A counterexample to a conjecture on edge-coloured tournaments

Hortensia Galeana-Sánchez ${ }^{\text {a }}$, Rocío Rojas-Monroy ${ }^{\text {b }}$
${ }^{\text {a }}$ Instituto de Matemáticas, Universidad Nacional Autonoma de México, Ciudad Universitaria, Circuito Exterior, México D.F. 04510, Mexico
${ }^{\mathrm{b}}$ Facultad de Ciencias, Universidad Autónoma del Estado de México, Instituto Literario No. 100, Centro 50000, Toluca, Edo. de México, Mexico

Received 13 March 2003; accepted 26 November 2003

Abstract

We call the tournament T an m-coloured tournament if the arcs of T are coloured with m colours. In this paper we prove that for each $n \geqslant 6$, there exists a 4 -coloured tournament T_{n} of order n satisfying the two following conditions: (1) T_{n} does not contain C_{3} (the directed cycle of length 3, whose arcs are coloured with three distinct colours), and (2) T_{n} does not contain any vertex v such that for every other vertex x of T_{n}, there is a monochromatic directed path from x to v. This answers a question proposed by Shen Minggang in 1988.

(C) 2004 Elsevier B.V. All rights reserved.

MSC: 05C20
Keywords: Edge coloured tournament; Monochromatic directed path

A directed path is called monochromatic if all of its arcs are coloured alike.
In [2], Sands, Sauer and Woodrow proved that every 2-coloured tournament T has a vertex v such that for every other vertex x of T there is a monochromatic directed path from x to v. They also raised the following problem: Let T be a 3-coloured tournament which does not contain C_{3}. Must T contain a vertex v such that for every other vertex x of T there is a monochromatic directed path from x to v ?

In [1] Shen Minggang proved that if T is an m-coloured tournament which does not contain C_{3} or T_{3} (the transitive tournament of order 3, whose arcs are coloured with three distinct colours). Then there is a vertex v of T such that for every other vertex x of T there is a monochromatic directed path from x to v. He also proved that the situation is best possible for $m \geqslant 5$. The question for $m=3$ (the problem raised by Sands et al.) and the respective question for $m=4$ (if T is a 4-coloured tournament which does not contain C_{3}, then T has a vertex v such that for any other vertex x of T, there exists an $x v$-monochromatic directed path) were still open.

In this paper we construct a family of counterexamples to the question for $m=4$. The question for $m=3$ is still open.

Theorem 1. For each $n \geqslant 6$ there exists a 4 -coloured tournament of order n satisfying the two following conditions: (1) T_{n} does not contain C_{3}, and (2) T_{n} does not contain any vertex v such that for every other vertex x of T_{n}, there is a monochromatic directed path from x to v.

Proof. For $n=6$, the tournament T_{6} in Fig. 1 is a 4-coloured tournament, of order 6, contains no 3-coloured directed cycle of length 3 . And T_{6} does not contain any vertex v such that for any other vertex x of T_{6} there is a monochromatic

[^0]

Fig. 1.
directed path from x to v. In fact v_{i+1} cannot reach v_{i} via a monochromatic directed path, where the notation is taken module 6 .

Larger 4-coloured tournaments with the same properties of T_{6} can be constructed by adding vertices to T_{6}, one at a time, connecting each new vertex to all previous vertices by an arc coloured 1 .

References

[1] S. Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory Ser. B 45 (1988) 108-111.
[2] B. Sands, N. Sauer, R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory Ser. B (1982) 271-275.

[^0]: E-mail address: hgaleana@matem.unam.mx (H. Galeana-Sánchez).

