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Circuito Exterior, Ciudad Universitaria, México 04510 DF, Mexico; E-Mail: pmv@ciencias.unam.mx

3 Departamento de Sistemas Complejos, Instituto de Fı́sica, Universidad Nacional Autónoma de
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Abstract: It is well known that many ranked linguistic data can fit well with one-parameter
models such as Zipf’s law for ranked word frequencies. However, in cases where
discrepancies from the one-parameter model occur (these will come at the two extremes
of the rank), it is natural to use one more parameter in the fitting model. In this paper,
we compare several two-parameter models, including Beta function, Yule function, Weibull
function—all can be framed as a multiple regression in the logarithmic scale—in their fitting
performance of several ranked linguistic data, such as letter frequencies, word-spacings,
and word frequencies. We observed that Beta function fits the ranked letter frequency
the best, Yule function fits the ranked word-spacing distribution the best, and Altmann,
Beta, Yule functions all slightly outperform the Zipf’s power-law function in word ranked-
frequency distribution.

Keywords: Zipf’s law; regression; model selection; Beta function; letter frequency
distribution; word-spacing distribution; word frequency distribution; weighting



Entropy 2010, 12 1744

1. Introduction

Empirical linguistic laws tend to be functions with one key parameter: Zipf’s law [1], which describes
the relationship between the number of occurrence of a word (f ) and the resulting ranking of the word
from common to rare (r), states that f ∼ 1/ra, with the scaling exponent a as the free parameter.
Herdan’s or Heaps’ law describes how the number of distinct words used in a text (V , or “vocabulary
size”, or number of types) increases with the total number of appearance of words (N , or, the number
of tokens) as: V ∼ N θ [2,3]. Although in both Zipf’s and Herdan’s law, there is a second parameter:
f = C/ra, V = CN θ, the parameter C is either a y-intercept in linear regression and thus not considered
to be functionally important, or subtracted from the total number of parameters by the normalization
constraint (e.g.,

∑
i(fi/N) = 1).

Interestingly, one empirical linguistic law, the Menzerath-Altmann law [4,5], concerning the
relationship between the length of two linguistic units, contains two free parameters. Suppose the higher
linguistic unit is the sentence, whose length (y) is measured by the number of the lower linguistic unit,
words, and the length of words (x) is measured by the even lower linguistic unit, e.g., phonemes or
letters. Then, the Menzerath-Altmann law states that y ∼ xbe−c/x with two free parameters, b and c. Few
people paid attention to the two-parameter nature of this function as it does not fit the data as good as the
Zipf’s law on its respective data, although Baayen listed several multiple-parameter theoretical models
in his review on word frequency distribution [6].

We argue here about need to apply two-parameter functions to fit ranked linguistic data for two
reasons. First, some ranked linguistic data, such as the letter usage frequencies, do not follow well a
power-law trend. It is then natural to be flexible in data fitting by using two-parameter functions. Second,
even for the known cases of “good fits”, such as the Zipf’s law on ranked word-frequency distribution
i.e., rank-frequency plot), the fitting tends to be not so good when the full ranking range is included. This
imperfection is more often ignored than investigated. We would like to check whether one can model
the data even better than Zipf’s law by using two-parameter fitting functions.

The first 2-parameter function we consider is the Beta-function which attempts to fit the two ends
of a rank-frequency distribution by power-laws with different exponents [7,8]. Suppose the variable f

values are ranked: f(1) ≥ f(2) ≥ f(3) · · · ≥ f(n), we define the normalized frequencies p(r) ≡ f(r)/N

such that
∑n

r=1 f(r) = 1, (n denotes the number of items to be ranked, r denotes the rank number, and
N =

∑n
r=1 f(r) is the normalization factor). In a Beta function, the ranked distribution is modeled by

Beta: p(r) = C
(n+ 1− r)b

ra
(1)

where the parameter a characterizes the scaling for low-rank-number (i.e., high frequency) items points,
and b characterizes the scaling for the high-rank-number (i.e., low frequency) items points. For the
example of English words, n is the vocabulary size, and “the” is usually the r = 1 (most frequent) word.

If a logarithmic transformation is applied to both sides of Equation (1), the Beta function can be cast
in a multiple regression model:

Beta (linear regression form): log(p(r)) = c0 + c1 log(r) + c2 log(r
′) (2)

where r′ = n+ 1− r, c1 = −a, c2 = b, and c0 = log(C).
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The second 2-parameter function we are interested in is the Yule-function [9]:

Yule: p(r) = C
br

ra
(3)

A previous application of Yule’s function to linguistic data can be found in [10].
The Menzerath-Altmann function mentioned earlier:

Menzerath-Altmann: p(r) = Crbe−a/r (4)

cannot be guaranteed to be a model for ranked distribution as the monotonically decreasing property is
not always true even when the parameter b stays negative. Note that Menzerath-Altmann function is a
special case of f = Crbexp(−a/r − d · r) which shares the same functional form as the generalized
inverse Gauss-Poisson distribution [6].

Another two-parameter function, proposed by Mandelbrot [11], cannot be easily cast in a regression
framework, and it is not used in this paper:

Mandelbrot: p(r) =
A

(r + b)a
(5)

For random texts, one can calculate the value of b, e.g., b = 26/25 = 1.04 for 26-alphabet
languages [12]. Clearly, all these 2-parameter functions one way or the other attempt to modify the
power-law function:

power-law, Zipf: p(r) =
C

ra
(6)

For comparison purposes, the exponential function is also applied:

exponential: p(r) = Ce−ar (7)

Two more fitting functions, whose origin will be explained in the next section, are labeled as
Gusein-Zade [13] and Weibull functions [14]:

Gusein-Zade: p(r) = C log

(
n+ 1

r

)
(8)

Weibull: p(r) = C

(
log

(
n+ 1

r

))a

(9)

In this paper, these functions will be applied to ranked letter frequency distributions, ranked
word-spacing distributions, and ranked word frequency distributions. A complete list of functions, their
corresponding multiple linear regression form, and the dataset each function will be applied, are included
in Table 1. When the normalization factor N is fixed, parameter C is no longer freely adjustable, and the
number of free parameters, K − 1, is one less the number of fitting parameters, K. The value of K − 1

is also listed in Table 1.
The general framework we adopt in comparing different fitting functions is Akaike information

criterion (AIC) [15] in regression models. In regression, model parameters in model y = F (x) are
estimated to minimize the sum of squared errors (SSE):

SSE =
n∑

i=1

(yi − F (xi))
2 (10)
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It can be shown that when the variance of the error is unknown, which is to be estimated from the data,
least square leads to maximum likelihood L̂ (the underlying statistical model is that the fitting noise or
deviance is normally distributed) (p. 185 of [16]):

L̂ = C − n

2
log

SSE

n
− n

2
(11)

The model selection based on AIC minimizes the following term:

AIC = −2L̂+ 2K (12)

where K is the number of fitting parameters in the model. Combining the above two equations, it is clear
that AIC of a regression model can be expressed by SSE (any constant term will be canceled when two
models are compared, so it is removed from the definition):

AIC = n log
SSE

n
+ 2K (13)

For two models applied to the same dataset, the difference between their AIC’s is:

AIC2 − AIC1 = n log
SSE2

SSE1

+ 2(K2 −K1) (14)

If model-2 has one more parameter than model-1, model-2 will be selected if SSE2/SSE1 < e−2/n.
Note that almost all fitting functions listed in Table 1 are variations of the power-law function, so the
regression model is better applied to the log-frequency scale: y = log(p).

Table 1. List of functions discussed in this paper. The number of free parameters in a
function is K − 1. The functional form in the third and the 4th column is for p(r) = f(r)/N ,
or log(p(r)), respectively. We define: x1 = log(r), x2 = log(n + 1 − r), x3 = 1/r, and
x4 = log(log((n + 1)/r)). The last 3 columns indicate which dataset a function is applied
to (marked by x): dataset 1 is the ranked letter frequency distribution, dataset 2 is the ranked
inter-word spacing distribution, and dataset 3 is the ranked word frequency distribution.

model K − 1 formula linear regression data1 data2 data3
(p(r) = f(r)/N ) (y = log p(r)) (letter freq.) (word spacing) (word freq.)

Gusein-Zade 0 C log((n+ 1)/r) c0 + x4 x x -
Weibull 1 C(log((n+ 1)/r))a c0 + c4x4 x x -

power-law 1 C/ra c0 + c1x1 x x x
exponential 1 Ce−ar c0 + crr x x -

Beta 2 C(n+ 1− r)b/ra c0 + c1x1 + c2x2 x x x
Yule 2 Cbr/ra c0 + crr + c1x1 x x x

Altmann 2 Crbe−a/r c0 + c1x1 + c3x3 x - x
Mandelbrot 2 C/(r + b)a - - - -

Before we fit and compare various functions, we would like to explain the origin of Gusein-Zade and
Weibull function by showing the equivalence between an empirical ranked distribution and the empirical
cumulative distribution in the next section.
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2. Equivalence between an Empirical Rank-Value Distribution (eRD) and an Empirical
Cumulative Distribution (eCD)

Our usage of rank-frequency distribution may raise a question of “why not use a more standard
statistical distribution?” It is tempting to relate a sample-based (empirical) ranked distribution to the
“order statistics” [17]. However, they are not equivalent. Suppose a particular realization of the values
of n variables being ranked (ordered) such that: x(1) > x(2) > x(3) · · · > x(n), and there are many
(e.g., m) realizations; the distribution of m top-ranking (rank-1, order-1, maximum) variable values
({xi

(1)}, i = 1, 2, · · ·m) characterize an order statistic an empirical rank-value distribution (x-axis:
(1, 2, · · ·n), y-axis: (x(1), x(2), · · ·x(n))) only characterizes the distribution of one particular realization.

However, empirical rank-value distribution (eRD) is equivalent to the empirical cumulative
distribution (eCD) of the n values of variable x from a data set. Figure 1 shows a step-to-step
transformation (starting from the upper-right, counter-clockwise) from an eRD to an eCD, using n = 100

values randomly sampled from the log-normal distribution. One empirical rank-value distribution
in Figure 1(A) is transformed to Figure 1(B) by a mirror image with respect to the y-axis, plus a
transformation of the x-axis: the new x-axis is reversed from the old x-axis and is normalized to (0,1).
The purpose of this operation is to start the empirical cumulation from the lowest ranking point.

Figure 1(C) is a mirror image of Figure 1(B) with respect to x-axis, and Figure 1(D) is a
counter-clockwise rotation of Figure 1(C) of 90◦. Figure 1(D) is then the empirical cumulative
distribution of this data set, which shows the proportion of values that are smaller than a threshold
marked by the x-axis. Actually, there is a simpler operation from Figure 1(A) to Figure 1(D): a clockwise
rotation of 90◦ plus a reverse and a normalization of the old x-axis to the new y-axis in the range of (0,1).

The relationship between eRD and eCD has been discussed in the literature a number of
times [18–23]. The reason we emphasize this relationship is to reinforce the understanding that a
functional fitting of the rank-value distribution will correspond to a mathematical description of the
empirical cumulative distribution, and vice versa. Since the derivative of the empirical cumulative
distribution is the empirical probability density (ePD), we then have an estimation of ePD as well,
even though it may not be in a close form. The relationship between an ePD and the true underlying
distribution is always tricky [6,24].

The frequency spectrum (FS) [6] is defined as the number of different events occurring with a given
frequency. The cumulative sum of FS, called empirical structural type distribution (eSTD), is closely
related to the empirical cumulative distribution. Generally speaking, eCD can be converted to eSTD by
mirroring with respect to the y = 1 line, then rescale the new y-axis from 1 to n (see Figure 1(D)). The
situation is slightly more complicated when there are horizontal bars in eRD (equivalent to vertical lines
in eCD) (see section 5). In that case, a horizontal bar is coverted to a point by its right end, before the
mirror/rotation is carried out. We note that Alfred James Lotka used FS in his discovery of the power-law
pattern in data [22,25].
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Figure 1. (A) n = 100 log-normal distributed values being ranked (x-axis is the rank r,
r = 1 for the largest value, r = n for the smallest value, y-axis is the value itself); (B)
Mirror image of (A) with respect to the y-axis. Note that the new x-axis is both reversed
and normalized (so that lowest ranking value at 0 and highest ranking value at 1); (C) Mirror
image of (B) with respect of x-axis; (D) Rotation of (C) of −90◦. The highest ranking value
is marked by the red color and the lowest ranking value by the blue color.
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The Gusein-Zade and Weibull function introduced in section 1 can be understood by a reverse
transformation from eCD to eRD. Suppose an eCD converges to 1 exponentially, which also describes
the gap length distribution of a Poisson process with the mean gap length of fm:

CD = 1− e−
f

fm (15)

Similar to the survival curve in biostatistics [26], eCD is a step function with n vertical jumps. The
lowest-ranking point (r = n) corresponds to the first step, with cumulative probability of 1/(n + 1),
and the highest-ranking point (r = 1) corresponds to the last step with the cumulative probability of
n/(n+ 1). This can be used to rewrite Equation (15) as:

n+ 1− r

n+ 1
= 1− e−

f(r)
fm (16)

or,

f(r) = fm log

(
n+ 1

r

)
(17)
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which is exactly Equation(8). In data fitting, we treat any coefficient in the function as a parameter, thus
fm/N becomes C. This rank-frequency distribution is exactly the same as the one proposed by Sabir
Gusein-Zade [13,27,28].

Suppose the CD approaches 1 in a stretched exponential relaxation [29,30]:

CD = 1− e−(
f

fm
)
α

(18)

the converted RD is the Weibull function defined in Equation(9) with C = fm/N and a = 1/α.
In general, any cumulative distribution of f

n+ 1− r

n+ 1
= CD(f) (19)

can be converted to RD by solving f as a function of r.

3. Ranked Letter Distribution

The frequency of letters in a language is of fundamental importance to communication and encryption.
For example, the Morse code is designed so that the most common letters have the shortest codes.
Shannon used the frequencies of letters as well as other units to study the redundancy and predictability
of languages [31]. It is well known that the letter “e” is the most frequent letter in English [32,33]. On
the other hand, the most common letter in other languages can be different, e.g., “a” for Turkish, and
“a”, “e”, “i” share the top ranks in Italian, etc. ( http://en.wikipedia.org/wiki/Letter frequency)

We plot the ranked letter frequencies in the text of Moby Dick in Figure 2 both in linear-linear and
log-log scales (see Appendix A for the source information). The number of bits in Morse code for
these letters is also listed in Figure 2(A), which does show the tendency of low number of bits for more
commonly used letters. Seven fitting functions (one zero-parameter, three one-parameter, and three
two-parameter functions) are applied (Table 1). All can be framed in multiple regression (see Appendix
B for programming information).

The fitting of Gusein-Zade equation in a regression for the log-frequency data needs more explanation.
From Table 1, we see that there is no regression coefficient for the x4 = log log(27/r) term, and the only
parameter to be estimated is the constant term. To show this fact, the regression model is re-written as:

log(p(r))− x4 = log
p(r)

log((n+ 1)/r)
= c0 (20)

From Figure 2, it is clear that power-law, Altmann, and Yule functions do not fit the data as well
as other functions. When the one-parameter functions are compared, exponential function clearly
out-performs the power-law function.

For regression on the log-frequency data, SSE and AIC can be determined, and conclusion on which
model is the best model can be reached. Table 2 shows that Beta function is the best fitting function,
followed by Weibull and Gusein-Zade function. The performance of Gusein-Zade function is impressive,
considering that it has 2 fewer parameters than Beta and Weibull functions.

Another commonly used measure of fitting performance is R2, which does ignore the issue of number
of parameters. R2 can either be defined as the proportion of variance “explained” by the regression
or defined as the squared correlation between the observed and the fitted values (see Appendix C for
more details).
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Figure 2. Ranked letter frequency distribution for the text of Moby Dick (normalized so that
the sum of all letter frequencies is equal to 1: p(r) = f(r)/

∑
i f(r)). (A) in the linear-linear

scale, and (B) in log-log scale. Seven fitting functions (see Table 1) are overlapped on the
data: power-law function (brown, a = 1.34), exponential (lightblue, a = 0.175), Beta
function (red, a = 0.0886, b = 1.64), Yule function (blue, a = −0.938, b = 0.764),
Gusein-Zade (green), Weibull (purple, a = 1.27), and Altmann (pink, a = 5.78, b = −2.58).
The number of bits in Morse code for the corresponding letter is written at the bottom of (A).
The R2 values listed are R2

cor or R2
cor,log in Equation (26).
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The R2 values in Table 2 show again that Beta function is the best fitting function, followed by
Weibull and Gusein-Zade functions. The R2

log and R2
cor,log for Gusein-Zade function is not equal because

the variance decomposition does not hold true (Appendix C) when Equation (20) is converted back to
the form of log(p(r)) = c0 + x4.

When the regression is carried out in log-frequency scale, whereas the SSE and R2 is calculated in
the scale, we do not expect the variance decomposition holds true, and do not expect R2 to be equal to
R2

cor. The last two columns in Table 2 shows SSE and R2
cor for these models when y axis in linear scale.

There are a few minor changes in the relative fitting performance among different functions. However,
we caution in reading too much in these numbers as the parameter values are fitted to ensure the best
performance in the log-frequency scale, not in the frequency scale.
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Table 2. Comparison of regression models in fitting ranked letter frequency distribution
obtained from the text of Mody Dick. The regression is applied to the log-frequency scale
(Table 1). SSE: sum of squared error (Equation (10)); ∆AIC: Akaike information criterion
relative to the best model (whose AIC is set at 0) (Equation (14)); R2

log: variance ratio
Equation (25); R2

corr,log: an alternative definition of R2 based on correlation (Equation (26)).
The SSE and R2

cor, based on the regression in the logarithmic scale, whereas applied to the
linear y scale, are shown in the last two columns.

model K − 1 log-scale linear-scale
SSE ∆ AIC R2

cor,log R2
log SSE R2

cor

Gusein-Zade 0 5.77 16.9 0.933 0.892 .00196 0.962
power-law 1 22.2 53.9 0.586 0.586 0.145 0.580
exponential 1 8.91 30.2 0.834 0.834 0.0124 0.918

Weibull 1 3.59 6.52 0.933 0.933 .00726 0.928
Beta 2 2.58 0 0.952 0.952 .000716 0.973
Yule 2 6.66 24.6 0.876 0.876 .00752 0.795

Altmann 2 14.83 47.4 0.723 0.723 0.0323 0.628

The fitted Beta function in Figure 2(B) is:

log(p(r)) = −7.5254 + 1.6355 log(27− r)− 0.08856 log(r) (21)

i.e., the two parameters in Equation (1) are a ≈ 0.09 and b ≈ 1.6. In [34], the relative magnitude of a
and b is used to measure the consistency to power-law behavior (a >> b provides a confirming answer,
and a << b does not). Equation (21) indicates that the ranked letter frequency distribution in English is
very different from a power-law function.

4. Ranked Inter-word Spacing Distribution

Motivated by level statistics in quantum disorder systems, it has been proposed that distance between
successive occurrences of the same word might be related to whether or not that word plays an important
role in the text (the so-called “keyword”) [35,36]. Similar studies of gap distributions are also common
in bioinformatics, such as the in-frame start-to-stop codon distances (which defines “open reading
frames”) [37,38] or in-frame stop-stop codon distances [39]. In the example provided in [36], for the
text of Don Quijote, the function word “but” tends to be randomly scattered along the text, whereas the
content word “Quijote” is more clustered. Here we will use the text of Moby Dick to obtain the ranked
nearest-neighbor distance distributions of selected words, and check which functions fit the data.

Figure 3 shows two ranked nearest-neighbor spacing distributions (after normalization) between a
given word, one for a function word and another for a content word. The representative of function
words is “THE” which is the most common word used in Moby Dick. The representative of content
words is “WHALE” which is the 23rd ranked word but the most common noun. The main conclusion
in [35,36] is confirmed that function words such as THE tend to be evenly scattered whereas



Entropy 2010, 12 1752

content words such as WHALE tends to be clustered, leaving huge gaps between clusters (and the
low-rank-number spacings are much larger).

Figure 3. Ranked nearest-neighbor spacing (normalized) between the word THE (in the unit
of word) (A,B), and that between the word WHALE (C,D), in the text of Moby Dick. Both
x− and y−axis are in log scales. Six functions are used to fit the data: power-law (brown,
a = 0.333 (THE, weighted), a = 0.733 (THE), a = 0.712 (WHALE, weighted), a = 1.23

(WHALE) ), exponential (lightblue, a = 0.000314 (THE, weighted), a = 0.000187 (THE),
a = 0.0579 (WHALE, weighted), a = 0.00385 (WHALE)), Beta (red, a = 0.278, b = 0.665

(THE, weighted), a = 0.542, b = 0.295 (THE), a = 0.576, b = 0.980 (WHALE, weighted),
a = 0.791, b = 0.673 (WHALE) ), Yule (blue, a = 0.234, b = 0.9999 (THE, weighted),
a = 0.274, b = 0.9999 (THE), a = 0.475, b = 0.997 (WHALE, weighted), a = 0.422, b =

0.997 (WHALE)), Weibull (purple, a = 0.982 (THE, weighted), a = 0.559 (THE), a = 1.57

(WHALE, weighted), a = 0.999 (WHALE) ), and Gusein-Zade functions (green), using
either weighted least square regression (B,D) or regular least square regression (A,C). The
weighting used is w = 1/r (r is the rank).
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When a power-law function is applied to fit the inter-word spacings, the fitting performance is not
good. In particular, it fails badly to fit the low-rank-number points (see the brown line in Figure 3(A,C)).
Since the density of points is denser at the tail of the ranking distribution, the least-square-fit regression
result using all data points equally is not consistent with the visual impression in the log-log scale
overlapping between the fitting line and the data.
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There could be at least two solutions to this problem. The first solution is to use a subset of the data
points so that these are evenly distributed in the log-transformed x-axis. The second solution is to assign
a weight to each point in the least-square fitting, such that the weight is smaller when the density of
data points is higher in the log-transformed x-axis. We adopt the second solution and choose a weight
inversely proportional to the rank: w = 1/r. This particular weight is chosen by some trials-and-errors
process, and no theoretical justification will be provided in this paper. Weighting is allowed in the R

subroutine for linear regression (Appendix B).
When the weighting option is chosen in power-law function, the regression line does indeed seem

to pass through the low-rank-number points (brown line in Figure 3(B,D)), although it still fails to fit
the tail (high-rank number points) portion of the ranking distribution. Other functions, whose parameter
values are determined by the weighted regression in log-spacing scale, are drawn in Figure 3(B,D) as
well: exponential, Beta, Yule, Weibull, and Gusein-Zade function

Table 3 summarizes the fitting results of these functions by SSE and AIC. Two sets of result are
presented: one with the weight w = 1/r and the other without. Interestingly, Yule function is the best
fitting function in most situations, for both the function word “the” and content word “whale”. The Beta
function is the close second best function. The AIC difference between models for weighted regression
is calculated by the formula in Appendix E.

Table 3. Comparison of regression models in fitting ranked inter-word spacing distributions
obtained from the text of Moby Dick for words THE and WHALE. The regression is applied
to the log-distance scale (4th column of Table 1). Two sets of result are presented: one for
the weighted regression (weight wr = 1/r), another without weights. SSE: sum of squared
error (Equation (10)); ∆AIC: Akaike information criterion relative to the best model (whose
AIC is set at 0) (Equation (14)). One R2 (R2

cor,log,weight in Equation (31)) is listed in the
last column.

word model K − 1 weighted regression unweighted regression R2
cor,log,weight

SSE ∆ AIC SSE ∆ AIC
Gusein 0 0.701 25.9 5860.9 73588.2 0.933

T power-law 1 0.947 31.0 1014.0 48720.0 0.909
H exponential 1 2.49 40.8 295.1 31222.6 0.761
E Weibull 1 0.698 27.9 1332.5 52591.9 0.933

Beta 2 0.265 20.1 297.4 31334.1 0.975
Yule 2 0.0366 0 32.6 0 0.996

Gusein 0 3.83 18.7 155.2 2537.2 0.931
W power-law 1 1.62 14.2 306.0 3320.2 0.919
H exponential 1 3.58 20.2 122.4 2265.8 0.821
A Weibull 1 1.38 12.9 155.2 2539.2 0.931
L Beta 2 0.360 4.69 17.1 0 0.982
E Yule 2 0.195 0 75.0 1703.2 0.990
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Among several choices of R2s (see Appendix C, D), we list R2
cor,log,weight in Table 3. The relative

fitting performance judged by R2 is consistent with that by SSE and AIC. It is worth noting that the
highest R2 values, which is achieved by the Yule function, R2 = 0.996 for word THE, 0.990 for word
WHALE, are quite high. It indicates that Yule function fits the data very well.

It is proposed in [35] that if a word is randomly distributed along the word sequence, it is a Poisson
process and the nearest-neighbor spacing will follow an exponential distribution. That equation is exactly
the Gusein-Zade function in Equation (8). Both Figure 3 and Table 3 shows, however, that Gusein-Zade
function is not the best fitting function when compared to others.

5. Revisiting Zipf’s Law

Ranked word frequency distribution in natural [1] and artificial languages [40] follows a reasonably
good power-law, especially when only the low-rank-number words are fitted. Ranking words by their
frequency of usage has practical applications, for example, it may establish the priorities in learning a
language [41]. However, the fitting by a power-law function for the whole range of ranks is by no mean
perfect. In [42], it was suggested that two power-law fitting with two different scaling exponents are
needed to fit the ranked word frequencies. In a more striking illustration [43], 42 million words (tokens)
from Wall Street Journal were used to draw the ranked word frequencies, and it deviate from the Zipf’s
law at r ≈ 5000.

Figure 4(A) shows the ranked word frequency distribution for the text Moby Dick. In order to examine
more closely how good Zipf’s law fits the data, we carry about three regression analyses: one is a local
regression using only points whose rank is within certain range; the second is a regression for all points
whose ranking number is lower (r < r0) than certain value. That regression is repeated with the weight
of w = 1/r.

The scaling exponents from these three types of regressions are plotted in Figure 4(B). It is clear that
the slope is becoming steeper towards the tail (high-rank-number words). The regression with weight
manages to slow down the increase of the slope, as the points near the tail are weighted down. Still, the
slope is not a constant. The slope of −1 as expected by the Zipf’s law is marked in Figure 4(B) as a
reference. Figure 4 confirms the previous observations that Zipf’s law is not a perfect fit of the ranked
word frequency distribution in the full rank range [42,43].

This leaves room for improvement by a two-parameter fitting function. Figure 5 shows the results of
three 2-parameter fitting functions (all with weight w = 1/r) plus that of power-law function, one for
words frequency in Moby Dick and another for Don Quijote (see Appendix A for source information).
Exponential function, Gusein and Weibull function all fit the data badly, so these are not included in
the plot.

Table 4 shows SSE and ∆AIC (relative to the best model) of these four functions, in both weighted
and unweighted regression. For weighted regression, Altmann function is the best model, although other
three functions are not far behind. For unweighted regression, Beta function is the best model. The
reason for this difference might be due to the ability of Altmann function to make nonlinear (in log-log
plot) turn at the head area of the curve (low-rank-number), and that of the Beta function at the tail area
(high-rank-number). Table 4 also shows that ranking of functions by R2

cor,log,weight values is consistent
with that by SSE.
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Figure 4. (A) Ranked word frequency distribution of text Moby Dick, in log-log scale. The
number of word type is 16713, and the number token is 212791. Points within certain rank
range are fitted with power-law locally, alternately colored by red and blue. (B) The slope of
the local regression line (red/blue): the slope of regression for all points higher than certain
rank (r < r0): without weight (“n”) and with weight (w = 1/r) (“w”).
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We may conclude from Table 4 that it is worthwhile to use two-parameter models, as all three (Beta,
Yule, and Altmann function) outperform the Zipf’s law, even if not by much. One important point made
in [6] is that when dealing with the word frequency distribution, due to the presence of “large number
of rare words” [6,24], the length of the text may affect the result. Consequently, it is preferable to check
the obtained word statistics as a function of the sample size.

In order to check whether the conclusion that two-parameter models outperform Zipf’s law is still true
at a different sample size, we split the Don Quijote into two books: El ingenioso hidalgo don Quijote de
la Mancha, and Segunda parte del ingenioso caballero don Quijote de la Mancha. The SSE and relative
AIC result of these two books are shown in Table 4. The main conclusion that Altmann function is
the best model in weighted regression, and Beta function is the best in unweighted regression, remain
the same.
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Figure 5. Ranked word frequency (normalized) in the English text of Moby Dick (MD)
(A), and the Spanish text of Don Quijote (DQ) (B). The following weighted regressions are
applied and the resulting fitting lines are shown (Table 1): power-law function or Zipf’s
law (brown, a = 0.999 (MD, weighted), a = 1.05 (DQ, weighted) ), Beta function (red,
a = 0.975, b = 0.293 (MD, weighted), a = 1.02, b = 0.312 (DQ, weighted) ), Yule function
(blue, a = 0.946, b = 0.9999 (MD, weighted), a = 0.99, b = 0.9999 (DQ, weighted) ),
and Menzerath-Altmann function (green, a = 0.932, b = −1.07 (MD, weighted), a = 1.41,

b = −1.15 (DQ, weighted)).
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6. Discussion

It is natural to add more parameters to models when they fail to fit satisfactorily certain sets of
data (e.g., [44]). Nevertheless, if the mathematicians’ task were only to fit the data, then with as many
parameters as the points in the dataset it would be possible in principle to fit anything but the resulting
model would be useless because it would be good only for a particular set of data. The goal should
then be to find a balance between the extremes of too few parameters and bad fittings and too many
parameters and overfitting.

For many linguistic data, one-parameter functions perform reasonably well, but when analyzing large
datasets there are some discrepancies at the extremes of the abscissae. It is easy to understand why we
would like to try some more parameters starting with two parameter models. These models have not
been extensively used partly because of a lack of critical comparison among them, and partly because
their performance may depend on particular dataset used.
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Table 4. Comparison of regression models in fitting ranked word frequency distributions
obtained from the English text of Moby Dick, and the Spanish text of Don Quijote. The two
books of Don Quijote are also separated for additional analysis with the goal of checking
sample-size effect. The regression is applied to the log-distance scale (4th column of Table
1). Two sets of result are presented: one for the weighted regression (weight wr = 1/r),
another without weights. SSE: sum of squared error (Equation (10)); ∆AIC: Akaike
information criterion relative to the best model (whose AIC is set at 0) (Equation (14)).
The last column is R2

cor,log,weight in Equation (31).

data model K − 1 weighted regression unweighted regression R2
cor,log,weight

SSE ∆AIC SSE ∆AIC
power-law 1 0.656 7.54 452.7 551.7 0.993

Moby Beta 2 0.523 7.21 438.0 0 0.994
Dick Yule 2 0.369 3.69 442.8 184.0 0.996

Altmann 2 0.260 0 441.2 120.3 0.997
power-law 1 1.10 17.9 783.8 6018.2 0.990

Don Beta 2 0.950 18.3 603.4 0 0.991
Quijote Yule 2 0.721 15.3 748.7 4959.5 0.993

Altmann 2 0.170 0 771.5 5654.3 0.998
power-law 1 0.831 16.3 560.9 6045.8 0.991

Don Beta 2 0.751 17.3 377.2 0 0.992
Quijote Yule 2 0.592 14.8 483.0 3767.8 0.994
book-1 Altmann 2 0.138 0 556.9 5937.7 0.999

power-law 1 0.964 19.0 591.2 6861.8 0.990
Don Beta 2 0.899 20.3 391.0 0 0.991

Quijote Yule 2 0.758 18.5 499.1 4053.0 0.992
book-2 Altmann 2 0.125 0 588.7 6791.9 0.999

For ranked letter frequency data, because the range of abscissae is short, the difference between
various fitting functions can be small. Only when the independent variable range is expanded, could we
see a divergence among different functions.

In this paper, we only limit ourselves to regression models on the log-frequency-log-rank scale. And
it is interesting to find Beta function outperform the Gusein-Zade function traditionally applied in the
letter frequency distribution [27]. Further analyses are needed, both by using other datasets and by using
regression in the frequency scale, to have more confidence of the conclusion reached here.

For inter-word spacing distribution, if a word appears in the text randomly, its probability distribution
is a geometric distribution [35]. Geometric distribution is the discrete version of exponential distribution,
and because integral of an exponential function is still exponential, by the method in section 2, we expect
the Gusein-Zade function to fit the ranked data well. It is again interesting that the best fitting function
is not Gusein-Zade function, but Yule function.
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The word frequency distribution is one of the most studied linguistic data, following the works by Zipf
[1], and with tremendous amount of knowledge being accumulated on this topic [6]. Mandelbrot function
is an example of extending one-parameter to two-parameter in fitting word frequency distribution [11].
Most usage of two-parameter models in linguistic data is perhaps on the phoneme distribution [10,29].
In our analysis, although several two-parameter models outperform the power-law function, the Zipf’s
law is still reasonably good.

In this paper we reveal some technical subtleties in fitting a function modified from a power-law
function. Since power-law function is a linear function when both axes are in logarithmic scales, it
is much easier to apply a linear regression on the log-transformed data. However, in the log-log plot,
the density of data points at the low-ranking end (large r values) is much higher, even though their
contribution to a visual impression is much less than their proportions. Whether or not we put a lesser
weight on these points may affect the data fitting result.

Another issue not yet addressed in this paper is that a logarithmic transformation changes the data to
another dataset, and the fitting result can be different from that before the logarithmic transformation.
Since one major purpose of the logarithmic transformation is to apply an easier linear regression, in
order to avoid a data transformation, non-linear regression is needed. Such analysis will be delayed to a
future study.

Fitting linguistic data with more than two parameters (e.g., 3, 4) remains a possibility for future
studies. However, for the three types of data considered here, the best R2’s are all larger than 0.95 using
two-parameter functions, and there is no obvious systematic deviations. Two-parameter functions seem
to achieve a good balance between under- and over-fittings. As in any statistical modeling, more does
not always means better [45].

In conclusion, even though we have not exhausted all two-parameter functions in fitting ranked
linguistic data, we at least put some of them together at one place that were used to be scattered in
the literature. Some preliminary conclusions have been reached: among the functions we studied, and
by fitting the log-transformed data, Beta function is the best fitting function for English letter frequency
distribution, Yule is the best fitting function for inter-word spacing distribution, and Altmann function
fits the word frequency distribution slightly better than others. However, these specific conclusions need
confirmation in more datasets. It is important to emphasize the fact that a good statistical fitting could
lead to a good phenomenological or first-principles approach to the same problem. We hope that this
paper could contribute to pave the way in this direction for linguistic data.
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Appendix A: Source of Texts

The text of Herman Melville’s Moby-Dick was downloaded from the Project Gutenberg website
(http://www.gutenberg.org/). A few pre-processing steps have been carried out, such as removing the
chapter titles, removing punctuations, manually transform some colloquial terms to their corresponding
formal terms (I’d → “I would”, ne’er → never, can’t → “can not”, ’tis → “it is”, etc.), and converting
uppercases to lowercases.

The text contains more than 212,000 tokens with 16713 word types. 7267 word types (43% of all)
appear only once, also known as hapax legomenon. Similarly, 60%, 70%, and 75% of all word types
appear at most 2, 3, and 4 times.

The Spanish text of Don Quijote was also downloaded from the Project Gutenberg website, with more
than 80,000 tokens and more than 23000 word types. Around half (49%) of the word types (∼ 11000)
are hapax legomenon.

Appendix B: Using R Statistical Package:

We use the statistical package R (http://www.r-project.org/) (for linguistic applications using R,
see [46,47]). The regression y = a0+a1xa+a2x2 is represented by a shorthand notation in R: y ∼ x1+x2.
A typical R session for the above multiple regression is (the texts after # are comments):

lm(y ˜ x1 + x2) # for ”linear model”

res = lm(y ˜ x1 + x2) # save the result to an object

summary(res) # details of the result

res$coefficients # regression coefficients

The R command for regression with weights (suppose w is an array of weights) is:

lm(y ˜ x , weights=w).
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Appendix C: The Condition for the Equivalence of Two Definitions of R2 in Linear Regression

The concept of coefficient of determination R2 is based on the variance decomposition. Suppose our
raw data is {xi, yi}(i = 1, 2, · · ·n), the following variance decomposition holds true for the regression
models for y ∼ x:∑

i

(yi − y)2 =
∑
i

(yi − ŷi)
2 +

∑
i

(ŷi − y)2 = SSE +
∑
i

(ŷi − y)2 (22)

where y for the mean of y, ŷ for the fitted value by regression model, and the name SSE means sum of
squared error. For the variance decomposition to be true, the cross-product term should be zero. The
cross-product term in Equation (22) is 2

∑
i(yi − ŷi)(ŷi − y). It is indeed zero because

∑
i(yi − ŷi) = 0

and
∑

i(yi− ŷi)ŷi = 0 conditions have to be satisfied as these are related to the derivative with respect to
the two coefficients of the sum-of-square-error. For the sum-of-square-error to reach the minimum, the
derivatives have to be zero.

Similarly variance decomposition can be obtained for the log(y) ∼ log(x) regression:∑
i

(log(yi)− log(y))2 =
∑
i

(log(yi)− ˆlog(yi))
2 +

∑
i

( ˆlog(yi)− log(y))2 (23)

When variance decomposition holds, ratio of a variance component to the total then can be defined,
for y ∼ x regression:

R2 =

∑
i(ŷi − y)2∑
i(yi − y)2

= 1− SSE∑
i(yi − y)2

(24)

and for log(y) ∼ log(x) regression:

R2
log =

∑
i(

ˆlog(yi)− log(y))2∑
i(log(yi)− log(y))2

(25)

Note that R2
log is generally not identical to R2 as the regression is applied to the transformed data.

There is another definition of R2 based on the correlation coefficient between the observed and the
fitted y value:

R2
corr = Cor(y, ŷ)2 =

|
∑

i(yi − y)(ŷi − y)|2∑
i(yi − y)2

∑
i(ŷi − y)2

R2
corr,log = Cor(log(y), log(ŷ))2 (26)

For the regression y ∼ x, ∑
i

(yi − y)(ŷi − y) =
∑
i

(yi − ŷi + ŷi − y)(ŷi − y)

=
∑
i

(yi − ŷi)(ŷi − y) +
∑
i

(ŷi − y)2

=
∑
i

(yi − ŷi)ŷi − y
∑
i

(yi − ŷi) +
∑
i

(ŷi − y)2

=
∑
i

(ŷi − y)2 (27)

making R2
corr in Equation (26) equal to R2 in Equation (24).
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When variance decomposition does not hold, such as the case when the parameter values are not
estimated by least square, the two definitions of R2 are not equivalent. In that situation, R2

corr seems to
be more robust (see R2

raw on p.194 of [48]). It is always recommended to explicitly state which definition
of R2 is used (p.79 of [48]).

Appendix D: Weighted Linear Regression

The standard regression y ∼ x by least square fitting aims at minimize the expression
∑

i(yi − a −
bxi)

2. In order to assign priority to data points in their contribution to the regression, it is possible
to minimize

∑
i wi(yi − a − bxi)

2, where {wi}(i = 1, 2, · · ·n) are pre-set weightings. For example,
for ranked distributions, one may decide that the low-rank-number points are more important than
low-ranking points. When one is more interested in fitting low-rank-number points than low-ranking
points, it is possible to choose a monotonically decreasing weight function, such as wi = 1/i.

It can be shown that variance decomposition continues to be true:∑
i

wi(yi − ⟨y⟩w)2 =
∑
i

wi(yi − ŷi)
2 +

∑
i

wi(ŷi − ⟨y⟩w)2 = SSEw +
∑
i

wi(ŷi − ⟨y⟩w)2 (28)

where ⟨y⟩w for the weighted mean of y: ⟨y⟩w ≡
∑

iwiyi/
∑

i wi. Note that the weighted mean ⟨y⟩w can
not be replaced by the unweighted mean y.

Similar variance decomposition for the log-scaled regression is:∑
i

wi(log(yi)− ⟨log(y)⟩w)2 =
∑
i

wi(log(yi)− ˆlog(yi))
2 +

∑
i

wi( ˆlog(yi)− ⟨log(y)⟩w)2 (29)

With the variance decomposition, R2 can be defined for the weighted regression:

R2
weight =

∑
iwi(ŷi − ⟨y⟩w)2∑
iwi(yi − ⟨y⟩w)2

= 1− SSEw∑
iwi(yi − ⟨y⟩w)2

R2
log,weight =

∑
iwi( ˆlog(yi)− ⟨log(y)⟩w)2∑
iwi(log(yi)− ⟨log(y)⟩w)2

(30)

The correlation-based definition of R2 for weighted regression is:

R2
corr,weight =

|
∑

i wi(yi − ⟨y⟩w)(ŷi − ⟨y⟩w)|2∑
i wi(yi − ⟨y⟩w)2 ·

∑
i wi(ŷi − ⟨y⟩w)2

R2
corr,log,weight =

|
∑

i wi(log(yi)− ⟨log(y)⟩w)( ˆlog(yi)− ⟨log(y)⟩w)|2∑
i wi(log(yi)− ⟨log(y)⟩w)2 ·

∑
i wi( ˆlog(yi)− ⟨log(y)⟩w)2

(31)

We have so far defined eight R2’s: based on variance ratio or based on correlation square, based on
regression on log scale or linear scale, with or without weight. Some of them are equivalent under
certain conditions, others are not.
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Appendix E: Relationship between AIC and SSE in Weighted Regression

We examine whether the relationship between AIC and SSE discussed in Section 1 is still true for
weighted regression. The most important assumption made is that the log-likelihood is weighted, not
likelihood itself, and under the normal noise model:

log(L) =
n∑
i

wi log(Li) =
n∑
i

wi log
e−

(yi−ŷi(
2

2σ2

√
2πσ2

= −nw

2
log(2π)−nw

2
log(σ2)−

∑
iwi(yi − ŷi)

2

2σ2
(32)

where nw =
∑

iwi. When the variance is unknown, it can be estimated as σ̂2 =
∑

iwi(yi −
ŷi)

2/
∑

i wi = SSEw/nw. Plugging the estimated variance in the above equation:

log(L̂) = C − nw

2
log

SSEw

nw

(33)

so AIC can be derived (after removing constant terms):

AIC = −2 log(L̂) + 2K = nw log
SSEw

nw

+ 2K (34)
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