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Abstract

We call the tournament T an m-coloured tournament if the arcs of T are coloured with m colours. In this paper we
prove that for each n¿ 6, there exists a 4-coloured tournament Tn of order n satisfying the two following conditions:
(1) Tn does not contain C3 (the directed cycle of length 3, whose arcs are coloured with three distinct colours), and (2)
Tn does not contain any vertex v such that for every other vertex x of Tn, there is a monochromatic directed path from x
to v. This answers a question proposed by Shen Minggang in 1988.
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A directed path is called monochromatic if all of its arcs are coloured alike.
In [2], Sands, Sauer and Woodrow proved that every 2-coloured tournament T has a vertex v such that for every other

vertex x of T there is a monochromatic directed path from x to v. They also raised the following problem: Let T be a
3-coloured tournament which does not contain C3. Must T contain a vertex v such that for every other vertex x of T
there is a monochromatic directed path from x to v?
In [1] Shen Minggang proved that if T is an m-coloured tournament which does not contain C3 or T3 (the transitive

tournament of order 3, whose arcs are coloured with three distinct colours). Then there is a vertex v of T such that for
every other vertex x of T there is a monochromatic directed path from x to v. He also proved that the situation is best
possible for m¿ 5. The question for m=3 (the problem raised by Sands et al.) and the respective question for m=4 (if
T is a 4-coloured tournament which does not contain C3, then T has a vertex v such that for any other vertex x of T ,
there exists an xv-monochromatic directed path) were still open.

In this paper we construct a family of counterexamples to the question for m=4. The question for m=3 is still open.

Theorem 1. For each n¿ 6 there exists a 4-coloured tournament of order n satisfying the two following conditions: (1)
Tn does not contain C3, and (2) Tn does not contain any vertex v such that for every other vertex x of Tn, there is a
monochromatic directed path from x to v.

Proof. For n = 6, the tournament T6 in Fig. 1 is a 4-coloured tournament, of order 6, contains no 3-coloured directed
cycle of length 3. And T6 does not contain any vertex v such that for any other vertex x of T6 there is a monochromatic

E-mail address: hgaleana@matem.unam.mx (H. Galeana-S)anchez).

0012-365X/$ - see front matter c© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2003.11.015

mailto:hgaleana@matem.unam.mx


276 H. Galeana-Sanchez, R. Rojas-Monroy /Discrete Mathematics 282 (2004) 275–276

Fig. 1.

directed path from x to v. In fact vi+1 cannot reach vi via a monochromatic directed path, where the notation is taken
module 6.

Larger 4-coloured tournaments with the same properties of T6 can be constructed by adding vertices to T6, one at a
time, connecting each new vertex to all previous vertices by an arc coloured 1.

References

[1] S. Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory Ser. B 45 (1988) 108–111.
[2] B. Sands, N. Sauer, R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory Ser. B (1982) 271–275.


	A counterexample to a conjecture on edge-coloured tournaments
	References


