a nonempty interior in the boundary sphere Sn-l = dBn while the contact set 
of h,(C) has an empty interior in Sn-1 (this is because h,(C) E P(n)). D 

Lemma 5.5. There is an O(n)-equivariant strong deformation retraction (ft) of 
L(n) to its point Bn such that ft : L(n) -- L(n) is an O(n)-isovariant map for all 
O < t < 1. In particular, ft(A) = {B7n} for all O < t < 1. 

Proof. For each A c L(n) and 0 < t < 1, write 

ft(A) = (1 - t)B + tA. 

Proof of Theorem 1.3. Since, by Theorem 2.4, L(n) is an O(n)-AR, we infer that 
it is also an H-AR (see, e.g., [30]). Therefore, by Theorem 2.7, L(n)/H is an AR. 
Since Lo(n)/H is an open subset of L(n)/H, it is a locally compact ANR. Now, in 
order to prove that Lo(n)/H is a Q-manifold it suffices, according to Torunczyk 's 
Characterization Theorem [28], to check that for every e > 0 there are continuous 
maps f', h' : Lo(n)/H -* Lo(n)/H, e-close to the identity map of Lo(n)/H, such 
that the images of f' and h' are disjoint. But this is immediate from Lemma 5.4, 
if we take for f' and h' the maps induced by f, and he, respectively. 

The [0, 1)-stability of Lo(n)/H follows from Lemma 5.5, which yields that the 
space Lo(n)/H possesses an obvious proper deformation (preimage of each compact 
set is compact) to infinity: 

(Lo(n)/H) x [0, 1) - Lo(n)/H. 
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Hence, by a result of R. Y. T. Wong [36], Lo(n)/H is homeomorphic to its product 
with the half-open interval [0,1), i.e., Lo(n)/H is [0, 1)-stable. This completes the 
proof. 

The following lemma for n = 2 was proved in [9]: 

Lemma 5.6. For each closed subgroup K C O(n) acting non-transitively on Sn-1, 
and each E > 0, there is a K-equivariant map he : L(n) - Lo(n), e-close to the 
identity map of L(n). In particular, he(L(n)[K]) C Lo(n) [K]. 

Proof. Let r : 3(n) -- L(n) be the O(n)-equivariant retraction from Theorem 2.3. 
Because L(n) is compact (Theorem 2.4), one can find a real 0 < 6 < e/2 such that 

dH(r(A),A) < e/2 for all A belonging to the 5-neighborhood of L(n) in 3(n), 
where dH denotes the Hausdorff metric on B(n). 

Fix a centrally symmetric, convex polyhedron P C In with a nonempty interior, 
inscribing B", i.e., P C Bn and all the vertices P1,..., Pk of P lie on the unit sphere 
Sn-1 = OBn. Then the convex hull 

R = conv(K(pl) U ... U K(pk)) 

is a centrally symmetric, compact, convex, K-invariant subset of In. Since it 
contains P, we see that R has a nonempty interior, and hence, R E B(n). We claim 
that the boundary OR does not contain an (n - 1)-dimensional elliptic domain, 
i.e., an open connected subset of some (n - 1)-dimensional ellipsoid surface lying 
in IRn. It suffices to show that none of the orbits K(pi), i = 1,..., k, contains an 
(n - 1)-dimensional elliptic domain. Assume the contrary, that K(pi) contains an 
(n - 1)-dimensional elliptic domain. Since K(pi) lies on the sphere Sn-1, then this 
domain should be in fact a domain of the sphere Sn-1. Since K(pi) is homogeneous 
and compact, we conclude that there are finitely many open subsets V1,..., Vn of 

K(pi) such that K(pi) = V1 U .. U Vn, where each Vj is homeomorphic to V. Next, 
by the Domain Invariance Theorem (see, e.g., [27, Ch. 4, Section 7, Theorem 16]), 
each Vj should be open in the sphere Sn-1, and hence, the union V1 U ... U Vn is 
open in Sn-1. But V1 U .. U Vn is also closed in Sn-1, because it is equal to K(pi). 
Now, by connectedness of Sn-1, it then follows that K(pi) is the whole sphere 
Sn-1. Consequently, K acts transitively on the unit sphere Sn-1, a contradiction. 
The claim is proved. 

Now, let a be the distance of the origin from the boundary of R, and T = 

(1/a)R. Then T is a K-invariant, centrally symmetric, compact, convex body that 
circumscribes the unit ball Bn, i.e., Bn c T and the boundaries AT and OBn have 
a nonempty intersection. 

Setting 
h'(A) = An (1 - )T, 

we obtain a map h' : L(n) -t B(n). Since T is a K-fixed point of 13(n), we see that 
h' is K-equivariant. 

Continuity of h' is evident. 
Since dH(A, An (1-)Bn) < 6 and A (1-5 )Bn c h'(A) C A, we conclude that 

dH (A, h'(A)) < 6. In particular, h' is (E/2)-close to the inclusion L(n) -- 13(n). 
We claim that h'(A) is not an ellipsoid for each A E L(n). Indeed, if A c (1-6)T, 

then A : Bn, since T circumscribes Bn and 1 - < 1. On the other hand, 
h'(A) = A in this case, and hence, h'(A) is not an ellipsoid. If A is not contained 
in (1 - 6)T, then the boundary of h'(A) contains a domain lying in the boundary 
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of (1 - 6)T. Since (1 - )T = ((1 - 6)/a)R and since the boundary of R does not 
contain an (n - 1)-dimensional elliptic domain (as shown above), we conclude that 
the boundary of (1 - 6)T does not contain an (n - 1)-dimensional elliptic domain 
as well. Thus, h'(A) is not an ellipsoid, and the claim is proved. 

Since r(h'(A)) and h'(A) have the same GL(n)-orbit, we conclude that r(h'(A)) 
B Bn for each A E L(n). Since r is O(n)-equivariant and h' is K-equivariant, 

denoting by he the composition rh', we obtain a K-equivariant map h : L(n) - 

Lo(n), c-close to the identity map of L(n). O 

Proof of Theorem 1.4. For the first claim it suffices to show that Lo(n)/K is home- 
omorphic to Qo, the Hilbert cube with a removed point. By Theorem 1.3, Lo(n)/K 
is a [0, 1)-stable Q-manifold. On the other hand, Qo is a contractible [0, 1)-stable 
Q-manifold. Therefore, according to a result of T. A. Chapman [12, Theorem 21.2], 
it remains only to check that Lo(n)/K and Qo are homotopically equivalent, i.e., 
that Lo(n)/K is contractible. 

According to Theorem 2.4, L(n) is an O(n)-AR, which in turn implies that 
L(n) C K-AR (see, e.g., [30]). Then, by Theorem 2.7, L(n)/K is an AR, and 
hence, is contractible. It follows from Lemma 5.6 that the singular point {Bn} is 
a Z-set in the K-orbit space L(n)/K, and hence, according to [18], L(n)/K and 
Lo(n)/K have the same homotopy type. Since L(n)/K is contractible, we see that 
Lo(n)/K is contractible too. 

For the second claim, it suffices to show that Lo(n)[K] is homeomorphic to Qo. 
First we show that Lo(n)[K] is a [0, 1)-stable Q-manifold. Indeed, by Theorem 2.4, 
L(n) is an O(n)-AR, and hence, L(n)[K] is an AR [2, Theorem 7]. It then follows 
that Lo(n)[K] is a locally compact ANR. Now by Toruniczyk's Characterization 
Theorem [28], Lo(n)[K] is a Q-manifold if we observe that the equivariant maps fE 
and he from Lemma 5.4 take Lo(n)[K] into itself. The [0, 1)-stability of Lo(n)[K] 
can be proved like that of Lo(n)/K in Theorem 1.3. Indeed, Lemma 5.5 yields that 
the space Lo(n)[K] possesses an obvious proper deformation to infinity 

(Lo(n)[K]) x [0, 1) -- Lo(n)[K]. 

Hence, by the result of R. Y. T. Wong [36], Lo(n)/H is [0, 1)-stable. 
Let us show that Lo(n)[K] is contractible. Since Lo(n)[K] 0, according to 

Lemma 5.6, the singular point {Bn} is a Z-set in L(n)[K]. It then follows from [18] 
that L(n)[K] and Lo(n)[K] have the same homotopy type. But since L(n)[K] is 
an AR, it is contractible, and hence, Lo(n)[K] is contractible too. Since Qo also is 
a [0, 1)-stable contractible Q-manifold, it only remains to apply the above-quoted 
result of T. A. Chapman to the Q-manifolds Lo(n)[K] and Qo. This completes the 
proof. 

6. PROOF OF THEOREM 1.6 

We first prove the following fact. 

Lemma 6.1. Lo(n) and Ilo(n) have the same O(n)-homotopy type. 

Proof. By [9, Lemma 4], there is an isovariant map f : Lo(n) -+ f(n), yielding that 
the image of f lies, in fact, in IIo(n). Hence, the result follows from the following: 
Claim. Every O(n)-equivariant map f : Lo(n) - I0o(n) is an O(n)-homotopy 
equivalence. 
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To prove this claim we apply the James-Segal Theorem 2.5. In our case G=O(n), 
T = Lo(n) and Z = -o(n). 

By Theorem 2.4, L(n) E O(n)-AR, implying that Lo(n) E O(n)-ANR. Let K c 
0(n) be a closed subgroup such that Lo(n)[K] 7 0. As we have seen above in 
the proof of Theorem 1.4, Lo(n)[K] is contractible. Besides, it follows from the 
equivariance of f that Lo(n)[K] C Ho(n)[K], and so Ho(n)[K] 0. 

On the other hand, since O(n)/Hi E O(n)-ANR [26, p. 27], we infer that 

Cone(O(n)/Hi) E O(n)-AR (see [9, Lemma 3]). Consequently, Q(Hi) E O(n)- 
AR, i > 1, and hence, H(n) E O(n)-AR, implying Ho(n) E O(n)-ANR. Thus, it 
remains only to show that for each closed subgroup K C O(n) with IIo(n)[K] =7 0, 
IHo(n)[K] is contractible and, at the same time, Lo(n)[K] t 0. We will show that 
in fact II(n)[K] is a Hilbert cube, implying the contractibility of Ho(n)[K]. Indeed, 
it is not hard to see that if IIo(n)[K] =7 0, then there is an orbit type (Hi) such that 

(O(n)/Hi)[K] 1 0. This implies that (K) _ (Hi), and so, K C gHig-1 for some 
g E O(n). But Hi occurs in Lo(n) as a stabilizer. So there exists a body A E Lo(n) 
such that O(n)A = Hi. Consequently, K C O(n)gA. Since gA E Lo(n), we see that 
Lo(n)[K] =7 0. Next we have 

00 

rI(n)[K] = ]J(Q(Hi)[K]). 
i=1 

Since O(n)/Hi E O(n)-ANR, we see that (O(n)/Hi)[K] is a nonempty ANR. Con- 
sequently, 

(Cone(O(n)/Hi))[K] = Cone((O(n)/Hj)[K]) 

is a nondegenerate AR. Hence, according to a result of West [32], the countable 
product 

00 

Q(Hi)[K] = 
(Cone(O(n)/Hi)[K]) 

is a Hilbert cube. This implies that ] (Q(Hi)[K]) is a Hilbert cube, and hence, 
i=l 

IHo(n)[K] is contractible. By applying the above-mentioned James-Segal Theorem, 
we complete the proof. O 

Proof of Theorem 1.6. Since by Theorem 1.3, Lo(n)/H is a [0, 1)-stable Q-manifold, 
according to Chapman's theorem [12, Theorem 21.2], it remains only to prove that 
Ho(n)/H is a [0, l)-stable Q-manifold of the same homotopy type as Lo(n)/H. 

The fact that IHo(n)/H is a Q-manifold is proved in [9, Theorem Al]. Its [0,1)- 
stability follows from Wong's theorem [36] if we observe that IHo(n)/H possesses a 
proper deformation to infinity: 

(IIo(n)/H) x [0, 1) - nHo(n)/H. 

Indeed, this follows easily from the conic structure of 11(n). 
Finally, that Ho(n)/H and Lo(n)/H have the same homotopy type follows im- 

mediately from Lemma 6.1. 

7. PROOF OF THEOREM 1.9 AND REDUCTION OF CONJECTURE 1.8 

We start with the following lemma. 
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Lemma 7.1. Let G be a compact group, N C G a closed, normal subgroup and X 
a G-ANR (resp., a G-AR). Then the N-fixed point set X[N] is a G-ANR (resp., a 

G-AR) as well. 

Proof. According to [5, Corollary 5], there is a normed linear space L such that 
X can be embedded as a closed invariant subspace into Z = C(G, L), the normed 
linear G-space of all continuous maps f: G - L endowed with the sup-norm and 
with the action gf of G defined by 

(gf)(x) = f(xg); f E C(G,L) g,x E G. 

Then there is a G-retraction r: U -, X for some open G-neighborhood U of X in 
Z (resp., U = Z). Therefore, it suffices to prove that Z[N] is a G-AR. One easily 
sees that Z[N] = C(G/N, L), where the G-action gq on C(G/N, L) is defined by 

(go)(xN) = ((xgN), for b e C(G/N,L) and g E G, xN E G/N. 

Now C(G/N, L) is a G-AR by [5, Theorem 8]. D 

Let sexp Sn be the subspace of exp S' consisting of all centrally symmetric sets 
A C Sn, i.e., A = -A. By sexpo Sn we will denote the complement (sexp Sn)\{Sn}. 
Evidently, sexp Sn is an O(n)-invariant subset of exp Sn. 

The next lemma is immediate from Theorem 3.1 and Lemma 7.1 if we observe 
that sexp Sn-1 = (expSn-1)[N] with N = {lRn, -lRn}: 

Lemma 7.2. sexpSn-1 is an O(n)-AR. 

Lemma 7.3. There exists an O(n)-equivariant map f: sexpo Sn-l - Lo(n). 

Proof. For every A E sexpo Sn-1, let 

qo(A) = conv(A U B(O, 1/2)), 
where B(O, 1/2) is the closed 1/2-ball in In centered at the origin, and conv stands 
for the convex hull. Clearly, p is a well-defined, continuous, O(n)-equivariant map 
of sexpo Sn-1 into 3(n). Furthermore, 9p(A) is not an ellipsoid because A : Sn-l, 
implies that the boundary 0(9p(A)) contains a nontrivial line segment. Now we 
set f = rp, where r : 3(n) -- L(n) is the O(n)-equivariant map from Theorem 
2.3. Since p(A) is not an ellipsoid, and since r preserves the GL(n)-orbit, we 
conclude that f(A) is not the unit ball Bn; so f(A) E Lo(n). Since r and gp are 

O(n)-equivariant, so is f. D] 

Lemma 7.4. Let K C O(n) be a closed subgroup. Then the following conditions 
are equivalent: 

(1) K acts non-transitively on the sphere Sn-l, 
(2) (expo n- 1)[K] 0 0, 
(3) (sexpo sn-1)[K] Z 0, 
(4) Lo(n)[K] 7 0. 

Proof. (1) == (2). If K acts non-transitively, then there is a K-invariant proper 
subset A C Sn-1; so A E (expo Sn-l)[K]. 

(2) = (3). If A E (expo Sn-1)[K], then either 

(-A)u A Sn-1 or (-A)n A 0, 
and so at least one of the sets (-A)UA and (-A)NA belongs to (sexpo Sn-l)[K]. 
Thus, (sexpo Sn-1)[K] : 0. 
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(3) > (4) is immediate from Lemma 7.3. 
(4) = (1). If there is a body A E Lo(n)[K], then the contact set A n Sn-l is a 

nonempty, K-invariant, proper subset of Sn-1. So the action of K on Sn-1 is not 
transitive. O 

Lemma 7.5. Every O(n)-equivariant map f : sexpo Sn-l1 - Lo(n) is an O(n)- 
homotopy equivalence. 

Proof. We are going to apply the James-Segal Theorem 2.5 with G=O(n), T = 

sexpo Sn-1 and Z = Lo(n). It follows from Lemma 7.2 that sexpo Sn-' E O(n)- 
ANR. Since L(n) E O(n)-AR (see Theorem 2.4), we see that also Lo(n) C O(n)- 
ANR. 

Let K C 0(n) be a closed subgroup. Then by Lemma 7.4, (sexpo Sn-1)[K] # 0 
iff Lo(n)[K] 7 0. Let Lo(n)[K] $ 0 and K' = K x {1Rn,-ln}. Since 

(expo Sn-1)[K'] = (sexpo Sn-) [K] - 0, 

the action of K' on Sn-1 is not transitive, i.e., Sn-l/K' is not a singleton. Since 
(exp Sn-1)[K'] is homeomorphic to exp(Sn-l/K') and Sn-1/K' is a nondegenerate 
Peano continuum, by the Curtis-Schori-West Hyperspace Theorem (see, e.g., [23, 
?8.4]), exp(Sn-1/K'), and hence (sexpSn-1)[K], is a Hilbert cube. Consequently, 
(sexpo Sn-1)[K], being a Hilbert cube with a removed point, is contractible. 

According to Lemma 5.6, the singular point {Bn} is a Z-set in L(n)[K]. Since 

L(n)[K] c AR, it then follows from [18] that L(n)[K] and Lo(n)[K] have the same 
homotopy type, and hence, Lo(n)[K] is contractible too. Now, by applying the 
above mentioned James-Segal Theorem 2.5, we complete the proof. O 

Similarly, the following can be proved: 

Lemma 7.6. Every O(n)-equivariant map f : sexpo Sn-l - expo Sn-l is an 

O(n)-homotopy equivalence. 

Proof. By Lemma 7.4, for any closed subgroup K C O(n) one has 

(sexpo sn-1)[K] ~ 0 =- > (expo sn-1)[K] $ 0. 

As in the proof of Lemma 7.5, (sexpo Sn-1)[K], as well as (expo Sn-1)[K], is 
contractible whenever (expo Sn-1)[K] $ 0 (or equivalently, (sexpo Sn-1)[K] =7 0). 
Now apply the James-Segal Theorem 2.5. O 

Lemma 7.3 and Lemma 7.5 have the following immediate consequence. 

Corollary 7.7. sexpo Sn-l and Lo(n) have the same O(n)-homotopy type. 

Analogously, Lemma 7.6 implies the following. 

Corollary 7.8. The natural inclusion sexpo Sn-l c- expo Sn-1 is an 0(n)-homo- 
topy equivalence. 

Proof of Theorem 1.9. Immediate from Corollaries 7.7 and 7.8. 

Our final result reduces Conjecture 1.8 to an easier one: 

Theorem 7.9. For each closed subgroup H C O(n), the two H-orbit spaces 
Lo(n)/H and (expo Sn-1)/H are homeomorphic iff (expo Sn-1)/H is a Q-mani- 
fold. 

For the proof we need the following fact. 
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Lemma 7.10. There exists an O(n)-equivariant strong deformation retraction (ft) 
of expSn-1 to its O(n)-fixed point {Sn-1} such that ft(A) f {Sn-l} for all 0 < 
t < 1 and A E expo Sn-1. 

Proof. Observe that the usual spherical metric d on Sn~- is O(n)-invariant and 
convex. For each A E exp S' -1 and 0 < t < 1, write 

ft(A) = {x E Sn-1 I d(x, A) < (1 - t)dH(Sn-1 A)). 

Due to the convexity of d this homotopy is continuous; it is also equivariant, since 
d and dH are invariant. Other required properties of (ft) are evident. El 

Proof of Theorem 7.9. Since by Theorem 1.3, Lo(n)/H is a Q-manifold, only the 
"if" part requires a proof. 

So, assume that (expo Sn-1)/H is a Q-manifold. It follows from Theorem 1.9 
that 

(expo Sn-1)/H and Lo(n)/H 
have the same homotopy type. Moreover, by Theorem 1.3, Lo(n)/H is a [0, 1)- 
stable Q-manifold. Therefore, according to Chapman's theorem [12, Theorem 21.2], 
it only remains to see that (expo Sn-1)/H is [0, 1)-stable too. Indeed, Lemma 7.10 
yields that (expo Sn-1)/H possesses an obvious proper deformation to infinity: 

((expo Sn-1)/H) x [0, 1) -- (expo S-l1)/H. 

Now Wong's result [36] implies that (expo Sn-l)/H is [0, 1)-stable, and this com- 
pletes the proof. 

Acknowledgement. The author is grateful to the referee for helpful suggestions 
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