DISCRETE

 MATHEMATICS
Independent sets which meet all longest paths

H. Galeana-Sánchez ${ }^{\text {a,* }}$, H.A. Rincón-Mejía ${ }^{\text {b }}$
${ }^{2}$ Instituto de Matemáticas, U.N.A.M., ${ }^{\dagger}$ Cindad Universitaria, C.P. 04510, Mexico D.F., Mexico
${ }^{\mathrm{b}}$ Departamento de Matemáticas, Facultad de Ciencias, U.N.A.M., ${ }^{\dagger}$ Cindad Universitaria, C.P. 04510, Mexico D.F., Mexico

Received 27 June 1994

Abstract

We prove some sufficient conditions for a directed graph to have the property of a conjecture of J.M. Laborde, Ch. Payan and N.H. Huang (1982): "Every directed graph contains an independent set which meets every longest directed path".

1. Introduction

Let G be a directed graph, and denote by $V(G)$ its vertex-set, by $A(G)$ its arc-set, $X(G)$ denotes its chromatic number, and $\lambda(G)$ the length of the longest directed path. Independently, B. Roy and T. Gallai proved that $X(G) \leqslant \lambda(G)$. Consider an independent set S ('stable' set), and denote by $G-S$ the subgraph of G induced by $V(G)-S$; in 1982, Laborde, Payan and Huang conjectured a plausible looking extension of this result.

Conjecture 1 (Grillet [6]). Every directed graph G contains an independent set S such that $\lambda(G-S)<\lambda(G)$.

A path $\mathscr{M}=\left(x_{1}, \ldots, x_{k}\right)$ will always be a directed and elementary path; it is a longest path if k is maximum, and a non-augmentable path if for every vertex a, none of the sequences $\left(a, x_{1}, x_{2}, \ldots, x_{k}\right),\left(x_{1}, x_{2}, \ldots, x_{i}, a, x_{i+1}, \ldots, x_{k}\right)$ or $\left(x_{1}, x_{2}, \ldots, x_{k}, a\right)$ are paths. The anti-path of \mathscr{M} is the sequence $\mathscr{M}^{-1}=\left(x_{k}, x_{k-1}, \ldots, x_{1}\right)$, which is not necessarily a path.

Undefined terms are in [1].
The problem considered in this paper is: For which graphs do we have $\mathscr{M} \cap S \neq \emptyset$ for some independent set S and for every longest path \mathscr{M} ?; or for every nonaugmentable path \mathscr{M} ?

[^0]Remark. It is not true that every maximum independent set meets every longest path. Consider, for example, the graph consisting of two disjoint cycles $\left[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{0}\right]$ and $\left[y_{0}, y_{1}, y_{2}, y_{3}, y_{4}, y_{0}\right]$, with the $\operatorname{arcs} x_{1}, x_{0}, x_{1} x_{2}, x_{2} x_{3}$, $x_{4}, x_{3}, x_{4} x_{0}, y_{0} y_{1}, y_{0} y_{4}, y_{2} y_{1}, y_{3} y_{2}, y_{3} y_{4}$; and all the $x_{i} y_{j}$ except $x_{0} y_{0}$. Clearly, the independent set $\left\{x_{0} y_{0}\right\}$ is maximum and does not meet the longest path, which is $\left(x_{1}, x_{2}, x_{3}, y_{3}, y_{2}, y_{1}\right)$.

2. Non-augmentable paths and kernels

A graph has a kernel S if S is an independent set and if every vertex which is not in S has at least one successor in S. Many classes of graphs (and in particular those which have no odd circuits) have kernels (see for instance [1,4]). The following result is a slight generalization of a result proved in [6].

Theorem 1. Let A be a subset of $V(G)$ which contains every vertex a such that each of the maximal (resp. longest) anti-path starting at a contains all the successors of a. If the subgraph G_{A} induced by A has a kernel S, then S is an independent set which meets all the non-augmentable (resp. longest) paths and $\lambda(G-S)<\lambda(G)$.

Let \mathscr{M} be a non-augmentable path which does not meet S, and let z be its terminal vertex. Since \mathscr{M} is non-augmentable, we have $z \in A$, and, consequently, z has a successor in S; this implies $z \in \mathscr{M} \cap S$. A contradiction.

Theorem 2. Let P denote the graph with vertices a, b, c, d and arcs $(a, b),(c, b)$, (c, d), and let Q denote the graph with vertices a, b, c, d and $\operatorname{arcs}(a, b),(c, b),(c, d)$, (b, d). If G is a graph with no pair of parallel arcs, no subgraph isomorphic to P and no subgraph isomorphic to Q, then every maximal independent set meets every non-augmentable path.

Let $\mathscr{M}=\left(x_{1}, x_{2}, \ldots, x_{i}, x_{i+1}, \ldots, x_{k}\right)$ be a non-augmentable path which does not meet the maximal independent set S; by the maximality of S, each of these vertices is adjacent to S. By the maximality of \mathscr{M}, the number of arcs going from S to x_{1} is $m\left(S, x_{1}\right)=0$, and the number of arcs going from x_{k} to S is $m\left(x_{k}, S\right)=0$. Let c be the last vertex x_{i} of the sequence with $m\left(S, x_{i}\right)=0$; let b be the next vertex in the sequence. Then $m(S, c)=0, m(S, b) \neq 0$. Let d be a successor of c in S and let a be a predecessor of b in S. Since \mathscr{M} is non-augmentable, $(d, b) \notin \Lambda(G),(c, a) \notin A(G)$; and the vertices a, d are distinct and non-adjacent. Thus, the subgraph induced by $\{a, b, c, d\}$ is either isomorphic to P or to Q.

Remark. When the vertices of G are the elements of a poset, and when the arcs of G represent the partial order, we have a stronger result due to Grillet [6], who proved
that if every induced subgraph isomorphic to $P=\{(a, b),(c, b),(c, d)\}$ is contained in an induced subgraph isomorphic to $Q=\{(a, b),(c, b),(c, d),(c, e),(e, b)\}$, then every maximal independent set meets every non-augmentable path.

3. The main results

Now, for a graph H, we denote by $I(H)$ the set of initial vertices for the longest paths in H, and by $T(H)$ the set of terminal vertices for the longest paths in H.

We say that a vertex x of H satisfies the property $P(H)$ if for every arc $(y, x) \in H[I(H)]$ (the subgraph of H induced by $I(H)$ which is not a double edge, at least one of the following conditions hold:
(i) every longest path of H with initial vertex y contains x;
(ii) every longest path of H which contains x, and does not start at x, also contains y.

Lemma. If each subgraph H of G has a vertex in $I(H)$ which satisfies the property $P(H)$, then $I(G)$ contains an independent set S such that $\lambda(G-S)<\lambda(G)$.

A similar result was proved in [7], and the proof can easily be adapted.

Theorem 3. If in a graph G every circuit without double edge has a vertex with inner demi-degree $\leqslant 1$ or outer demi-degrees $\leqslant 1$, then $I(G)$ contains an independent set S such that $\lambda(G-S)<\lambda(G)$.

Proof. By the lemma, it suffices to show that a graph G satisfying the condition has a vertex $x \in I(G)$ with the property $P(G)$.

By contradiction. Suppose that the above statements were false and let x be a vertex in $I(G)$, then there is a vertex $y \in I(G)$ such that (y, x) is not a double edge of G, y is the origin of a longest path of G not containing x; and there exists a longest path of G not starting in x which contains x but does not contain y. Again, there is a vertex $z \in I(G)$ with (z, y) not a double edge of G, z is the origin of a longest path not containing y and there exists a longest path not starting in y which contains y but does not contain z. Continuing this procedure, we obtain a circuit without double edge $\vec{C}_{n}=\left(x_{0}, x_{1}, \ldots, x_{n-1}, x_{0}\right)$ such that for each $i(1 \leqslant i \leqslant n-1)$, there is:
(1) A longest path with origin x_{i} not containing x_{i+1} (notation mod. n) and
(2) A longest path not starting in x_{i}, which contains x_{i} but does not contain x_{i-1} (notation mod. n). It follows from (1) that the outer demi-degree of each vertex in \vec{C}_{n} is at least two and (2) implies that the inner demi-degree of each vertex in \vec{C}_{n} is at least two, contradicting the hypothesis.

In what follows we denote by K_{n}^{*} the complete digraph on n vertices and every edge is a double edge. If G and H are isomorphic digraphs we write $D \cong H$.

Theorem 4. Let G be a digraph such that every circuit without double edges has a vertex x which satisfies: $G\left[\Gamma_{G}^{-}(x)\right] \cong K_{n(x)}^{*}$ (where $n(x)=\delta_{G}^{-}(x)$ the inner demi-degree of x, and $G\left[\Gamma_{G}^{-}(x)\right]$ is the subgraph of G induced by the inner neighbors of x) or $G\left[\Gamma_{G}^{+}(x)\right] \cong K_{m(x)}^{*}, m(x)=\delta_{G}^{+}(x)$. Then there exists an independent set $S \subseteq I(G)$ with $\lambda(G-S)<\lambda(G)$.

Proof. We will prove that any digraph satisfying the hypothesis of Theorem 4 has a vertex $x \in I(G)$ which satisfies $P(G)$.

By contradiction. Suppose that the statement were false. Proceeding as in the proof of Theorem 3 we obtain a circuit without double edges $\vec{C}_{n}=\left(x_{0}, x_{1}, \ldots, x_{n-1}, x_{0}\right)$ such that for each $i,(0 \leqslant i \leqslant n-1)$ there is:
(1) A longest path starting at x_{i} not containing x_{i+1} (notation mod. n) and
(2) A longest path not starting at x_{i} which contains x_{i} and does not contain x_{i-1} (notation mod. n). Now we analyze the two possible cases:

Case 1. There exists a vertex $x_{k} \in \vec{C}_{n}$ with $G\left[\Gamma_{G}^{-}\left(x_{k}\right)\right] \cong K_{n\left(x_{k}\right)}^{*} . n\left(x_{k}\right)=\delta_{G}^{-}\left(x_{k}\right)$. Let $\alpha=\left(z_{0}, z_{1}, \ldots, z_{p}\right)$ a longest path with $x_{k}=z_{j}(0<j \leqslant p)$ not containing x_{k-1}, then we have $\left\{\left(z_{j-1}, x_{k}\right),\left(x_{k-1}, x_{k}\right)\right\} \subseteq A(G)$, hence $\left\{\left(z_{j-1}, x_{k-1}\right),\left(x_{k-1}, z_{j-1}\right)\right\} \subseteq A(G)$ and $\alpha^{\prime}=\left(z_{0}, \ldots, z_{j-1}, x_{k-1}, x_{k}, z_{j+1}, \ldots, z_{p}\right)$ is a directed path with length greater than those of α, contradicting the choice of α.

Case 2. There exists a vertex $x_{k} \in \vec{C}_{n}$ with $G\left[\Gamma_{G}^{+}\left(x_{k}\right)\right] \cong K_{m\left(x_{k}\right)}^{*}, m\left(x_{k}\right)=\delta_{G}^{+}\left(x_{k}\right)$. Let $\beta=\left(y_{0}=x_{k}, y_{1}, \ldots, y_{q}\right)$ a longest path starting in x_{k} and not containing x_{k+1}, then we have $\left\{\left(y_{1}, x_{k+1}\right),\left(x_{k+1}, y_{1}\right)\right\} \subseteq A(G)$ and $\beta^{\prime}=\left(y_{0}=x_{k}, x_{k+1}, y, \ldots, y_{q}\right)$ a path longer than β contradicting the choice of β.

Theorem 5. Let $C \subseteq(V(G)-T(G))$. If $G-C$ has a kernel S then $\lambda(G-S)<\lambda(G)$.

Proof. Suppose that there exists a longest path α with $V(\alpha) \cap S=\emptyset$ and denote by z_{0} the endpoint of α. Clearly, $z_{0} \in[(V(G)-C) \cap(V(G)-S)]$ and since S is a kernel of $G-C$ there exists $y \in S$ such that $\left(z_{0}, y\right) \in A(G)$ Hence $\alpha^{\prime}=\alpha \cup\left(z_{0}, y\right)$ is a path longer than α, contradicting the choice of α.

Theorem 6. Let $C \subseteq(V(G)-T(G)) \cup\left\{x \in V(G) \mid G\left[\Gamma_{G}^{-}(x)\right] \cong K_{n(x)}^{*}, n(x)=\delta_{G}^{-}(x)\right\}$. If $G-C$ has a kernel then there exists an independent set $S \subseteq V(G)$ such that $\lambda(G-S)<\lambda(G)$.

Proof. Denote by $C^{\prime}=C \cap\left\{x \in V(G) \mid G\left[\Gamma_{G}^{-}(x)\right] \cong K_{n(x)}^{*}, n(x)=\delta_{G}^{-}(x)\right\}$. We proceed by induction on the cardinality of C^{\prime}. If $C^{\prime}=\emptyset$ then Theorem 6 follows directly from Theorem 5. Suppose that $C^{\prime} \neq \emptyset$ and let N be a kernel of $G-C$. Since N is an independent set, we can assume that there exists a longest path $\alpha=\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ such that $N \cap \alpha=\emptyset$.

Case 1. $z_{n} \in V(G)-C$. We have $z_{n} \in(V(G)-C) \cap(V(G)-N)$ hence there exists $y \in N$ with $\left(z_{n}, y\right) \in A(G)$, and $\alpha^{\prime}=\alpha \cup\left(z_{n}, y\right)$ is a path, contradicting the choice of α.

Case 2. $z_{n} \in C$. Clearly $z_{n} \in C^{\prime}$. We prove that $N \cup\left\{z_{n}\right\}$ is an independent set. By contradiction, suppose that there exists $s \in N$ with $\left\{\left(s, z_{n}\right),\left(z_{n}, s\right)\right\} \cap A(G) \neq \emptyset$. As in Case 1 we see that $\left(z_{n}, s\right) \notin A(G)$, hence $\left(s, z_{n}\right) \in A(G)$. Now the hypothesis implies $\left\{\left(z_{n-1}, s\right),\left(s, z_{n-1}\right)\right\} \subseteq A(G)$ and $\alpha^{\prime}=\left(z_{0}, \ldots, z_{n-1}, s, z_{n}\right)$ is a path, contradicting the choice of α. It follows that $N \cup\left\{z_{n}\right\}$ is an independent set. In fact it is a kernel of $G-C_{1}$, where $C_{1}=C-\left\{z_{n}\right\}$ and it follows from the inductive hypothesis that there exists an independent set $S \subseteq V(G)$ with $\lambda(G-S)<\lambda(G)$.

Corollary 1. Let G be a digraph. If there exists a set $C \subseteq(V(G)-T(G)) \cup$ $\left\{x \in V(G) \mid G\left[\Gamma_{\bar{G}}^{-}(x)\right] \cong K_{n(x)}^{*}, n(x)=\delta_{\bar{G}}^{-}(x)\right\}$ intersecting each odd circuit then there exists an independent set $S \subseteq V(G)$ such that $\lambda(G-S)<\lambda(G)$.

Remark 2. Clearly a digraph G satisfies Conjecture 1 if and only if G^{-1} does it (G^{-1} denotes the reverse digraph of G, obtained from G by reversing the direction of the arcs). Hence by applying the principle of directional duality, we have that for each theorem or corollary, there is a corresponding theorem or corollary obtained by replacing the kernel by cokernel, $I(G)$ by $T(G), \delta_{G}^{+}(x)$ by $\delta_{G}^{-}(x), \Gamma_{G}^{+}(x)$ by $\Gamma_{G}^{-}(x)$.

Acknowledgements

The authors wish to thank Professor Claude Berge for many suggestions which improved substantially the final form of this paper.

References

[1] C. Berge, Graphs (North-Holland, Amsterdam 1985).
[2] P. Duchet and H. Meyniel, Une generalization du theoreme de Richardson sur l'existence de noyaux dans les graphes orientes, Discrete Math. 43 (1983) 21-27.
[3] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76.
[4] H. Galeana-Sánchez and V. Neumann-Lara, On kernel perfect critical digraphs, Discrete Math. 59 (1986) 257-265.
[5] T. Gallai, On directed paths and circuits, in: P. Erdős and G. Katona eds., Theory of Graphs, Proc. Colloq. Tihany, 1966 (Academic Press, New York, 1986) 115-118.
[6] P.A. Grillet, Maximal chains and antichains, Fundam. Math. 65 (1969) 157-167.
[7] J.M. Laborde, C. Payan and N.H. Huang, Independent sets and longest directed paths in digraphs, Graphs and Other Combinatorial Topics, Proc. Third Czechoslovak Symp. on Graph Theory (1982) 173-177.
[8] B. Roy, Nombre chromatique et plus longs chemins d'un graphe, Rev. Francaise Inform. Recherche Oper. 1 (5) (1967) 129-132.

[^0]: * Corresponding author.

