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ABSTRACT Eucheira socialis (Westwood) oceurs above 1800 m in mountains throughout
Mexico and has a remarkable suite of autapomorphies, including communal larval nests and
a mean printary sex ratio of 70% males. We gathered allozvme data for 31 loci from individuals
within nests within populations and used hierarchical F statistics to assess population structure
and relatedness at these levels. Allozvme variation was far lower than reported in most Lep-
idoptera, and was absent from the p()pulcltmm sampled from southern Mexico. Among 5
sample sites distributed thronghout Mexico, differentiation was high (For = 0.54), which is
consistent with a historv of interrupted gene flow. At lower hierarchical levels in the variable

populations, we found s1gm|’1mnt excess heterozygotes within nests (Fpy =

=(1.13) and evi-

dence for structuring within subpopulations {Fig = 0.015, significantly greater than Fiy). Av-
erage relatedness among nestinates was ryg = 0.28, which is significantly less than » = 0.5,
This is probably cansed largely by interchange among nests on multinest trees,
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KNOWN LCCALLY S the mariposa del madrofio or
tzauhquiocnilin {Hoffmann, 1911), Eucheira soci-
alis (Westwood, 1834) has been considered an
oddity by lepidopterists since its larval nests were
first described by von Humbeldt (1811, p. 434},
Populations are found only above 1.800 m in the
mountains of Mexico, and detailed aceounts of its
natural history have been published only recently
(Diaz Batres and Boudinot 1986, Kevan and Bye
1991, Underwood 1994). Females appear to mate
only once, and they lay most of their eggs in single
clutches of 50—400 {Underwood 1994) on the un-
dersides of leaves of madrone trees. especially Ar-
butus xalapensis H.B.K. (Ericaceae). Upon hatch-
ing, the larvae of each clutch construct a
communal silken nest on the leaf, and this is ex-
panded in the 4th stadium to enclose the end of
the twig in an opaque silken bag of papery texture,
from which larvae emerge processionally at night
to feed. They pupate inside the nest, hanging ver-
tically by the cremaster. All other plends attach
themselves by an additional silken girdle. Up to
20% of the emerging adults show deformities as a
result of expanding their wings inside the nest
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{Diaz Batres and Boudinot 1986), and these adults
are not likely to reproduce. The adults are weak
fliers with grossly simplified sexual behaviors, and
mating takes place in the vicinity of the nests (Un-
derwood 1992); nests are not reused by later gen-
erations. The proboscis is nonfunctional and often
fails to anneal properly. Adults are sexually dimor-
phic: females have reduced compound eyes and
slightly reduced wing venation; males fly somewhat
better and have exceptionally large eves. Any of
these traits is unusual for butterflies, and they are
especially remarkable in combination.

Eucheira socialis nests have male-biased primary
sex ratios (D.L.A.U.. unpublished data), with males
comprising on average 70% of the larvae in clutch-
es. Preliminary studies suggest a partial division of
labor in the construction of the nest and the main-
tenance of silken trails. On a per-individual basis,
males do most of this work (D.L.A.U., unpublished
data). Furthermere, a significant proportion of
penultimate instars stop feeding, decline, and die
once the nest is fully constructed, and these larvae
are almost always males {D.L.A.U., unpublished
data). This results in an adult sex ratio of 36-65%
males, still significantly greater than 1:1 (Kevan
and Bye 1981; D.L.A.U.. unpublished data). In
other taxa, limited qltrmsm” of this sort is often
associated with high levels of relatedness {Hamnil-
ton 1967, Frank 1987, Thornhill 1993), and high
relatedness is likely, given the natural hnmr} of E.
socialis.
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Fig. 1. Sample populations of E. socialis in Mexico.
{1} FEl Palmito, Sinaloa; {2) El Madrofio, Durango: (3]
Valle de Bravo, México; (4] Pedregal de Chichinautzin,
Morelos; (51 Palillos, Zimapin, Hidalgo.

In this article, we use allozyme data to look for
patterns of genetic structure in E. socialis popu-
lations. In particular, we investigate the degree of
geographic differentiation among pepulations
throughout Mexico and, within populations, the
degree of relatedness within larval nests.

Materials and Methods

Larval nests of 2 E. socialis subspecies were
sampled from populations in the following locali-
ties in Mexico: E. socialis westwoodi Beutelspach-
er, 1t km W EI Palmito, Sinalea {near the Durango
border} (6 nests}); El Madrofio, Durango (29 nests);
and E. socialis socialis, Cerro de Bravo, near Valle
de Bravo, Mexico state (4 nests); Pedregal de Chi-
chinautzin, Morelos {3 nests); and Palillos, Zima-
pin, Hidalgo (3 nests) (Figure 1). Nests with pen-
tultimate and ultimate instar larvae were taken
from trees, kept with madrone (Arbutus xalapen-
sis) foliage in individual bags, and hand-carried to
the laboratory in Davis, CA. They were reared to
maturity on Arbutus menziesii Pursh., the native
Californian species, and, upon emergence samples
of adults were frozen and stored at —80°C. Sam-
ples from reared nests were transported on dry ice
to Bern, Switzerland, for electrophoretic analysis;
some nests with pupae were sent directly from
Mexico City to Bern; and the remainder were an-
alyzed in Davis. Voucher material is deposited in
the Bohart Museum at the University of California,
Davis.

The following enzyme systems yielded a total of
31 scorable loci: Aat-1, -2 (EC 2.6.1.1), Acp (EC
3.1.3.2), Ak-1, -2, -3 (EC 2.7.4.7), Ald {EC
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4.1.2.13), Arg {EC 2.7.3.3), Est (EC 3.1.1.1], Fum
-1, =2 (EC 4.2.1.2), Gapd (EC 1.2.1.12}, a-Gpd
(EC 1.1.1.8), Gpd (EC 1.1.1.49), Gpi (EC 5.3.1.9),
Hk-I, -2, -3 (EC 2.7.1.1), Idh-1, -2 (EC
1.1.1.42), Mdh-1, -2 (EC 1.1.1.37), Me-1, =2 (EC
1.1.1.40), Pep (EC 3.4.11.-), 6Pd{EL11 1.43),
Pgm (EC 2.7.5.1), Pk (EC 2. 7] 40), and Sod-1
-2, =3 (EC 1.15. l 1). Electromorphs were scored
for mobility relative to standard alleles from Pieris
brassicae, a method chosen for consistency with
other studies of electrophoretic variability in the
family Pieridae (Geiger 1981; Geiger and Scholl
1985; Geiger and Shapiro 1986, 1992; Porter and
Geiger 1893).

We used hierarchical F statistics (Wright 1978,
Weir and Cockerham 1984) to describe allozyme
variation. F statistics summarize the extent to
which populations deviate from Hardy-Weinberg
genotypic proportions. P()pulations in IIard}-‘—
Weinberg equilibrium proportions have F = 0.
Populations with excesses of homozygotes have F
> 0 to a maximum of F = 1; those with hetero-
zygote excesses have F < 0 to a minimum of F =
—1. A population may be hierarchically orgamzed
as a group of Quhpf}pulahons Whereupon Fin the
total population, denoted Fip, may be hierarchi-
cally partitioned to describe deviations from Har-
dy-Weinberg expectations on different geographic
scales. The partitioning is (1-Fyr) = (1-Fg) (1-
Fsr) (Wright 1951, 1978), where Fig describes the
average of dewah(m‘; from Hardy-Weinberg pro-
portions within the subpopulations, and Fgr de-
scribes the component of overall deviation pro-
duced by gene frequency differences among
subpopulations. Other hierarchical levels are often
inserted as we describe below. On local scales,
within subpopulations, deviations from Hardy—
V\a’einberg expectations arise from nonrandom mat-
ing, and Fy5 may be positive or negative. At larger
scales, only positive values {(aside from sampling
variation) may arise in Ferp, when the subpnpnla-
tions have different allele frequenues This Wah-
lund effect is easiest to imagine in the extreme
case where subpopulations are fixed for different
alleles, vielding a complete deficiency of hetero-
zygotes in the total population. As such, Fyp is a
common statistic describing average differentiation
among subpopulations.

Historically, F statistics have been derived from
3 perspectives: as the degree to which alleles iden-
tical-by-descent are distributed within and among
individuals {f of Malécot 1968} and pepulations (G
of Nei 1973); by path analysis as correlations be-
tween alleles in uniting gametes (i.e., within indi-
viduals} within and among subpopulatiﬂns (F of
Wright 1951, 1978); and from a nested analysis of
variance model describing the pattern in which to-
tal allelic variation is partitioned among subpopu-
lations, among individuals within subpopulations,
and between pairs of alleles within (diploid) indi-
viduals (Cockerham 1969, 1973; Weir and Cock-
erham 1984). Although the derivations vield the
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same analytical result and their various interpre-
tations are biologically equivalent, the 3rd ap-
proach lends itself most readily to statistical treat-
ment of data because degrees of freedom can
easily be incorporated at several sampling levels
(Weir and Cockerham 1984, Weir 1990).

Because of the hierarchical structure of F statis-
tics, additional levels may read.ilf' be included in

analyses, representing, [or example, subdivisions of

large subpopulations into demes (Wright 1978) or
grouping of subpopulations into intraspecific geo-
graphical or taxonomic units (Porter 1990, Chesser
et al. 1993). In this study we investigate differen-
tiation at 3 hierarchical levels: among subpopula-
tions (Fgr), among larval nests within subpopula-
tions (Fyg), and among individuals within nests
within subpopulations (Fyy). The partitioning is
thus (]_ F]T) = (]_ F]\) (]_ F\g) (]. F"-,'T) These hi-
erarchical levels may be collapsed to vield (I-Fy)

= (1-Fp) (1-Fxp) and (1-Fp) = (1-Fg) (1-Fgp)
as above, and we also draw inferences from Fig.
We usecl Weir and Cockerham’s {1984) statistical
estimators for F statistics, derived from the unbi-
ased hierarchical variance components a, b, b,
and ¢, as defined in their article. These estimators
qare

FlN:l_blj-c

Frg f=1_b1+zq+c
Fp=F=1 a+blj—bz+(
FNS=1_%,
F\'T=91=l_ﬁ:“
Fgr=6,=1- :

a+b +b;+c’

where 8, 85, f, and F follows their notation. Sin-
gle-locus estimates were combined over loci and
alleles using a weighted average, and error esti-
mates were obtained by the “jackknife” resampling
method (Weir and Cockerham 1984).

Behavioral observations indicate that E. socialis
nests are primarily family groups when eggs are
laid (Underwoud 1992). A deviation from the ap-
pearance of “Hardy-Weinberg”™ proportions
among larvae within nests (Fyy) in this study is thus
a measure of the deviation from Mendelian ratios
within putative family groups. Fix would be ex-
pected to increase with 3 factors that lead to ho-
mozygote excesses: multiple paternity, coalescence
of nests on the same trees, and the extent of mul-
tifemale clutches. As deseribed below, relatedness
(r) is the more appropriate statistic for interpreting
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this level of differentiation. Differentiation among
individuals within subpopulations (Fis} will not be
influenced by these 3 factors. but may be influ-
enced instead by nonrandom mating in the sub-
population. Given the natural history of E. socialis
(Kevan and Bye 1991, Underwood 1992, 1994),
the appearance of nonrandom mating seems more
likely to arise statistically, from an inadvertent
pooling of local genetic neighborhoods within the
sampled subpopulations, rather than sexually, from
actual mate-choice behaviors influencing consan-
guineous mating,

It is possible te estimate the rate of gene ex-
change among subpopulations using M =(1/Fsp —
1¥/4 (Slatkin 1987. Cockerham and Weir 1993),
where M is the effective number of individuals ex-
changed among subpopulations per generation.
For neutral loci, differentiation among subpopu-
lations (Fgy) is produced by genetic drift and is
counteracted by gene flow. Bdld.nung selection on
allozymes prolmhl) plays a negligible role in sub-
populdbon differentiation unless the subpopula-
tions are quite large (Porter 1990, Porter and Geig-
er 1995). The estimation of gene flow requires that
drift and gene flow be near equilibrium. If they
are not, the direction of the bias depends on
whether contact among subpopulations is of pri-
mary or secondary origin. When theyv are out of
equilibrium because of the interruption of gene
flow, gene flow (M) will be overestimated, and this
is especially so in large populations or over geo-
graphic regions, because genetic drift will act more
slowly therein (Porter and Geiger 1995},

Relatedness statistics are comparative in nature,
and apply to populations of grouped individuals
rather than to particular groups taken separately
(Iamilton 1964, Grafen 1983). The relatedness
statistic r is defined as the degree to which indi-
viduals within groups deviate from the average ge-
notype of their group, as compared with their de-
viation from the average genotype of the
population (Hamilton 1971, Grafen 1985, Queller
and Goodnight 1989). The groups may be arbi-
trarily chosen and, in this study, groups are nests.
Like F statistics, relatedness statistics may be par-
titioned hierarchically {(Pamilo 1984}, When doing
so, the subscript notation is not exactly like that of
F statistics. The average relatedness of nestmates
(individuals within nests) within subpopulations is
rns. whereas the inbreeding coefficient at this level

We estimated relatedness among nestmates us-
ing Hamiltons (1971, appendix II) formula

N Py

This is difficult to interpret when subpopulations
differ in allele frequency because it compares dif-
ferences among nestmates to differences from the
average allele {requency of the total population. So
in addition, following Pamilo (1984, equation 186),
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Table 1. Nests per site (¥), mean
population for the polymorphic loci
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+ SD per nest sample sizes (r) amld allele frequencies in cach E. socialis sub-

lij:ﬁi]:”d El Palmito El Madrofio Cerro de Bravo Chichinautzin Falillos
N 3] 29 4 3 3
it 11.5{3-34) 1.5 (235 5.0 (2-1h 14.0 (4-23) 53512
st
A 0,956 + 0025 0914 + 0157 100 = 000 1.6y — OLK) 1.00 = 04K
B 0.014 + 0.025 0.084 + 0154
[ 0.001 = 0.003
feth-1
A 0077 + 0143 0.012 + 0.023
B 0,923 + 0,143 0,988 + 0.023 100+ (000 L.OK} = 0.0} 1000 = 000
feth-2
A 0775 £ 0349 0.224 + 0.347
B 0.010 + 0.020 1.00 = 0.00 1.0 £ (L) 1.00 + 0.00
[ 0,225 + 0.349 0.766 + 0.359
Cepi
A (145 + 0252 0.012 + 0.023
B 0511 = 0411 0.847 = 0,259 100 2 (.00 Lo0 + 000
[ LAK} + 0.0}
n 0141 + 0.242 0.141 + 0.242

Ranges ol nest sample sizes are given in parentheses.

average relatedness among nests within subpopu-
lations was estimated using

2F\s

Fyg = ————.
N T+ F

These estimates of rys and ryy are statistically un-
biased, to the extent that the ratio of 2 unbiased
estimators is unbiased, because they are ratios ol
the unbiased F statistics we calculated above. We
jackknifed over nests to estimate error of r because
there were considerably more nests than polymor-
phic Toci. Queller and G oodnight (1989, equation
11} suggested a similar (Pamilo 1989) formula that
appears generally less biased for small samples. We
did not adopt it because it produces unrealistic es-
timates if both the number of qubpopulatiom an-
alyzed is very small and their allele frequencies are
very different, as occurred in our sampling regime.
Onl\, the 2 northern Mexico populations were suit-
able for our within- -population relatedness esti-
mates because the other populations lacked genet-
ic variation, leading to undefined estimates of r in
them.

Results

Genetic Differentiation. Only the loci Aat-1,

phismn within or among populations (Table 1), and
these were only polymorphic in the 2 E. 5. wes-
twoodii populations, This resulted in heteroyzgos-
ities of H = 0.03 and H = 0.04 in these popula-
tions. Heterozygotes occurred in both sexes,
indicating that these loci are autosomal. The 3
populations from southern Mexico, currently
placed taxonomically as E. socialis socialis, were
homozygous at the 31 loci sampled, with hetero-
zygosities of H = 0.0. This is the lowest overall
level of polymorphism (%P = 13%) vet recorded
for any butterfly species. These heterozygosity sta-
tistics should be interpreted with caution, however,
because our methods were not designed to ran-
domly sample individuals within subpopulations.
Hierarchical inbreeding coeflicients con Nld(—‘r"lr]g
all subpopulations are shown in Table 2. Fer is
quite hlgll'f (P < 0.001), indicating virtually com-
plete isolation of subpopulations. If this is con-
verted to a gene flow estimate, then M =021
(0.11-0.40, 95% CI) individuals exchanged among
subpopulations per generation. This is just above
the range of values seen when genetically isolated,
sympatric sibling species are compared, and some-
what lower than most cases of subspecific differ-
entiation (Porter 1990). The lack of genetic diver-
sity in the E. s. socialis subpopulations makes

Est. Gpi, and Idh-1 showed allozyme polymor- further interpretation of genetic structure prob-
Table 2. Hierarchical F statistics for all E. socielis subpopulations, using the formulae of Weir and Cockerham
{1984) (see Materials and Methods)
F statistic Level Value SN
For Among subpopulations 0,543 0.081
Fur Among nests 0613 0.072
Frr Among individuals .535 0,084
Fys Among nests within subpopulations 0.132 0.006
Fiq Among individuals within subpopulations 0.026 0.031
Fix Among individuals within nests within subpopulations —(1.148 0.029

Standlard deviations are derved From j:u'kkniﬁng over loci.
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Table 3. F statistics considering only the E. s. westwoodi subpopulations from northern Mexico, where sufficient
varianee in allele frequency exists to permit more detailed analysis

stagstic- Level Value sD fas P
Fgr Among subpopulations 0.262 0.024 10.762 0.001
Byt Among nests 0,569 0.024 15.223 0.001
Fir Among individuals 0.273 0.026 10,370 0.001
Fys Among nests within subpopulations 0.145 0,007 20.811 0.0¢H
Fig Among individuals within subpopulations 0.015 0.010 1.5649 0.2 NS
Fw Among individuals within nests within subpopulitions —0.151 0009 —16.370 OL00H

Standard errors are taken over nests using a jackkmife algorithm. and 2-tailed significance levels are derived from t tests against the

mull ]'I'\'l)(}flli-‘.‘-iix that F = 0.

lematic, and only the E. s. westwoodi subpopula-
tiens are included in the analyses below.

F statistics considering only the Durango and
Sinaloa subpopulations are shown in Table 3. Fiy
is significantly negative, indicating an excess of het-
erozygous larvae in nests, and this value remains
consistently low across loci when analyzed sepa-
rately. Fig is not significantly different from zero.
However, it is appropriate here to compare Fig to
Fx rather than zero, whereupon we find that Fig
is significantly higher (t;y = 74.1, P < 0.0001}, in-
dicating an overall excess of homozygotes relative
to the within-nest genotypic proportions. This sug-
gests that there is likely to be spatial structure
within the subpopulations, despite relatively con-
tinuous madrone habitat within our localities. This
appears consistent with low female dispersal rates
observed in mark-recapture experiments in natural
populations (D.L.A.U., unpublished data),

Relatedness. Uemg only the Durango and Sin-
aloa subpopulations, where sufficient genetic vari-
ation was available, we found relatedness among
nestmates within subpopulations to be ryg = 0,285
+ 0.012. This is significantly lower than r = 0.5
{ty; = —17.41; P < 0.0001}), the relatedness ex-
pected between full siblings in an outbreeding
population,

As a post-hoc test to determine whether the low
relatedness within nests was attributable to nest
coalescence, we repeated the analysis for the El
Madroiio qubp(}pulatlon alone. Using data from all
nests, we found rr = 0.272 £ 0.01. We found
relatedness of nestmates within trees was ry, =
0.177 *= 0.04, significantly lower than the overall
relatedness (f3; = 3.31, P < 0.001). This suggests
that nest coalescence is likely to play an important
role in driving down average relatedness. Unfor-
tunately, our sampling records do not permit us to
look at relatedness within nests that were the sole
occupants of trees.

Discussion

The genetic structure of Eucheira socialis is
marked by limited polymorphism but strong dif-
ferentiation among populations, with excess het-
erozygotes and moderate levels of relatedness
among nestmates within subpopulations. These

patterns are related to several aspects of both adult
and larval natural history, discussed below.

Population Structure and Adult E. socialis
Behavior. E. socialis are weak fliers. Females ap-
pear to mate once early in life and lay virtually all
their eggs in a single clutch soon after mating (Un-
derwood 1992). Adult dispersal is likely to be only
several hundred meters at most (D.L.A.U., unpub-
lished data), and under an isolation-by-distance
model of population structure, numerous genetic
neighborhoeds would fit into each of the patches
of madrone found in our study areas. OQur nests in
the Durango and Sinaloa sites were spread over
=5 ha within a madrone patch, and the difference
between our F|y and Fis values (Table 3} qualita-
tively reflects the within-subpopulation differenti-
ation that strong isolation by distance is expected
to produce.

At larger geographic scales, gene [low among
sampled E. socialis localities is probably restricted
by 2 factors in addition to weak flight capabilities.
First, madrone habitats are limited to elevations >
1,800 m, and they have been separated by exten-
sive inhospitable regions since at least Pleistocene
times. Second, there is strong karvotypic ditfer-
entiation among northern and southern E. socialis
populations {A.M.S. and S. R. Snow, unpublished
data) that would probably act as postzygotic bar-
riers should distant populations ever encounter
one another naturally. Data are currently limited,
but karyotypic differentiation appears correlated
geographically with the minor morphological dif-
ferences (A.M.S. and S. R. Snow, unpublished
data) used to separate northern and southern pop-
ulations into subspecies (Beutelspacher 1984, Diaz
Batres and Boudinot 1986). The low gene flow (M)
estimate indicates that these E. socialis subpopu-
lations have probably long been separated and are
now evolving relatively independently of one an-
other. Indeed, if they have been slowly diverging
by genetic drift since achieving their current rang-
es, then drift and gene flow may not yet have equil-
ibrated, and our calculated value of M may be an
overestimate. These subspecies may prove to be
separate biological species upon closer inspection
of intermediate localities. The high Fgy value re-
futes the hypothesis (Peigler 1993} that the current
geographic range was achieved relatively recently
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by commerce ameng indigenous peup]ec. who re-
pnrtpdly used the nests for paper in pre-Colum-
bian times and who continue to eat the pupae
{(Kevan and Bye 1991; unpublished observations).

In contrast to E. socialis, other studies of butterfly
population genetic structure, conducted at compa-
rable geographic scales, show very little differenti-
ation among populations. In the Pieridae, Geiger
and Shapiro (1992) and Porter and Geiger (1995)
report low Fyr values d(-“;pltf‘ ]‘ngh heteroz&gosmcs
for Pieris napi (L.)-group taxa in California and Eu-
rope. This is associated with high dispersal rates of
these butterflies (A. H. P, unpublished data). Sim-
ilar work on Pieris rapae (L.} (Vawter and Brussard
1984) yields essentially the same picture, but asso-
ciated in part with recent range expansion. Other
butterfly species also have very low values of Fgr,
for Pmmple Limenitis weidemeyerii W. H. Edwards
(Porter 1990), Euphydryas chalcedona (Doubleday)
(McKechnie et al. 1975, Porter 1990), Coenonym-
pha tullia (Miiller) (Porter and Geiger 1988), and
the migratery Danaus plexippus (L.) (Eanes and
Koehn 1978) (all Nymphalidae). Euphydryas editha
{Boisduval) has one of the highest values, at Fgy =
0.2 (McKechnie et al. 1975, Porter 1990). It is also
interesting to note that the eastern tent caterpillar,
a lasiocampid moth, has low levels of Fqr {Costa and
Ross 1994) across eastern North America, similar to
those of “normal” butterflies, rather than showing
the high differentiation seen in E. socialis on a sim-
ilar geographic scale. E. socialis has by far the high-
est Fyr values reported in the Lepidoptera, even if
only the 2 geographically close Durango and Sinaloa
populations are considered. This is consistent with
observations of limited dispersal capabilities in this
SP(‘?L’!HS.

Eucheira socialis and Similarly Colonial Lep-
idoptera. The eastern tent caterpillar, Malacosoma
americanum (F.), has a natural history superficially
similar to that of E. socialis, with communal larval
nests constructed by siblings from a single clutch
{Costa and Ross 1993), and larval trails from the
nest to patches of edible leaves (Fitzgerald and
Willer 1983). Within-nest variation in M. ameri-
canum (Costa and Ross 1993) indicates that relat-
edness begins high, at ryg =0.5 among early-instar
nestmates, but nest coalescence and exchange
among nests drives relatedness down to ryg = 0.38
by the later instars. The saturniid moth Anisota
senatoria J. E. Smith also lives communally, but
does not construct nests. It shows reduced relat-
edness (rys = 0.31} in late instar larval groups
{Porter et al. 1997}, and nest coalescence and ex-
change appears to be involved. We also have ob-
served nest coalescence and exchange of individ-
uals among nests in E. socialis. Judging from the
comparisen of relatedness among all nests (ryy) to
that among nests within trees (ry,,) at El Madrofio,
larval movement among nests appears to have a
similarly strong homogenizing eflect on population
genetic structure. However, our follow-up analysis
does not rule out the possibility that occasional
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multiple mating and egg dumping on clutches of
other females also contributes in minor ways to
reduced relatedness. M. americanum and other co-
lonial Lepidoptera have 1:1 sex ratios, and in gen-
eral share few of the remarkable traits character-
istic of E. socialis.

Heterozygote Excesses. The significant hetero-
zygote excesses (Fy) within nests at all 4 poly-
morphic loci are difficult to explain without invok-
ing natural selection, although the mechanism(s}
remains obscure. Field observations indicate that
the nests are derived primarily from single clutches
laid by females (Underwood 1992), and that fe-
males probably mate only once hefore ovipositing.
Females do occasionally lay small numbers of eggs
on the clutches of other females (D.L.A.U., un-
published data}, and nests on a single tree appear
to exchange members or coalesce, but these phe-
nomena all lead to heterozygote deficiencies much
in the way that pooling differentiated subpopula-
tions ywld-, homozygote excesses in the total pop-
ulation,

Limited Polymorphism. E. socialis, especially
the subspecies E. s. socialis, has among the lowest
levels of polymorphism yet reported in the Lepi-
doptera; only Yponomeuta rorellus Hiibner (Ypon-
omeutidae) has values in this range (0.0 = H =
0.015 [Menken 1987]). )
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