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OPEN MAPPINGS INCREASING ORDER

JANUSZ J. CHARATONIK AND W LODZIMIERZ J. CHARATONIK

(Communicated by Franklin D. Tall)

Abstract. It is shown that an analog of Whyburn’s theorem saying that
open mappings do not increase order of a point of locally compact metric
spaces is not true if the Menger-Urysohn order is replaced by order in the
classical sense. On the other hand, this analog is true, even for a wider class of
confluent mappings, under an additional condition that the mapping is light
and the domain continuum is hereditarily unicoherent.

Introduction

One of the important concepts related to the structure of curves is that of an
order of a point in a curve (or, more generally, in a continuum or even in an arbitrary
space). As early as in 1906, W. H. Young and G. Ch. Young considered this concept
in their book ([13, p. 219–221]) for planar curves in the sense of Cantor (that is,
for closed connected subsets of the plane having empty interior). Namely, Young
and Young defined a point p in a curve X to be of order k provided there are in X
exactly k continua, every two of which have p as the only common point. A further
study of this notion is made by Z. Janiszewski in his thesis [5]. Trying to give a more
precise definition he used irreducible continua in place of arbitrary ones. Modifying
the Young’s definition of a point of order k in a continuum, Janiszewski assumed
(see [5, Chapter 4, §1]) that the continua under consideration (which are mutually
disjoint out of the point p) have to be irreducible. He also additionally assumed
that their union forms a neighborhood of p (he calls such points regular ones), but
the condition is not satisfied at each point of a continuum. To see this, consider,
e.g., the union U of countably many circles Cn with lim diamCn = 0 and such that
Cn ∩ Cn+1 is a singleton {pn}; if p = lim pn, then U ∪ {p} is a continuum, and no
irreducible continuum (i.e. an arc) containing p form a neighborhood of p. Thus, if
the notion has to be applicable to any point of an arbitrary continuum, we cannot
accept this additional condition. Note however, that the Janiszewski-Mazurkiewicz
theorem on the existence of an irreducible continuum in any continuum which
contains two given points (see [7, §48, I, Theorem 1, p. 192]; compare [12, Chapter
1, (11.2), p. 17]) implies that these two concepts of a point of order k (namely
in the sense of Young and Young and of Janiszewski) coincide. Thus we will use
the term“in the classical sense” to name the concept and to distinguish it from the
notion of order of a point used in the Menger-Urysohn theory of curves, where the
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concept is defined as, roughly speaking, the minimum cardinality of boundaries of
small open neighborhoods of the point.

For the latter concept, G. T. Whyburn has proved (see [12, Corollary 7.31, p.
147]) that the Menger-Urysohn order of a point in a locally compact space is never
increased under an open mapping. A natural question arises whether the same
is true if order in the classical sense is under consideration. We give examples
showing that it is not the case, but the property is kept even for a wider class of
confluent mappings provided that the mapping is assumed to be light (i.e., it has
totally disconnected point inverses) and that the domain space is a hereditarily
unicoherent continuum. Examples are constructed showing that both assumptions
are indispensable.

1. Preliminaries

All spaces considered in this paper are assumed to be Hausdorff. We denote
by N the set of all positive integers, and by R the space of real numbers. Given
two points x and y in either the plane R2 or the 3-space R3, we denote by xy the
straight line segment joining x with y. We shall use the concepts of LsAn and
LimAn (the limit superior and the limit of a sequence of sets An in a space X) as
defined in the Kuratowski monograph [6, §29, I–VI, p. 335–340].

By a continuum we mean a compact connected space. A continuum X is said
to be irreducible (between points p and q) provided that no proper subcontinuum
of X contains both p and q. An arc means a homeomorphic image of the closed
unit interval [0, 1] of reals. The union of three arcs emanating from a point p is
called a simple triod provided that the singleton {p} is the intersection of any two
of these arcs. A space is said to be arcwise connected provided that for every two
points p, q ∈ X there exists in X an arc from p to q. A continuum X is defined
to be hereditarily unicoherent if the intersection of every two subcontinua of X is
connected. An arcwise connected and hereditarily unicoherent metric continuum is
called a dendroid. A dendroid X is said to be smooth provided that there is a point
v ∈ X (called an initial point of X) such that for each sequence {an} of points of
X which converges to a point a ∈ X the sequence of the arcs van converges to the
arc va.

Let m be a cardinal number. By an m-od with the center p we mean the union of
m continua, every two of which have p as the only common point. More precisely,
a space X is called an m-od with the center p provided that there is a family
{Cs : s ∈ S} such that

1) cardS = m;
2) for each s ∈ S the set Cs is a continuum, and p ∈ Cs;
3) if s, t ∈ S and s 6= t, then Cs ∩ Ct = {p}.
Let a continuum X and a point p ∈ X be given. Then p is said to be a point of

order at least m in the classical sense, writing ord(p,X) ≥ m, provided that p is the
center of an m-od contained in X . We define ord(p,X) as the minimum cardinality
m for which the inequality ord(p,X) ≥ m holds (i.e., ord(p,X) ≥ m, and condition
ord(p,X) ≥ n does not hold for any n > m). So, we then say that p is a point of
order m in the classical sense, and we write ord(p,X) = m.

The concept of the order in the classical sense was investigated by various authors
mainly for dendroids ([1], [8], [9], [10], [11]), and for these continua X it also was
defined as the cardinality of the set of arc-components of X\{p} for p ∈ X (compare
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e.g. [9, p. 422]). For dendroids, in the definition of an m-od (and, indirectly, of the
concept of order in the classical sense) the members Cs of the considered family
can be taken as either continua, or irreducible continua, or arcs, and all the three
concepts obtained in this way coincide. For arbitrary continua however such an
equivalence is not true in general, and some authors take just arcs as the continua
Cs (see e.g. [4]).

Another commonly used concept of order at a point is that in the sense of
Menger-Urysohn. For a detailed discussion of its properties the reader is referred
to [7, §51, p. 274–307]. Here we merely mention that a point p ∈ X is said to be
of order at most m in the sense of Menger-Urysohn provided that there exists a
local basis B(p) of X at p such that

card(clU \ U) ≤ m for each U ∈ B(p).

Then the Menger-Urysohn order of p in X is defined as the minimum cardinal m
satisfying the above condition.

The observation below is a consequence of the definitions.

1.1. Observation. The order of a point p in a continuum X in the classical sense
is less than or equal to the order of p in X in the sense of Menger-Urysohn.

On the other hand, Menger’s n-arc theorem (see [7, §51, I, p. 277]) says that if
a metric continuum X is locally connected and if a point p ∈ X is of order at least
n ∈ N in the sense of Menger-Urysohn, then there exist n arcs pa1, . . . , pan in X
which are pairwise disjoint except for p. Thereby, using Observation 1.1, we have
the following.

1.2. Statement. Let X be a locally connected continuum and p ∈ X . If the order
of p in X in the sense of Menger-Urysohn is finite, then the two concepts of the
order coincide; if it is infinite, then the order in the classical sense is infinite, too.

1.3. Example. There exists a locally connected continuum X such that for any
point p ∈ X the order of p in the sense of Menger-Urysohn is c, while the order of
p in the classical sense is ℵ0.

Proof. Let Bn ⊂ [0, 1] be the union of 2n pairwise disjoint closed intervals of length
1/3n each such that C =

⋂{Bn : n ∈ {0} ∪ N} is the Cantor ternary set, i.e.,

B0 = [0, 1], B1 = [0, 1/3] ∪ [2/3, 1],

B2 = [0, 1/9] ∪ [2/9, 1/3]∪ [2/3, 7/9]∪ [8/9, 1], etc.

Put

X ′ = [0, 1]× C ∪
⋃
{{m/2n} ×Bn : m ∈ {0, 1, . . . , 2n} and n ∈ {0} ∪ N}.

This continuum contains points of order 2 (in any sense). Define f : X ′ → X as a
monotone mapping that shrinks every maximal free arc (i.e., an arc ab such that
ab\{a, b} is open in X ′) to a point. Then X is a locally connected continuum such
that the order of any point of X in the sense of Menger-Urysohn equals c. To see
that the order in the classical sense at any point p ∈ X is ℵ0 consider a family C of
continua in X pairwise disjoint out of p and having p as the only common point.
Then the family {f−1(C) : C ∈ C} consists of subcontinua of X ′ having f−1(p)
in common and disjoint out of f−1(p). Only four of them could be the unions
of f−1(p) and some horizontal arcs in X ′. All others must contain some vertical
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arcs and, because there are only countably many vertical arcs, the family must be
countable.

A mapping means a continuous function. A mapping f : X → Y between spaces
X and Y is said to be:

— interior at a point x ∈ X , if for each open set U about x the image f(x) is
an interior point of f(U) ([12, p. 149]);

— open, if f maps each open set in X onto an open set in Y (note that f is open
if and only if it is interior at each point of X);

— confluent, if for each subcontinuum Q of Y each component of f−1(Q) is
mapped under f onto Q (note that each open mapping on a compact space is
confluent [12, Chapter 8, (7.5), p. 148]);

— light, if each point-inverse has one-point components (note that if the point-
inverses are compact, then this condition is equivalent to the property that they
are zero-dimensional [12, p. 130]).

2. Two examples

G. T. Whyburn has proved (see [12, Corollary 7.31, p. 147]) that if a mapping f
from a locally compact space X onto a space Y is open (consequently Y is locally
compact, too; see [12, Note 1, (7.32), p. 279]), then the order of a point in the
sense of Menger-Urysohn is never increased, that is, the order of f(p) in Y is less
than or equal to the order of p in X in the sense of Menger-Urysohn. A question
can be asked whether this is true if the order in the classical sense is considered.
The answer is negative even if the domain and range spaces are dendroids. To show
this we construct two examples. In both of them the key idea is that of a nonlight
open mapping from the harmonic fan (i.e., the cone over {0}∪ {1/n : n ∈ N}) onto
an arc, due to Micha l Morayne, and described in [2, Example 7.1, p. 29] (compare
also [2, Example 7.2, p. 30 and Example 11.17, p. 54]).

2.1. Example. There is a smooth dendroid X , a point p ∈ X with ord(p,X) =
2 and an open mapping f : X → T from X onto a simple triod T such that
ord(f(p), T ) = 3.

Proof. In the Cartesian coordinates in R3 let

v = (0, 0, 0), p = (0, 1, 0), q = (0, 2, 0), a = (0, 3, 0), b = (−1, 2, 0).

Let {tn ∈ (1, 2) : n ∈ N} be a sequence such that cl{tn ∈ (1, 2) : n ∈ N} = [1, 2].
For each n ∈ N put

an = (3/n, 3, 0), bn = (−1, 2, 3/n), cn = (tn/n, tn, 0), qn = (tn/n, 2, 3/n)

and note that cn ∈ van.
Define

X = va ∪ qb ∪
⋃
{van ∪ cnqn ∪ qnbn : n ∈ N}

and note that

va = Lim van, qb = Lim qnbn, pq = Ls{cn},
and thus pq = Ls cnqn, whence it follows that X is a smooth dendroid having v as
its initial point.
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Denote by T the limit triod of X , i.e., T = qv ∪ qa ∪ qb and define the needed
mapping f : X → T as follows:

f(v) = v, f(p) = q and f |vp : vp→ vq is linear;

f |pq : pq → {q} is constant;

f |(qa ∪ qb) : qa ∪ qb→ qa ∪ qb is the identity.

Thus f |T : T → T is defined. To define f on X \ T , introduce an auxiliary
notation. For each n ∈ N put

pn = (1/n, 1, 0), rn = (2/n, 2, 0), vn = (0, 2− 1/(n+ 1), 0),

un = (0, 2 + 1/(n+ 1), 0), wn = (−1/(n+ 1), 2, 0)

and note that

pn ∈ vcn, rn ∈ cnan, vn ∈ pq ⊂ qv, un ∈ qa, wn ∈ qb.

Define

f(pn) = vn, f(cn) = q, f(rn) = un, f(an) = a, f(qn) = wn, f(bn) = b,

and take the following partial mappings as linear surjections:

f |vpn : vpn → vvn, f |pncn : pncn → vnq,

f |rncn : rncn → qun, f |rnan : rnan → una,

f |cnqn : cnqn → qwn, f |qnbn : qnbn → wnb.

Continuity of f follows from the definition. Since

ord(p,X) = 2, ord(q, T ) = 3, and f(p) = q,

we see that

ord(p,X) < ord(f(p), f(X)).

We will show that for each point x ∈ X the mapping f is interior at x, whence
openness of f follows. If x ∈ X \ pq, then interiority of f at x is easy to verify.
If x ∈ pq, let U be any open set with x ∈ U . Then there is n ∈ N such that
cn ∈ U , and therefore f(U) contains a simple triod which is the image under f of
the component of U containing cn. So, interiority of f at x follows, and the proof
is complete.

2.2. Example. There is a plane dendroid X , an end point p of X , and an open
mapping f : X → A of X onto an arc A such that f(p) is an interior point of A.

Proof. In the plane R2 let

v = (0,−1), p = (0, 1), q = (0, 0), a = (1, 0).

For each n ∈ N put

qn = (1/n,−1/n), an = (1 + 1/n, 0), bn = (1/n, 1/n),

pn = (0, 1 + 1/n), dn = (−1/n,−1),

and let

An = vqn ∪ qnan ∪ anbn ∪ bnpn ∪ pndn.
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Define

X = vp ∪ qa ∪
⋃
{An : n ∈ N}.

Thus

vq = Lim vqn, qa = Lim qnan = Lim anbn, and vp = Lim pndn.

Therefore X is a dendroid. Put A = vq ∪ qa and define the needed mapping
f : X → A, first on the limit triod vp ∪ qa, as follows.

f |A : A→ A is the identity and f |pq : pq → {q} is constant.

To define f out of this triod, for each n ∈ N consider points

vn = (0,−1/n), un = (1/n, 0), wn = (2/n, 0),

and note that vn ∈ vq and un ∈ qwn ⊂ qa. Further, let {tn ∈ (0, 1) : n ∈ N} be
a sequence such that cl{tn ∈ (0, 1) : n ∈ N} = [0, 1], and let π2 : R2 → R be the
second coordinate function, i.e., π2((x, y)) = y. For each n ∈ N let en and cn be
determined by the conditions

en ∈ pndn and π2(en) = 0,

cn ∈ pnen and π2(cn) = tn.

Thus pq = Ls{cn}. Define

f(qn) = q, f(an) = a, f(bn) = wn,

f(pn) = un, f(cn) = q, f(en) = vn,

f(dn) = v,

and take the following partial mappings as linear surjections:

f |vqn : vqn → vq, f |qnan : qnan → qa, f |anbn : anbn → awn,

f |bnpn : bnpn → wnun, f |pncn : pncn → unq, f |cnen : cnen → qvn,

f |endn : endn → vnv.

Thus f is well defined. Its continuity follows from the definition. Note that

ord(p,X) = 1, ord(q, A) = 2, and f(p) = q.

As in the previous example we verify openness of f by showing that for each
x ∈ X the mapping f is interior at x. Note that for each n ∈ N the partial
mapping f |An : An → A is open, thus f is interior at each x in An. If x ∈ A, then
interiority of f at x is evident. So, it is enough to consider the case x ∈ pq. Let U
be any open set with x ∈ U . Then there is cn ∈ U for some n ∈ N, and therefore
f(U) contains an open arc to which f(x) = q belongs, and which is the image under
f of the component of U containing cn. So interiority of f at x follows, and the
proof is complete.

Observe that the dendroid of Example 2.2 is not smooth. In connection with
this we have a question.

2.3. Question. Let f : X → f(X) be an open mapping defined on a smooth
dendroid X . Does then the inclusion

f(E(X)) ⊂ E(f(X))

hold true?
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3. Confluent light mappings

As the reader surely observed, neither of the mappings of Examples 2.1 and 2.2
is light: in both examples there is a point of the range space whose point-inverse
is a nondegenerate continuum. It will be shown below that no such example of an
open mapping f increasing the order of a point in the classical sense does exist if f
has to be light. Moreover, an analog of the above mentioned Whyburn’s theorem
is true for a wider class of mappings, namely for confluent ones, provided that the
domain space is a hereditarily unicoherent continuum (and that f is assumed to be
light).

3.1. Theorem. Let a continuum X be hereditarily unicoherent. If a mapping
f : X → f(X) is confluent and light, then for each point p ∈ X we have

ord(f(p), f(X)) ≤ ord(p,X).(3.2)

Proof. Let ord(f(p), f(X)) = m. Then there is a set S with cardS = m and a
family {Cs : s ∈ S} of continua Cs ⊂ f(X) such that

s, t ∈ S and s 6= t implies Cs ∩ Ct = {f(p)}.
Thus

⋃{Cs : s ∈ S} forms an m-od in f(X) with the center f(p). We will construct
in X an m-od with the center p. To this aim for each s ∈ S let As be the component
of f−1(Cs) containing p. Take s, t ∈ S with s 6= t and observe that the intersection
As ∩ At is a continuum by hereditary unicoherence of X . Further, f(As ∩ At) ⊂
f(As)∩f(At) = Cs∩Ct = {f(p)} by confluence of f . Thus p ∈ As∩At ⊂ f−1(f(p)),
and therefore As ∩At = {p} by lightness of f . Hence

⋃{As : s ∈ S} is the required
m-od. So, (3.2) is shown and the proof is finished.

3.3. Corollary. Confluent (in particular, open) light mappings of dendroids do
not increase the order of points in the classical sense.

3.4. Remark. A mapping f : X → Y is said to be semi-confluent provided that
for each continuum Q ⊂ Y and for every two components C1 and C2 of f−1(Q)
either f(C1) ⊂ f(C2) or f(C2) ⊂ f(C1). Obviously each confluent mapping is semi-
confluent. Note that neither Theorem 3.1 nor Corollary 3.3 can be generalized to
semi-confluent mappings. Namely f : [−1, 2] → [0, 2] defined by f(x) = |x| is semi-
confluent and light, and it maps an end point of the domain onto an interior point
of the range.

It is seen by Examples 2.1 and 2.2 that lightness is an essential assumption in
Theorem 3.1 and Corollary 3.3. We shall show that hereditary unicoherence is also
essential in Theorem 3.1. The pseudo-arc (or any other hereditarily indecomposable
continuum) will be used as a building block in the construction.

3.5. Example. There exist a continuum X , a point p ∈ X and a confluent and
light mapping f : X → Y such that

ord(p,X) = 1 and ord(f(p), Y ) = 2.

Proof. Let {Pn : n ∈ N} be a sequence of pseudo-arcs such that

lim diamPn = 0;(3.6)

Pn ∩ Pn+1 = {pn};(3.7)
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Pm ∩ Pn = ∅ for m,n ∈ N and |m− n| > 1;(3.8)

Pn is irreducible between pn−1 and pn.(3.9)

Note that (3.6) and (3.7) imply that the sequence {pn : n ∈ N} is convergent, and
we denote

p = lim pn.

Let {P ′
n : n ∈ N} and {p′n : n ∈ {0} ∪ N} be other sequences of pseudo-arcs

and of points, respectively, satisfying analogous conditions to (3.6)-(3.9). Assume
moreover, that p2n = p′2n for n ∈ {0} ∪ N and that

(
⋃
{Pn : n ∈ N}) ∪ (

⋃
{P ′

n : n ∈ N}) = {p2n : n ∈ {0} ∪N},
i.e., Pm ∩ P ′

n = ∅ for m,n ∈ N with |m− n| > 1, or m = 2k + 1 and n = 2k + 2, or
m = 2k+ 2 and n = 2k+ 1, and that any two of the four continua P2n, P ′

2n, P2n+1,
P ′

2n+1 have the point p2n in common only.
Put

X = {p} ∪
⋃
{Pn ∪ P ′

n : n ∈ N}.
Let Q and Q′ be pseudo-arcs such that Q ∩Q′ = {q}. Define

Y = Q ∪Q′,

and let f : X → Y be a mapping satisfying the following conditions:

f(p2n) = q for n ∈ {0} ∪ N;(3.10)

f(P1) = Q and f(P ′
1) = Q′;(3.11)

f(Pn) ⊂ Q and f(P ′
n) ⊂ Q′;(3.12)

f |Pn and f |P ′
n are embeddings.(3.13)

We will show that f is light and confluent. Really, f−1(q) = {p2n : n ∈ {0}∪N},
so it is countable, and for any other point y in Y the set f−1(y) is finite. Thus f
is light.

To see that it is confluent take any continuum B ⊂ Y and consider three cases.
Case 1. B ⊂ Q. Then

f−1(B) ⊂ {p} ∪
⋃
{Pn : n ∈ N}.

Note that the partial mapping g = f |({p} ∪⋃{Pn : n ∈ N}) is a mapping onto the
pseudo-arc Q; thus it is confluent ([3, Theorem 4, p. 243]). Since components of
f−1(B) coincide with ones of g−1(B), the conclusion follows.

Case 2. B ⊂ Q′. This is quite the same as Case 1.
Case 3. q ∈ B. Then B = C ∪ C′, where C = B ∩Q and C ′ = B ∩Q′. Let K

be a component of f−1(B). If B 6= {q}, then p2n ∈ K for some n ∈ N. By Cases 1
and 2 there are continua L and L′ in K such that

p2n ∈ L ∩ L′ , f(L) = C and f(L′) = C ′.

Thus f(K) ⊃ f(L) ∪ f(L′) = C ∪ C ′ = B. The proof is finished.
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