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SHORE POINTS AND DENDRITES
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(Communicated by Franklin D. Tall)

Abstract. A point x in a dendroid X is called a shore point if there is a

sequence of subdendroids of X not containing x and converging to X in the

Hausdorff metric. We give necessary and sufficient conditions for a dendroid to

be a dendrite, in terms of shore points and Kelley's property.

INTRODUCTION

A dendroid is an arcwise connected, hereditarily unicoherent metric contin-

uum. A locally connected dendroid is called a dendrite. It is well known that

every pair of points u and w in a dendroid are joined by a unique arc [u, w]

and that the subcontinua of a dendroid are themselves dendroids. If X is a

dendroid and x £ X, then x is an end point of X if it is an end point of every

arc containing it, and x is a shore point of X [5] if there exists a sequence

{X„} of subdendroids of X not containing x such that HmXn = X.

It is not difficult to prove that every end point is a shore point. The shore

points of X that are not end points will be called the improper shore points

of X. The following example shows that a dendroid without improper shore

points is not necessarily a dendrite: Let X C R2 be the union of the rectilinear

segments [(0,0), (1, 1/n)], n = 1,2,3,... and [(0,0), (2,0].
A dendroid will be called neat whenever each one of its subdendroids has

no improper shore points. Obviously every subdendroid of a neat dendroid is

neat.
In Theorem 2.1 we give necessary and sufficient conditions for a dendroid X

to be a dendrite in terms of shore points and Kelley's property. In particular,

it is proved that X is neat iff X is a dendrite.

1. Preliminaries

A dendroid X is smooth at p if [p, a„] converges to [p, a] in the Hausdorff

metric, provided a„ converges to a in X (see [2]). A continuum X has Kelley's

property if for every £ > 0 there exists a S > 0 such that for every pair of

points a and b in X whose distance is less than 8 and each subcontinuum
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A of X containing a, there is a subcontinuum B of X containing b whose

Hausdorff distance from A is less than £ [4]. Recently, Czuba [1] has proved

the following result:

1.1. Theorem (Czuba). If a dendroid has Kelley's property then it is smooth.

For general terminology we refer the reader to [4, 6]. A weaker version of

the following lemma was proved in [5]. The proof is not difficult and is actually

identical to the previous one.

1.2. Lemma. If U is an arcwise connected subset of a dendroid X then C\(U)

is the limit of a sequence of subdendroids of X contained in U.

1.3. Lemma. Let X be a dendroid that has Kelley's property. Then for every

p £ X and every arc-component U of X\{p}, either U is open or lnt(U) = 0 .

Proof. Suppose that Int(£7) ^ 0 and let v £ lnt(U). If u £ U\lnt(U) then
the arc [u, v] c U. Let 0 < £ < min{d(/?, [v, u]), a} where d denotes the

distance in X and the ball of radius a centered at v is contained in lnt(U).

For each 8 > 0, there exists w $. U such that d(w , u) <S .

Let K be a subcontinuum of X containing w: If p £ K then K is con-

tained in an arc-component of X\{p} different from U, so that d(v, K) >

a > £, which implies D(K, [u, v]) > e, where D denotes the distance in the

Hausdorff metric. If p £ K then d(p, [v , u]) > e and again D(K, [v , u]) > e .

Therefore, Kelley's property is not satisfied.   □

1.4. Lemma. A shore point in a dendroid X is not a cut point ofX.

Proof. Suppose that for some q £X, X\{q} = Hli K is a decomposition of

X\{q} into disjoint, relatively closed sets H and K and, let £ = D(H, K). If

for a subcontinuum A of X, D(A, X) < £ , then the sets An H and A n K

are nonempty, so that q £ A. Therefore, q is not a shore point of X.   □

2. Main result

2.1.   Theorem. For a dendroid X, the following conditions are equivalent:

(i) X is neat.

(ii) For every q € X, the arc components of X\{q} are all open.
(iii) X is a dendrite.
(iv) X has Kelley's property and has no improper shore points.

(v) Every subcontinuum of X has Kelley's property.

Proof, (i) => (ii). Suppose that an arc component a of X\{<?} is not open. If

for some arc component /? of X\{q} different from a , Cl(/?)na ^ 0 , we take

x £ C\(fi) n a and note that the arc (q, x] C Cl(/?) (la. If y € (q, x), then

y £ Cl/?\/?, so that there exists a sequence {X„} of subdendroids contained in
p such that X„ -> Cl(j?) (Lemma 1.2).

Clearly y is an improper shore point of the subdendroid Cl(/?). Let Y be

the set of arc components of X\{q} different from a. We suppose now that

Cl(y?)Da = 0 for every /? € T and denote by B the union of the members of Y.

By assumption C\(B) C\a ^ 0 , take x £ C\(B) Da and y £ (q, x). Notice that

y £ Cl(B)\B . Let {y„} be a sequence of points such that y„ e fi„ £ Y and {y„}

converges to y in Cl(5) n a. We can assume that p„ ^ fim for m / n . The

sequence of dendroids M„ = \J"=l C\(fij) is increasing and satisfies Mnna = 0
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for each n. Moreover, {Mn} converges to a subdendroid YcCl(B) and hence

y is an improper shore point of Y.

(ii) => (i). Suppose that X is not neat. Let X0 be a subdendroid of X

and q an improper shore point of X0. Then X0\{q} has at least two arc
components.

We shall prove that every arc component a of Xo\{q} is open in ^o\{<7} •

Since this fact contradicts the connectivity of Xo\{q}, our assertion follows

from 1.4. Indeed if C(a) is the arc component in X\{q} containing a, then

C(a)n(X0\{q}) = a.
(i) => (iii). It was proved by Charatonik and Eberhart [2, Corollaries 4 and

5] that a dendroid X is a dendrite iff X is smooth at each of its points. Suppose

that X is not smooth at q, and let {x„} be a sequence that converges to x

such that [q, x„] is convergent but L = lim[q, x„] ^ [q, x]. Let z e L\[q, x]

be a point that is not an end point of L. If z £ [q, x„] for an infinite set J of

indices, it will be clear that z is an improper shore point of C1(IJj€J[q, x;]).

Therefore we can assume that z £ [q, xn] for all n . In X\{z}, the arcs

[q,z) and [x„,z) belong to different arc components a([q,z)) and a([x„,z)),

respectively. Since (i) implies (ii), it follows that a([q, z)) and \Jn a([x„ , z))

are open. Moreover, they are disjoint, which is impossible since x £ a([q, z))

and x„ —> x.

(i) => (iv). This follows from (i) => (iii) since every locally connected

continuum has Kelley's property.

(iv) => (ii). Suppose that for some p £ X, X\{p} has a nonopen arc

component U. Let u be a non end point of X contained in U and for each

n £ N, let C„ be the component of X\BXjn(u) containing p. If x € X\U

then [p, x] n U = 0 . In particular, u £ [p, x], so that for n large enough

[p, x]nBx/n(u) - 0. This implies that [p, x] C C„ . By Lemma 1.3, Int(f7) =
0, so that lim C„ = X. Since u £ C„ for every n, it follows that u is an

improper shore point of X.

(v) =*■ (ii) By Theorem 1.1 X is smooth. By [3, Theorem 1, p. 194] X
contains no subdendroid of Type 1. Next we show that X is smooth at each
of its points. Let p £ X and suppose X is not smooth at p . By [3, Lemma 1,

p. 193], X contains a subdendroid of Type 3. But a Type 3 dendroid contains
a subdendroid that does not have Kelley's property, a contradiction. By [2] X

is a dendrite and a dendrite clearly satisfies (ii).

(iii) => (v). This follows since every subdendroid of a dendrite is a dendrite.
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