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Abstract 

The scaling laws of the temperature structure functions and their relation with those of velocity have been experimentally 
studied. The relationship between the dissipative scales for velocity and the temperature is first investigated. In agreement 
with recent numerical simulations of Pumir (1994), it is found that, for Prandtl number close to !, the dissipation scale for 
a scalar is smaller than that of velocity. Thus temperature structure functions present a larger scaling interval than that of 
the velocity. The intermittent corrections of scaling are then analyzed. It is shown that, as proposed in literature (R. Benzi 
et al., 1992), the second-order structure function is affected only by the velocity intermittency. This structure function is 
then used as the reference for testing the applicability of the extended self-similarity (ESS) to the passive scalar case. ESS 
holds, but in a narrower interval than that observed in velocity statistics. Finally, a hierarchy for the temperature structure 
functions, similar to that proposed by She and Leveque (1994) for the velocity field, is introduced and experimentally 
tested. 

PACS: 47.27Gs: 05.40+j 
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1. Introduction 

The capacity of the turbulent motion to diffuse for 
example heat or a contaminant through a fluid is in- 
teresting from both a theoretical or a practical point 

of view." 
The basic equation of the advection of a passive 

scalar 0 by a velocity field u is 

O0 
0"t" + (u .  V ) 0  = X V20, (1) 

* Corresponding author. 

where X is the thermal difussivity. Notice that this 
equation is linear, but a coupling between 0 and u 
is present via the term (u • V)0~ A random behavior 
of the scalar is expected to appear when 0 is already 
stochastic at the initial time or when the interaction 

between 0 and u do so. 
Recently new trends in passive scalar research has 

been open. For example Villermaux and Gagne [ll 
have studied the line dispersion in homogeneous tur- 
bulence. The closure of the temperature increment 
statistics have been also recently analyzed both the- 
oretically [2] and experimentally [3]. The probability 
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distribution function of a scalar has been instead ana- 
lyzed by Castaing [41. 

Pumir [5] made a numerical investigation on the 
small scale structure, in particular he found that there 
exist narrow sheets where pronounced scalar jumps 
are observed. ~ i s  feature is related to the intermit- 
tency and it is in conflict with the classical picture by 
Obukhov and C o ~ i n  [6,7]. 

Among the different analysis which may be 
eventually performed [2-121, the statistical properties 
of homogenous and isotropic turbulence are often 
investigated by studying the structure functions. The 
n-order structure function for temperature and veloc- 
ity are defined as follows: 

Rn(r) = (lO(x + r) - O(x)ln), 
Sn(r) = (IV(x + r ) -  V(x)ln), (2)" 

where (...) stands for ensemble average, r is a dis- 
tance, V the velocity component parallel to r and 0 is 
the temperature. One observes that there exists a range 
in r, called the inertial range, where Sn(r) and Rn(r) 
have a power law behavior, that is 

Sn(r) cx r ¢(''). (3) 
R,,(r) c¢ r ~('). (4) 

The inertial range corresponds to lengths where vis- 
cosity or diffussivity are negligeable, that is, L >> r >> 
0', where 0' is the dissipative scale and L is the inte- 
gral scale at which the energy is injecte.d. For velocity 
field 0' is the Kolmogorov scale 0 = (v3/~) I/4 (here g 
is the mean energy dissipation and v is the kinematic 
viscosity). Instead for a passive scalar r/' is r/0 which 
is in general different from r/. At this level the only 
conclusion, we can reach, is the following: 

Oo = o f (Pr ) ,  " (5) 

where f is an arbitrary function of the Prandti num- 
ber Pr = v/X. In Section 3 some possibilities are 
analyzed and a comparison with experimental data is 
made. 

Following a parallel with the Kolmogorov ideas for 
velocity statistics [ 13], a universal behavior is expected 
to occur at lengths far away from both the dissipative 
and the integral scales. Turbulence is seen as a hierar- 

chy of structures of different sizes. First the temper- 
ature fluctuations are injected at largest scales, then 
a cascading is established consisting of a transfer of 
these fluctuations to increasingly smaller scales until 
the thermal diffusivity becomes important. If L and 
00 are well separated then a self-similar regime is at- 
tained at intermediate scales. 

In the classical theory by Obukhov and Corrsin [7] it 
is assumed that statistical properties of a passive scalar 
depends solely upon X, v, g and N (N is the mean of 
the dissipation of the temperature fluctuations, that is: 

= (X ~_,ai=i(aO/axi)2)). This yields to the scaling 
of the stracture functions 

Rn(r) = Cn'~-n/6Nn/2rn/a. (6) 

However the ~(n) exponents are experimentally 
found different from this theoretical prediction. In 
fact, the third-order structure functions exhibits ap- 
proximately a deviation of 20% with respect to that 
model and the difference is about 45% for the sixth- 
order structure function. This phenomenon is believed 
to be produced by the intermittencies of g and N. The 
purpose of this paper is to analyze these intermittent 
properties of a passive scalar, by studying the scaling 
of the temperatuie structure functions. We are also 
interested in studying the dissipation scales which 
determine the extension of the scaling range of the 
structure functions. 

The paper is organized as follows. In Section 2 the 
experimental setup is described. Section 3 is devoted 
to investigate the dissipative scales for velocity and 
temperature and a comparison with three,models is 
made. In Section 4 the influence of the intermittency 
of the kinetic energy dissipation and N will be ana- 
lyzed and a model recently introduced by Benzi et al. 
[ 14] will I~ tested. According to the latter, the second- 
nrder stn~cturf, function Re(r) is not affected by the 
intermittency of N, but only by that of ~. Another im- 
portant issue treated in this work is the applicability of 
extended self-similarity (ESS) [15] to a passive scalar 
(Section 5). This property was originally discovered in 
the velocity statistics. It consists of a self-similar be- 
havior of a broader range than the inertial one when the 
variable r is replaced by S3(r). In the context of tem- 
perature, ESS is studied by plotting Rn(r) vs. R2(r). 
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In Section 6 a hierarchy of the temperature structure 
functions is proposed. The underlying idea is the same 
as She and L~veque discussed in a recent paper [ 16]. 
Finally conclusions are given ip Section 7. 

2. Experimental setup 

In order to answer the above-mentioned questions 
concerning the statistics of a passive scalar some mea- 
surements were carded out. The experimental setup 
consists of a wind tunnel with a cross section 50 x 
50 cm 2 and 3 m long. The turbulence is generated with 
a cylinder of diameter L = 10 cm. The mean velocity 
in the tunnel was varied in the range 1.4 m/s<  U0 < 
6.7m/s, then the Reynolds number (Re = UoL/v) 
was in the range 9000 < Re < 45 000 corresponding 
to R~ (based on the Taylor microscale) in the range 
130 < R~ < 470. In order to produce the temperature 
fluctuations the air was heated elect~cally after the 
cylinder by an array of parallel fine wires whose thick- 
ness was about 0.1 mm. This array permits an effec- 
tively mixing of heat and does not produce any mean 
temperature gradient. This heating array is reported 
in other experiments on turbulent mixing of tempera- 
ture [8,17] and it is known as mandoline. The wires of 
mandoline are too fine to disturb the flow. The man- 
doline was heated with a DC power supply reaching a 
power of approximately I kw, so the increase of mean 
temperature was between I°C and 4°C depending on 

the mean velocity. 
In order to measure simultaneously velocity and 

temperature two probes were placed at a distance less 
than I mm apart. The temperature probe is a platinum 
wire of diameter 1 Ixm and 0.3 mm long, with a re- 
sistance of 45f~ at 20°C; it works as a cold wire. 
The current passing in the probe was 0.35 mA, giving 
a good sensitivity to temperature fluctuations (about 
50 IxV/°C) and a negligeable one to velocity. The sen- 
sor used to measure velocity is a thin wire of diam- 
eter 25 ttm and 0.5 mm long working as hot wire. In 
almost all the experiments the size of probes was in 
the proximity of the dissipative scale, then the statis- 
tics in the inertial range is well resolved. The probes 
were placed at 25 L downstream the cylinder and the 

temperature sensor was in the lower position. This is 
made to prevent the air heated by the velocity probe 
from reaching the platinum sensor. 

The instantaneous ~elocity and temperature were 
transformed into volta~;e signals with a TSI anemome- 
ter and a Wheatstone bridge, respectively, filtered at 
a frequency fc > U/5~I and digitized with a 16 bits 
a/d  converter. Before filtering, the temperature sig- 
nal was amplified by a factor 10 000 using a differen- 
tial amplifier. Time series of.at least 7 x 10 6 points 
have been rec¢rded which allows us to compute with 
a statistical accuracy of a few per cent till the 8 or- 
der structure function. The local, time measurements 
are tra~sfoaned in spatial measurements by using the 
Taylor hypothesis, that is r = U0. t. Finally the 
anemometer output has been corrected to take into ac- 
count the non-linear response of the hot wire. 

3. Dissipative scale 

In Section 1, we have already mentioned that in 
fully developed turbulence the extension of the scaling 
range of structure functions is determined by the dis- 
sipation scale which is a function of Re. This can be 
seen in Fig. 1 where the Rn are reported as a function 
of r for different n and Re. A scaling region is ob- 
served only for the highest Re, that is, for the smallest 
dissipative scale. For the velocity structure function 
the dissipative length scale is the Kolmogorov scale r/. 
whereas for the temperature structure functions sev- 

eral hypotheses have been made. 
By a dimensional analysis and assuming a depen- 

dence on X and ~" alone, Monin and Yaglom [6] give 
an estimate of the dissipative scale for temperature 

11 o = (~(3/~-)!/4. (7 )  

Notice that 170 is simply obtained by replacing v by 
X in the definition of r/. Eq. (7) can be written in terms 

of 11, that is 

pr-3/4 (8) 170 =i?  ' 

Then according to the model the two dissipative 
scales are different. The definition given above is not 
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Fig, !, Temperature structure functions at Re = 9000 (D), 
35000 (O): (a) R2 vs. r/~l, (bl'R4 vs. r/~l and (c) R6 vs. r/t?. 
The straight lines have slopes equal to 0.62, 0.94 and 1.12, 
respectively. 

the only possibility. In fact, there are other combina- 
tions of ~', X and v which have units of length and can 
be justified by simple physical arguments. Batchelor 
in a seminal work of 1958 [18] gives another estimate 

rio = II Pr  - I .  (9) 

Fig. 2. Collapse of structure functions R3(r) (n) and S3(r) 
(o) in the dissipative range. Re = 35 000, The length scale for 
velocities was multiplied by 0.705. The behavior of the two 
functions in the dissipative range is essentially identical. 

Recently Pumir [5] made a numerical study of the 
small scale structures in a passive scalar, finding that 
the dissipative scale for temperature is 

r/0 = 0.5917 P r  - I /2 .  (I0) 

This equation has been checked numerically for 
I < P r  < 1 and R~ < 70. In our experiment, using 

only one value of P r, we cannot distinguish between 
Eqs. (8)-(10), but can check the numerical result by 
Pumir at higher R~. In order to do that we used the 
following procedure. The dissipative range is the in- 
terval where the temperature or velocity are smoothed 
by thermal diffussivity and viscosity, respectively, so 
the structure functions have a regular behavior, that 
is, Rn(r)  tx r n and Sn(r)  OC r n. The key idea to 
experimentally evaluate the quotient 170/i'/is that in 
the vicinity of their corresponding dissipative scale the 
behavior of either temperature or velocity structure 
functions is essentially identical. Then, if the length 
scale for velocity is multiplied by a suitable factor both 
Rn(r)  and Sn(r) must collapse in a single curve. The 
factor is precisely 170/r/. 

As an example we show in Fig. 2 the superposition 
of R3(r)  with S3(r) in the dissipation range, obtained 
by multiplying the length scale for temperature by 0.71 
for Re  = 35 000. In Table 1 the results obtained for 
two measurements are shown and compared with the 
described above models. As we can see, in our exper- 
iment it is found that 1 7 o  - 0.717 in agreement with 
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Table 1 
Ratio r/0/r/of temperature to velocity dissipative scales 

Model r/0/r/ 

Monin-Yaglom 1.310 
Batchelor 1.430 
Pumir 0.705 

Experiment (Re = 9000) 
Experiment (Re = 35 000) 

0.770 
0.710 

Table 2 
Exponents of the temperature and velocity structure functions 

Order ~(n) ((n) 

! 0.37 4- 0.003 0.37 4- 0.003 
2 0.62 4- 0.005 0.70 4- 0.005 
3 0.80 4- 0.008 1.00 4- 0.010 
4 0.94 4- 0.010 !.28 4- 0.020 
5 1.04 4- 0.010 1.54 4- 0.030 
6 1.12 4- 0.020 i.78 4- 0.050 
7 1.20 4- 0.020 2.00 4- 0.070 
8 1.29 4- 0.020 2.23 4- 0.080 

the numerical data by Pumir [5]. Of course this result 
is just an experimental check of the numerical data 
and it does not exclude the possibility of a different 
Prandtl dependence with another numerical prefactor. 
Other experiments with various Pr will be necessary 
in order to clearly check Eq. (10) at high Re. 

4. Scaling exponents in the inertial range 

The exponents of the temperature structure func- 
tions in the inertial range can be calculated with some 
accuracy from the data corresponding to the highest 
Reynolds number attained in our experiments. The 
structure functions Rn(r) corresponding to n = 2, 4 
and 6 are plotted vs. r/rl in Fig. 1 in log-log scale. It 
is seen that the mean temperature differences decrease 
when Re increases, a phenomenon due to the fact that 
the amount of heat injected to the system remains the 
same while the volumetric flow increases when Re in- 
creases. In Table 2 the exponents of the temperature 
structure function are shown and compared with those 
of velocity. They are in agreement with previous mea- 

surements [19,20]. 
In the inertial range L >> r >> I?0 the Obukhov- 

Corrsin theory [7] predicts that $(n) = ~n. However 
the passive scalar behavior show important deviations 

with respect to this law already for lower-order mo- 
ments. This phenomenon is believed to be produced 
by a double intermittency correction, one related to 
the energy dissipation ~ and the other to N. To take 
into account these effects the following scaling is pro- 
posed [20]: 

Rn(r) cx (6rn/6Nn/2)r n/3, (11) 

where 6r and Nr are the mean value on a volume of .  
size r of the energy and temperature dissipation rate, 
respectively. 

Another possibility is considered here, namely 

Rn(r) oc (Ern/6) (Nnr /2)r  n/3. (12) 

Both are in agreement with a dimensional analysis. 
In particular, Eq. (12) predicts that the second-order 
structure function is only affected by the intermittency 
in energy dissipation. This is the unique case where 
the intermittency does not contribute to the anomalous 
scaling. In order to compute Er and Nr we have used 
the one-dimensional surrogate, that is 

x+r 

f i r ' - - -  dy ,  (13) 
r Oy 

X 

r dx. On4) 
A 

In Fig. 3 the quotient Rn(r)/(¢rn/6)r n/3 is plotted. 
for n = 2, 4 and 6. A plateau is recovered only for 
n = 2 showing that this is the unique value of n 
where the intermittency of N does not contribute to 

the anomalous scaling. 
A test of Eqs. (l l) and (12), described above, is 

given in Fig. 4, where Rn(r)/(Ern/6Nn/2)r n/3 and 
Rn(r)/(¢rn/6)(Nnr/2)r n/3 are plotted as function of r 

for Re = 35 000 and n = 2, 4 and 6. In both cases a 
plateau is recovered, but the ranges are slightly differ- 
ent. For n = 2 the correction introduced by the two 
models lead to exponents nearly identical, so at this 
level the experimental data are inconclusive. For the 
remaining moments the measurement gives also re- 
sults not clearly different. This feature may be due to 
the use of relatively low-order structure functions or 
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Fig. 3. Graph of Rn(r)/(en/6)r n/3 vs. r/r/ for n = 2 (n), 4 
(o) and 6 (,). A plateau is recovered only for n = 2. The 
intermittency correction introduced by the energy dissipation 
does not suffice to explain the behavior of the temperature 
structure functions. 

to a direct proportionality between both interrnittency 
corrections. 

F-xI. (12) could be equivalent to the previous one 
only if the energy dissipation field and the temperature 
one are statistically independent. The question of the 
correlation between ep and Nr is treated in Fig. 5, 
where (eTn/GN~/2) is plotted vs. (ern/6)(N~/2) for 
three different values of n. In nearly all cases a straight 
line is attained, the slope being approximately 0.9. 
Only for n = 2 a slope equal to 0.8 is obtained. These 
values (near to 1) indicate a weak correlation between 
Nnv 12 and e; ""/6. 

The experimental finding that the second-order 
structure function is not affected by the tntermittency 
in N may be put into the frame of a recent model 
developed by Benzi et al. [14]. After applying the 
random/3 model to the cascading of a passive scalar, 
they found that 

R2(r) o~ "N. r . (SV(r)-I),, (15) 

where 8V(r) : V(x + r ) -  V(x). A similar conclusion 
has been reached by Meneveau et al. [11]. Eq. (15) 
is in agreement with Eq. (12) after using the Koi- 
mogorov refined similarity hypothesis. In order to test 
this model a negative structure function must be cal- 
culatod which may pose some problems when dealing 
with experimental signals. Indeed, when digitized, two 
close velocity values can be stored as having the same 
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Fig. 4. Graph of Rn(r)/(ernl6Nn/2)r n/3 ( , )  and Rn(r)/ 
(en/6)(Nn/2)rnl3 (o) vs. r/tl for Re = 35000: (a) n - 2, (b) 
n -- 4 and (c) n = 6. A plateau is obtained with both intermit- 
tency corrections, but the ranges are slightly different. 

magnitude, producing in this way a spurious 8 V ( r )  = 

0 and a singular point for 8 V(r) -]. The question is 
how to skip these singular points when the negative 
moment is numerically computed. 

A way to avoid this problem is to use the generaliza- 
tion of the refined Kolmogorov similarity hypothesis 
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stated in a previous paper [21 ]. The - 1 order structure 

function can be expressed as 

1(SV(r)-i}l oc (ETi13)S3(r) -113. (16) 

The right-hand side includes the average of a quan- 

tity to a negative power, but this is not a disadvantage 

because Er is the integral of E, a non-negative quan- 

tity. ~ may be zero at some point, but its integral over 

a finite interval is always positive. 

The calculation of exponent/; ( - 1 )  is performed by 

using the idea of ESS. In Fig. 6 1(SV(r)-l}l is plotted 

vs. (18V (r)13). In a broad range the data satisfy a power 

law behavior with an exponent {: ( -  1) -- -0.38:1:0.01. 
Then it may be stated that 5(2) -- 0.62 4- 0.01 which 
is in agreement with the value given in Table 2. Notice 
that the intermittency correction given in Eq. (14) has 
the opposite sign with respect to those of the velocity 

l because {;(- 1) < - 3 "  

5. Extended self-similarity 

It is usually very difficult to get an accurate statis- 
tical estimate of ¢ (n) and/~ (n) because clear scaling 
laws are observed in structure functions only at large 
Re. It has been recently shown that the scaling prop- 
erties of velocity structure functions can be extended 
almost to dissipative scaling [ 15] in the following way: 

Sn(r) = AnS3(r) ctn). (17) 

This property which holds for r > 517 has been 
named ESS and it allows to have a much better esti- 
mate of ~'(n) even at small Re. 

One of the purpose of this paper is to experimentally 
show that ESS holds also for Rn, that is 

Rn(r) - An,m[ Rm(r)]/3(n'm), (18) 

where [3(n, m) -- e~ (n)/e~ (m). 
In Fig. 7 the Rn for n -- 4 and 6 are shown as func- 

tion of R2 whose exponent is 5(2) = 0.62. In looking 
at Fig. 7 we observe that the scaling region is wider 

than that of Fig. 2, even at small Re. Within experi- . 

mental errors we find that ~(n, 2) does not depend on 

Re. The vlaues of the exponents are 

~(n) - / ~ ( n ,  2) .  0.62. (19) 

There are several important differences between 
Eqs. (17) and (18). In Eq. (17) the natural reference 

function is $3 because the Kolmogorov equation im- 
poses 1(SV(r)3)l oc~ r for r in the inertial range. 

In contrast in Eq. (18) the natural reference func- 
tion would be DVTT -" (SV(r)80(r)2), which scales 

as r in the inertial range [6]. However, as we have 
seen, the scalar and velocity have in general different 

dissipation scales and thus the scaling range of the 

Rn (r) is not extended if they are drawn as a func- 

tion of DVTT because this one is a mixed moment. 
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Here we want to focus only on the fact that R2 can 
be used as a reference structure function because we 
experimentally show that its scaling is not affected 
by the intermittency of N and also because the expo- 
nent ¢(2) have the same value if calculated following 
different ways. The values computed using Eq. (19) 
are compared with the values computed directly from 
the scaling of Rn vs. r at the highest Re number. We 
see that the values computed with the two methods 
coincide within error bars. This shows that ESS holds 
also for the structure functions of temperature as for 
those of velocity. 

Finally let us discuss the range of r where the con- 
cept of ESS can be applied to R,. In the case of the Sn 
we know that this range extends till r ~ 517 [15]. The 
best way of doing this is to use a consequence of ESS. 

Indeed Eq. (17) implies the existence of a universal 
function such that all the S,(r) can be expressed in 
the following way: 

Sn (r) = An f , (20) 

where An is a normalization constant and f ( r /~ )  = 
1 for r in the inertial range. The existence of this 
universal function can be checked by computing 

f n ( r )  = L . Sn l/~:(n) A n l / ( ( n ) "  

r 

In Fig. 8 we report the ratios fb/ f2 and f4 / f2  as a 
function of r/~. We notice that the ratios remain con- 
stant within 2% for r > 517 meaning that the S-~ ~" f 
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Fig. 9. The ratios of  the universal functions g4/g2 (0) and 
g6/g2 (o): (a) Re = 9000 and (b) Re = 35 000. ESS holds on 
a narrower range (approximately for r > 7:/). 

for all n with a 2% accuracy. We have applied the 
same check to the Rn. Specifically we have computed 

L . R !/~(") B~-l/t~(n) gn(r) = . (21) 

In Fig. 9 we report the ratios g6/g2 and g4/g2. We 
also see that in this case the ratios remain constant on 
a wide range which however is more limited than for 
the fn. The reason for this difference is not clear. In 
Section 3 we have seen that I/0 < I/(see Table 1). Thus 
the different cutoff between velocity and temperature 
cannot be at the origin of the different behavior of g(r) 
and f ( r )  observed in Figs. 8 and 9. 

6. Hierarchy of the temperature structure 
function 

Recently She and l.~veque [ 161 developed a model 
according to which the turbulence consists of a set of 
structures with many degrees of coherence, going from 
random to filamentary vortex. The authors suggest the 
existence of a relation among different moments of ~r, 
that is 

[ (ErP))# Er ~°~)(l-#~ (22) 

(~)  
where Cp are geometrical consiants and er = 

limp~(~f+l)/(Er p) is associated in [16] to the fila- 
mentary structures of the flow. On the basis of simple 

- . (c~) r_2/3 = 2. arguments it is assumed that Er cx and fl 
This relation has been experimentally verified. The 
last equation can be transformed in a relation among 
structure functions by using the Kolmogorov refined 
similarity hypothesis [211. The result is [221: 

S.+,(r) ( S , ( r )  ) #' 
Sn(r) = O,, ~-_;-~.) F(r) (I-F), (23) 

where ff = ill/3 and F(r) is a function independent 

of n. 
This section is intended to build a relation for tem- 

perature structure functions, based on the same idea of 
She and L6veque. First we assume that the functions 
Rn(r) satisfy the following equation: 

Rn+l(r) = En (Rn(r )  ) "  1-.) 
Rn(r) \ R T ' - ; ~ ) _  (G(r))( ' (24) 

where G(r) = limn.-,oo Rn+l(r)/Rn(r) is indepen- 
dent of n and it is determined, as in the original She 
and L~,veque model, by the most intermittent struc- 
tures. Let us assume that G(r) o~ r a~. If Eq. (24) 
is recursively applied, we obtain that the exponent of 
the n-order structure function is expressed in terms of 

¢(1), ~(2) and or: 

~(n) = Ao~n + C(I - an), (25) 

where 

C -  
~(2) - (1 + t~)~(1) 

1 - (~ (1 --tX) 2 



and -0,05 

a o ~  ---~ 
¢(2) -- (1 + o0¢(1) 

(1 - - a )  

In the original model [ 16] C is the codimension of 
the most intermittent s~ctures  (see also [23,24]), In 
order to evaluate the exponents of the structure func- 
tions with the latter equation we need to know three 
quantities. If we take ¢(1) = 0.37 and ¢(2) = 0.62, 
the parameter ce can be adjusted to obtain a fit with 
the remaining exponents. The value obtained with this 
procedure is a = 0.62. However, the paranieter ce can 
be evaluated directly from Eq. (24). To do so, we fol- 
low the same procedure we have used in order to test 
Eq. (22) [25]. We make the quotient of Eq. (24) eval- 
uated at r and the same equation evaluated at r'. The 
reason for doing this quotient is to obtain a relation 
where the En does not appear. We obtain 
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Fig. 10. Graph of  Y.+! vs. Yn for 1 < n < 6 at fixed 
r and r'. In the figure two different pairs of  r and r '  are 
used: (A) logr  = -2 .54 ,  l og r '  = - l . I ,  (El) log r = -1 .97 ,  
log r' = - I . I .  Re = 35 000. The slopes are 0.634- 0.01. 

r . +  t (r, r ' )  = a [  r .  (r, r')] 

rG<,,1 + (l - oO log L ~  J , (26) 

where 

Yn+|(r,r ' )  = log[ R"+i(r)Rn(r') ] 
Rn ( r ) R , , + l  ( r ' )  ' 

By studying the dependence of Y.+I as a function of 
Y. at various n and fixed r, r '  one can easily determine 
the value of a ,  because the ratio G(r)/G(r') does not 
depend on n. In Fig. 10 Y,+t is plotted as a function 
of Y. for 1 < n < 6, at fixed r, r '  whose values are 
quoted in the caption. We clearly see that the data are 
on straight lines of slope oe, which has a mean value 
of 0,63. This value is close to that found from the fit 
made using ¢(n) and Eq. (25). Both results are close 
to ] which could be the correct one. A conclusive 
reply could be done with ffirther experiments and the 
construction of a new model based on the existence of 
structures with many degrees of coherence. Once oe is 
known from Eq. (24) with n = I one can first compute 

[ R2(r) ] I/(I-~) 
G(r)  = Rl(r) l+a 

Finally Eq, (24) can now be directly checked by plot- 
ting for a fixed value of n the first terms as a function 

, . , , j /  
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t . _  

c 
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~- -1,2 
+ 
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-1.6 
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(Rn(r)/Rn. 1 (r))C'G(r)1-~ 

Fig. II. Graph of Rn+l(r)/Rn(r) vs. (Rn(r)/Rn_l(r)) ¢t 
(G(r)) (l-or) for n - 2 (El) and n = 5 (o) Re = 3"5000. The 
data are aligned on straight lines with slope near to I. A jump 
is observed near the dissipative scale. 

of the second. This is done in Fig. 11. We clearly see 
that the data are aligned on straight lines with slope 
close to 1. However the scaling does not extend con- 
tinuously from large to small scales as it happens for 
Eq. (23) for the velocity field. A jump is observed. 
This is another important difference between the scalar 
and the velocity fields. 

These checks confirm that the hierarchy of Eq. (24) 
is compatible with experimental data. However, we 
need to relate the value of ot to some physical quan- 
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tity. With ot = 0.63, ~(1) = 0.37 and ~(2) = 0.62 
we find C = 0.8 4-0.1 and A ~  -= 0.06 4- 0.02. As 

we said before, C is the codimension of the most in- 
termittent structures of the flow. This means that the 
dimension of these objects is 2.2 4- 0.1. This value 
suggests that the most intermittent structures, related 
to G(r), are not filaments as in the velocity field, but 
convoluted sheets. This result agrees with those of pre- 
vious works on passive scalars. Indeed Pumir [5] has 
shown the existence of steep scalar fronts separating 

well mixed regions. Then the most intermittent struc- 
tures are objects of dir~.ension close to 2. On the other 
hand, Sreenivasan [26] sho~vs that the interface of a 
scalar introduced in a flow has a dimension equal 2.36 

which gives a codimension close to C. Thus our value 
of ot correctly estimates the c~dimen~,ion of the most 

intermittent structures of the flow. 
In contrast we were unable to find any reasonable 

physical arguments able to predict the value of ,4~ 
as it has been done in the original She and L~veque 
model. Things are indeed much more complex because 
two dissipation fields have to be considered. This ~i|! 

be the object of ~',~tllel investigation. 

7. Conclusions 

In this paper some characteristics of a passive 

scalar were experimentally studied. First, it was found 

that dissipative scale for temperature is smaller than 

the corresponding quantity for velocity. Moreover, an 

agreement with numerical simulations by Pumir was 
found. On the other hand, the scaling exponents in the 

inertial range were calculated and a detailed revision 

of the intermittency corrections was made. Two cor- 

rections of the temperature structure functions were 
taken into account, both including intermittencies of 

and N. At this level the experimental data are in- 

conclusive because both corrections are not very dif- 

ferent. We have also verified that the conjecture of [8] 

about the exponent of the second-order temperature 

is compatible with experimental data. 
Another point was treated in this paper, that is, the 

applicability of ESS to a passive scalar. A broader 

power law behavior is detected when Rn(r) is plotted 
vs. R2(r). However, the extended inertial range begin 
not at r = 51/as in the velocity statistL:~, but at r = 7r/. 

Finally, a hierarchy for the temperature structure 
functions was built. Following the ideas of She and 
I_~veque, a relation among structure functions was 
proposed. The intermittency correction based on these 
ideas agrees within error bars with the experimental 
measurements and correctly predicts the codimension 
of the most intermittent structures of a passive scalar. 
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