SHORE POINTS AND DENDRITES

VICTOR NEUMANN-LARA AND ISABEL PUGA-ESPINOSA

(Communicated by Franklin D. Tall)

ABSTRACT. A point x in a dendroid X is called a shore point if there is a sequence of subdendroids of X not containing x and converging to X in the Hausdorff metric. We give necessary and sufficient conditions for a dendroid to be a dendrite, in terms of shore points and Kelley's property.

INTRODUCTION

A dendroid is an arcwise connected, hereditarily unicoherent metric continuum. A locally connected dendroid is called a *dendrite*. It is well known that every pair of points u and w in a dendroid are joined by a unique arc [u, w]and that the subcontinua of a dendroid are themselves dendroids. If X is a dendroid and $x \in X$, then x is an *end point* of X if it is an end point of every arc containing it, and x is a *shore point* of X [5] if there exists a sequence $\{X_n\}$ of subdendroids of X not containing x such that $\lim X_n = X$.

It is not difficult to prove that every end point is a shore point. The shore points of X that are not end points will be called the *improper shore points* of X. The following example shows that a dendroid without improper shore points is not necessarily a dendrite: Let $X \subseteq \mathbb{R}^2$ be the union of the rectilinear segments [(0, 0), (1, 1/n)], n = 1, 2, 3, ... and [(0, 0), (2, 0]].

A dendroid will be called *neat* whenever each one of its subdendroids has no improper shore points. Obviously every subdendroid of a neat dendroid is neat.

In Theorem 2.1 we give necessary and sufficient conditions for a dendroid X to be a dendrite in terms of shore points and Kelley's property. In particular, it is proved that X is neat iff X is a dendrite.

1. PRELIMINARIES

A dendroid X is *smooth* at **p** if $[\mathbf{p}, \mathbf{a}_n]$ converges to $[\mathbf{p}, \mathbf{a}]$ in the Hausdorff metric, provided \mathbf{a}_n converges to **a** in X (see [2]). A continuum X has Kelley's property if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for every pair of points **a** and **b** in X whose distance is less than δ and each subcontinuum

© 1993 American Mathematical Society 0002-9939/93 \$1.00 + \$.25 per page

Received by the editors October 1, 1990; presented at the Summer Conference on General Topology and Applications, Long Island University, June 14–16, 1990.

¹⁹⁹¹ Mathematics Subject Classification. Primary 54B20, 54F20, 54F50.

Key words and phrases. Dendroid, dendrite, shore point, Kelley's property.

A of X containing a, there is a subcontinuum B of X containing b whose Hausdorff distance from A is less than ε [4]. Recently, Czuba [1] has proved the following result:

1.1. **Theorem** (Czuba). If a dendroid has Kelley's property then it is smooth.

For general terminology we refer the reader to [4, 6]. A weaker version of the following lemma was proved in [5]. The proof is not difficult and is actually identical to the previous one.

1.2. Lemma. If U is an arcwise connected subset of a dendroid X then Cl(U) is the limit of a sequence of subdendroids of X contained in U.

1.3. Lemma. Let X be a dendroid that has Kelley's property. Then for every $p \in X$ and every arc-component U of $X \setminus \{p\}$, either U is open or $Int(U) = \emptyset$. Proof. Suppose that $Int(U) \neq \emptyset$ and let $v \in Int(U)$. If $u \in U \setminus Int(U)$ then the arc $[u, v] \subseteq U$. Let $0 < \varepsilon < \min\{d(p, [v, u]), \alpha\}$ where d denotes the distance in X and the ball of radius α centered at v is contained in Int(U). For each $\delta > 0$, there exists $w \notin U$ such that $d(w, u) < \delta$.

Let **K** be a subcontinuum of **X** containing w: If $p \notin \mathbf{K}$ then **K** is contained in an arc-component of $\mathbf{X} \setminus \{p\}$ different from U, so that $\mathbf{d}(v, \mathbf{K}) \ge \alpha > \varepsilon$, which implies $\mathbf{D}(\mathbf{K}, [u, v]) > \varepsilon$, where **D** denotes the distance in the Hausdorff metric. If $p \in \mathbf{K}$ then $\mathbf{d}(p, [v, u]) > \varepsilon$ and again $\mathbf{D}(\mathbf{K}, [v, u]) > \varepsilon$. Therefore, Kelley's property is not satisfied. \Box

1.4. Lemma. A shore point in a dendroid \mathbf{X} is not a cut point of \mathbf{X} .

Proof. Suppose that for some $q \in \mathbf{X}$, $\mathbf{X} \setminus \{q\} = H \cup K$ is a decomposition of $\mathbf{X} \setminus \{q\}$ into disjoint, relatively closed sets H and K and, let $\varepsilon = \mathbf{D}(H, K)$. If for a subcontinuum \mathbf{A} of \mathbf{X} , $\mathbf{D}(\mathbf{A}, \mathbf{X}) < \varepsilon$, then the sets $\mathbf{A} \cap H$ and $\mathbf{A} \cap K$ are nonempty, so that $q \in \mathbf{A}$. Therefore, q is not a shore point of \mathbf{X} . \Box

2. MAIN RESULT

2.1. Theorem. For a dendroid X, the following conditions are equivalent:

- (i) **X** is neat.
- (ii) For every $q \in \mathbf{X}$, the arc components of $\mathbf{X} \setminus \{q\}$ are all open.
- (iii) **X** is a dendrite.
- (iv) X has Kelley's property and has no improper shore points.
- (v) Every subcontinuum of X has Kelley's property.

Proof. (i) \Rightarrow (ii). Suppose that an arc component α of $X \setminus \{q\}$ is not open. If for some arc component β of $X \setminus \{q\}$ different from α , $Cl(\beta) \cap \alpha \neq \emptyset$, we take $x \in Cl(\beta) \cap \alpha$ and note that the arc $(q, x] \subseteq Cl(\beta) \cap \alpha$. If $y \in (q, x)$, then $y \in Cl \beta \setminus \beta$, so that there exists a sequence $\{X_n\}$ of subdendroids contained in β such that $X_n \to Cl(\beta)$ (Lemma 1.2).

Clearly y is an improper shore point of the subdendroid $\operatorname{Cl}(\beta)$. Let Γ be the set of arc components of $X \setminus \{q\}$ different from α . We suppose now that $\operatorname{Cl}(\beta) \cap \alpha = \emptyset$ for every $\beta \in \Gamma$ and denote by B the union of the members of Γ . By assumption $\operatorname{Cl}(B) \cap \alpha \neq \emptyset$, take $x \in \operatorname{Cl}(B) \cap \alpha$ and $y \in (q, x)$. Notice that $y \in \operatorname{Cl}(B) \setminus B$. Let $\{y_n\}$ be a sequence of points such that $y_n \in \beta_n \in \Gamma$ and $\{y_n\}$ converges to y in $\operatorname{Cl}(B) \cap \alpha$. We can assume that $\beta_n \neq \beta_m$ for $m \neq n$. The sequence of dendroids $M_n = \bigcup_{j=1}^n \operatorname{Cl}(\beta_j)$ is increasing and satisfies $M_n \cap \alpha = \emptyset$ for each n. Moreover, $\{M_n\}$ converges to a subdendroid $Y \subseteq Cl(B)$ and hence y is an improper shore point of Y.

(ii) \Rightarrow (i). Suppose that X is not neat. Let X_0 be a subdendroid of X and q an improper shore point of X_0 . Then $X_0 \setminus \{q\}$ has at least two arc components.

We shall prove that every arc component α of $X_0 \setminus \{q\}$ is open in $X_0 \setminus \{q\}$. Since this fact contradicts the connectivity of $X_0 \setminus \{q\}$, our assertion follows from 1.4. Indeed if $C(\alpha)$ is the arc component in $X \setminus \{q\}$ containing α , then $C(\alpha) \cap (X_0 \setminus \{q\}) = \alpha$.

(i) \Rightarrow (iii). It was proved by Charatonik and Eberhart [2, Corollaries 4 and 5] that a dendroid X is a dendrite iff X is smooth at each of its points. Suppose that X is not smooth at q, and let $\{x_n\}$ be a sequence that converges to x such that $[q, x_n]$ is convergent but $L = \lim[q, x_n] \neq [q, x]$. Let $z \in L \setminus [q, x]$ be a point that is not an end point of L. If $z \notin [q, x_n]$ for an infinite set J of indices, it will be clear that z is an improper shore point of $\operatorname{Cl}(\bigcup_{i \in J}[q, x_j])$.

Therefore we can assume that $z \in [q, x_n]$ for all n. In $X \setminus \{z\}$, the arcs [q, z) and $[x_n, z)$ belong to different arc components $\alpha([q, z))$ and $\alpha([x_n, z))$, respectively. Since (i) implies (ii), it follows that $\alpha([q, z))$ and $\bigcup_n \alpha([x_n, z))$ are open. Moreover, they are disjoint, which is impossible since $x \in \alpha([q, z))$ and $x_n \to x$.

 $(i) \Rightarrow (iv)$. This follows from $(i) \Rightarrow (iii)$ since every locally connected continuum has Kelley's property.

(iv) \Rightarrow (ii). Suppose that for some $p \in \mathbf{X}$, $\mathbf{X} \setminus \{p\}$ has a nonopen arc component U. Let u be a non end point of \mathbf{X} contained in U and for each $n \in \mathbb{N}$, let C_n be the component of $\mathbf{X} \setminus B_{1/n}(u)$ containing p. If $x \in \mathbf{X} \setminus U$ then $[p, x] \cap U = \emptyset$. In particular, $u \notin [p, x]$, so that for n large enough $[p, x] \cap B_{1/n}(u) = \emptyset$. This implies that $[p, x] \subseteq C_n$. By Lemma 1.3, $\operatorname{Int}(U) = \emptyset$, so that $\lim C_n = \mathbf{X}$. Since $u \notin C_n$ for every n, it follows that u is an improper shore point of \mathbf{X} .

 $(v) \Rightarrow (ii)$ By Theorem 1.1 X is smooth. By [3, Theorem 1, p. 194] X contains no subdendroid of Type 1. Next we show that X is smooth at each of its points. Let $p \in X$ and suppose X is not smooth at p. By [3, Lemma 1, p. 193], X contains a subdendroid of Type 3. But a Type 3 dendroid contains a subdendroid that does not have Kelley's property, a contradiction. By [2] X is a dendrite and a dendrite clearly satisfies (ii).

 $(iii) \Rightarrow (v)$. This follows since every subdendroid of a dendrite is a dendrite.

ACKNOWLEDGMENT

We wish to thank the referee for his very useful suggestions, which have been incorporated in the text.

References

- 1. S. T. Czuba, On dendroids with Kelley's property, Proc. Amer. Math. Soc. 102 (1988), 728-730.
- 2. J. J. Charatonik and Carl Eberhart, On smooth dendroids, Fund. Math. LXVII (1970), 297-322.
- 3. E. E. Grace and E. J. Vought, Weakly monotone images of smooth dendroids, Houston J. Math. 14 (1988), 191-200.

- 4. J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
- 5. L. Montejano and I. Puga, Shore points in dendroids and conical pointed hyperspaces, Topology Appl. 46 (1992), 41-54.
- 6. S. B. Nadler, Hyperspaces of sets, Marcel Dekker, 1978.

Instituto de Matemáticas, UNAM, Circuito Exterior C. U., 04510 México, D. F. Mexico *E-mail address*: NEUMANN@UNAM VM1.BITNET

Departamento de Matemáticas, Facultad de Ciencias, UNAM, Circuito Exterior C. U. 04510 México, D. F. Mexico

E-mail address: PUGA@UNAM VM1.BITNET