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a b s t r a c t

We apply variational principles in the context of geometrothermodynamics. The
thermodynamic phase space T and the space of equilibrium states E turn out to
be described by Riemannian metrics which are invariant with respect to Legendre
transformations and satisfy the differential equations following from the variation of a
Nambu–Goto-like action. This implies that the volume element of E is an extremal and that
E and T are related by an embedding harmonic map. We explore the physical meaning of
geodesic curves in E as describing quasi-static processes that connect different equilibrium
states. We present a Legendre invariant metric which is flat (curved) in the case of an ideal
(van der Waals) gas and satisfies Nambu–Goto equations. The method is used to derive
some new solutions which could represent particular thermodynamic systems.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The geometry of thermodynamics has been the subject of moderate research since the original works by Gibbs [1] and
Caratheodory [2]. Results have been achieved in two different approaches. The first one consists in introducing metric
structures on the space of thermodynamic equilibrium states E , whereas the second group uses the contact structure of
the thermodynamic phase space T . Weinhold [3] introduced on E a metric defined as the Hessian of the thermodynamic
potential. This approach has found applications also in the context of the renormalization group [4], the identification of
states to a specific phase [5], the thermodynamic uncertainty relations [6], and black hole thermodynamics (see [7,8] and
references cited there). The second approach, proposed byHermann [9], uses the natural contact structure of the phase space
T . Extensive and intensive thermodynamic variables are taken together with the thermodynamic potential to constitute
coordinates on T . A special subspace of T is the space of equilibrium states E .

Geometrothermodynamics (GTD) [10,11] was recently developed as a formalism that unifies the contact structure on
T with the metric structure on E in a consistent manner, by considering only Legendre invariant metrics on T . This last
property is important to guarantee that the properties of a system do not depend on the thermodynamic potential used
for its description. In [11], a simple metric was used in GTD in order to reproduce geometrically the noncritical behavior of
the ideal gas and the critical behavior of the van der Waals gas (see, for instance, Ref. [12]), indicating that thermodynamic
curvature can be used as a measure of thermodynamic interaction. This result has been corroborated in the case of black
holes [13–15].

In the present work we explore an additional aspect of GTD. The thermodynamic metrics used so far in GTD have been
derived by using only the Legendre invariance condition. Now we ask the question whether those metrics can be derived

∗ Corresponding author at: Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP 70543, México, DF 04510, Mexico. Tel.: +52
5556224690; fax: +52 5556224693.

E-mail address: quevedo@nucleares.unam.mx (H. Quevedo).

0393-0440/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2010.08.001

http://dx.doi.org/10.1016/j.geomphys.2010.08.001
http://www.elsevier.com/locate/jgp
http://www.elsevier.com/locate/jgp
mailto:quevedo@nucleares.unam.mx
http://dx.doi.org/10.1016/j.geomphys.2010.08.001


A. Vázquez et al. / Journal of Geometry and Physics 60 (2010) 1942–1949 1943

as solutions of a certain set of differential equations, as is usual in field theories. We will see that this task is realizable. In
fact, it turns out that the map ϕ : E → T can be considered as a harmonic map, if the thermodynamic variables satisfy
the differential equations which follow from the variation of a Polyakov-like action. This result confers thermodynamics a
geometric structure that resembles that of the bosonic string theory. In fact, we will show that thermodynamic systems can
be interpreted as ‘‘strings’’ embedded in a higher dimensional, curved phase space.

This paper is organized as follows. In Section 2 we review the fundamentals of GTD. In Section 3 we show that the
embedding map ϕ can be considered as a harmonic map with a naturally induced Polyakov-like action from which a set of
differential equations can be derived. Section 4 contains an analysis of the thermodynamic length, the variation of which
leads to the geodesic equations for the metric of E . In Section 5 we present the most general Legendre invariant metric
we have found and use it to derive the geometric structure of thermodynamic systems with an arbitrary finite number of
different species. As concrete examples we investigate the geometry of the ideal gas, the van der Waals gas, and derive a
few new fundamental equations which are compatible with the geometric structures of GTD. Finally, Section 6 is devoted
to a discussion of our results.

2. Geometrothermodynamics

Consider the (2n+1)-dimensional space T coordinatized by the set ZA
= {Φ, Ea, Ia}, with the notation A = 0, . . . , 2n so

that Φ = Z0, Ea
= Za, a = 1, . . . , n, and Ia = Zn+a. Here Φ represents the thermodynamic potential, Ea are the extensive

variables and Ia the intensive variables. Consider the Gibbs 1-form [9]

Θ = dΦ − δabIadEb, δab = diag(1, 1, . . . , 1) (1)

where summation over repeated indices is assumed. The pair (T , Θ) is called a contact manifold [9], if T is differen-
tiable and Θ satisfies the condition Θ ∧ (dΘ)n ≠ 0. It can be shown [9] that if there exists a second differential form
Θ̃ which satisfies the condition Θ̃ ∧ (dΘ̃)n ≠ 0 on T , then Θ and Θ̃ must be related by a Legendre transformation [16],
{ZA

} → {ZA
} = {Φ̃, Ẽa, Ĩa},

Φ = Φ̃ − δklẼk Ĩ l, E i
= −Ĩ i, E j

= Ẽ j, I i = Ẽ i, I j = Ĩ j, (2)

where i ∪ j is any disjoint decomposition of the set of indices {1, . . . , n}, and k, l = 1, . . . , i. This implies that the contact
structure of T is invariant with respect to Legendre transformations. Consider, in addition, a nondegenerate metric G on T .
We define the thermodynamic phase space as the triplet (T , Θ,G) such that Θ defines a contact structure on T and G is a
Legendre invariant metric on T . A straightforward computation shows that the flat Euclideanmetric is not Legendre invari-
ant. For simplicity, the phase space will be denoted by T . The space of equilibrium states is an n-dimensional Riemannian
manifold (E, g), where E ⊂ T is defined by a smoothmap ϕ : E → T , satisfying the conditions ϕ∗(Θ) = 0 and g = ϕ∗(G),
where ϕ∗ is the pullback of ϕ. The smoothness of the map ϕ guarantees that g is a well-defined, nondegenerate metric on E .
For the sake of concreteness we choose Ea as the coordinates of E . Then, ϕ : {Ea

} → {Φ(Ea), Ea, Ia(Ea)}, and the condition
ϕ∗(Θ) = 0 yields the first law of thermodynamics and the condition for thermodynamic equilibrium:

dΦ = δabIadEb
= IbdEb,

∂Φ

∂Ea
= δabIb = Ia. (3)

The explicit formofϕ implies that the functionΦ(Ea)must be given. In thermodynamicsΦ(Ea) is known as the fundamental
equation from which all the equations of state of the system can be derived. It also satisfies the second law of thermody-
namics which is equivalent to the condition [12]

∂2Φ

∂Ea∂Eb
≥ 0. (4)

In addition, the degree β of homogeneity of the thermodynamic potential, i.e., Φ(λEa) = λβΦ(Ea), with constant λ and β ,
appears then in Euler’s identity: [11]

βΦ = EaIa = Ea ∂Φ

∂Ea
. (5)

The metric defined by g = ϕ∗(G) represents the thermodynamic metric of E whose components are explicitly given as

gab =
∂ZA

∂Ea

∂ZB

∂Eb
GAB = ZA

,aZ
B
,bGAB. (6)

It is worth noticing that the application of a Legendre transformation on G corresponds to a coordinate transformation of
g . Indeed, if we denote by {Z̃A

} the Legendre transformed coordinates in T , then the transformed metric G̃AB =
∂ZC

∂ Z̃A
∂ZD

∂ Z̃B
GCD

induces on E the metric g̃ab =
∂ Z̃A

∂ Ẽa
∂ Z̃B

∂ Ẽb
G̃AB. It is then easy to see that these metrics are related by the transformation law

g̃ab =
∂Ec

∂ Ẽa

∂Ed

∂ Ẽb
gcd. (7)
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3. The harmonic map

In analytic geometry, a thermodynamic system is described by an equation of state f (Ea, Ia) = 0 which determines a
surface in the space with coordinates {Ea, Ia}. Probably, one of the most important contributions of analytic geometry to
the understanding of thermodynamics is the identification of points of phase transitions with extremal points of the surface
f (Ea, Ia) = 0.More detailed descriptions of these contributions can be found in standard textbooks on thermodynamics (see,
for instance, [12]). This approach, however, implies that the equation f (Ea, Ia) = 0must be determined experimentally. Here
we present an alternative approach in which a thermodynamic system is described by an extremal hypersurface, satisfying
a system of differential equations. This alternative approach provides a solid mathematical structure to thermodynamics,
and opens the possibility of finding extremal surfaces and investigating their thermodynamic properties by analyzing their
geometric structure. In fact, we will use the method of harmonic maps, which has been extensively used in field theories
and appears naturally in the context of GTD.

Consider the phase space with metric G and coordinates ZA, and suppose that an arbitrary nondegenerate metric h is
given in E . The smooth map ϕ : E → T , or in coordinates ϕ : {Ea

} → {ZA
}, is called a harmonic map, if the coordinates ZA

satisfy the equations following from the variation of the action [17]

Ih =

∫
E

dnE


|h|habZA
,aZ

B
,bGAB. (8)

Here |h| = | det(hab)|. The variation of Ih with respect to ZA leads to

δIh
δZA

= 0 ⇔ DhZA
:=

1
√

|h|


|h|habZA

,a


,b

+ Γ A
BCZ

B
,bZ

C
,ch

bc
= 0 (9)

where Γ A
BC are the Christoffel symbols associated to the metric GAB. For given metrics G and h, this is a set of 2n + 1 second-

order, partial differential equations for the 2n+1 thermodynamic variables ZA. This set of equationsmust be treated together
with the equation for the metric h, i.e.,

δIh
δhab

= 0 ⇔ Tab := gab −
1
2
habhcdgcd = 0, (10)

where gab is the metric induced on E by the pullback ϕ∗ according to (6). This is an algebraic constraint fromwhich it is easy
to derive the expression

habgab = 2


|g|
|h|

1/2

, (11)

where |g| = | det(gab)|. This analysis is similar to the analysis performed in string theory for the bosonic string by using the
Polyakov action. In fact, action (8) with n = 2 and a flat ‘‘background’’, GAB = ηAB, is known as the Polyakov action [18].
By analogy with string theory, from the above description we can conclude that a thermodynamic system with n degrees
of freedom can be interpreted as an n-dimensional ‘‘membrane’’ which ‘‘propagates’’ on a curved background metric G.
The quotation marks emphasize the fact that at this level we have no explicit timelike parameter for the description of the
membrane. Neither have we a timelike coordinate in the set ZA so that the metric G could be interpreted as a background
spacetimewhere themembranepropagates. Nevertheless, this analogy allowsus to handle thermodynamics as a field theory
where the thermodynamic variables satisfy a set of second-order differential equations. As in string theory, there is an
equivalent description in terms of a Nambu–Goto-like action. Introducing the relationship (11) into the action (8) and using
the expression (6) for the induced metric, we obtain the action Ig = 2


E
dnE

√
|g| from which we derive the Nambu–Goto

equations

DgZA
=

1
√

|g|


|g|gabZA

,a


,b

+ Γ A
BCZ

B
,bZ

C
,cg

bc
= 0. (12)

Since the action Ig is proportional to the volume element of the manifold E , Eq. (12) can be interpreted as stating that
the volume element induced in E must be an extremal. An equivalent interpretation is that the submanifold E can be
represented as an extremal hypersurface contained in T . The Nambu–Goto equations (12) can be investigated by using
standard procedures of string theory.

4. Geodesics in the space of equilibrium states

In the space of equilibrium states E the line element ds2 = gabdEadEb can be considered as a measure for the distance
between two points t1 and t2 with coordinates Ea and Ea

+ dEa, respectively. Let us assume that the points t1 and t2 belong
to the curve γ (τ). Then, we define the thermodynamic length L as

L =

∫ t2

t1
ds =

∫ t2

t1


gabdEadEb1/2

=

∫ t2

t1


gabĖaĖb1/2 dτ , (13)
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where the dot represents differentiation with respect to τ . The condition that the thermodynamic length be an extremal
δL = δ

 t2
t1

ds = 0 leads to the equations

d2Ea

dτ 2
+ Γ a

bc
dEb

dτ
dEc

dτ
= 0, (14)

where Γ a
bc are the Christoffel symbols of the thermodynamic metric gab. These are the geodesic equations in the space E

with affine parameter τ . The solutions to the geodesic equations depend on the explicit form of the thermodynamic metric
g which, in turn, depends on the fundamental equation Φ = Φ(Ea). Therefore, a particular thermodynamic system leads
to a specific set of geodesic equations whose solutions depend on the properties of the system. Not all the solutions need to
be physically realistic since, in principle, there could be geodesics that connect equilibrium states that are not compatible
with the laws of thermodynamics. Those geodesics which connect physically meaningful states will represent quasi-static
thermodynamic processes. Therefore, a quasi-static process can be seen as a dense succession of equilibrium states. This is in
agreementwith the standard interpretation of quasi-static processes in ordinary thermodynamics [12]. The affine parameter
τ can be used to label each of the equilibrium states which are part of a geodesic. Because of its intrinsic freedom, the affine
parameter can be chosen in such a way that it increases as the entropy of a quasi-static process increases. This opens the
possibility of interpreting the affine parameter as a ‘‘time’’ parameter with a specific direction which coincides with the
direction of entropy increase.

5. Applications

To solve the differential equations of GTD (12) one must specify a priori a Legendre invariant metric G for the phase
space [11]. The metric

G =

dΦ − IadEa2

+ Λ(EaIa)2k+1dEadIa, (15)

with k being an integer and Λ an arbitrary Legendre invariant function, is the most general metric we have found that is
invariant with respect to arbitrary Legendre transformations. To determine the metric structure of E ⊂ T we choose the
map ϕ : {Ea

} → {Φ(Ea), Ea, Ia(Ea)} so that the condition g = ϕ∗(G) for (15) yields

g = Λ


Ea

∂Φ

∂Ea

2k+1
∂2Φ

∂Eb∂Ec
δabdEadEc, (16)

where we have used the first law of thermodynamics and the equilibrium conditions as given in Eqs. (3). In ordinary
thermodynamics, the most used representation is based upon the internal energy U . The extensive variables are chosen
as the entropy S, volume V , and the particle number of each species Nm. For simplicity we fix the maximum number of
species as n − 2 so that m = 1, . . . , n − 2. The dual variables are denoted as temperature T , pressure −P , and chemical
potentials µm. The coordinates of T are then ZA

= {U, S, V ,Nm, T , −P, µm}, and the fundamental Gibbs 1-form becomes
Θ = dU − TdS + PdV −

∑
m µmdNm. As for the Riemannian structure of T , the most general Legendre invariant metric

(15) becomes

G =


dU − TdS + PdV −

n−2−
m=1

µmdNm

2

+ Λ


(ST )2k+1dSdT + (VP)2k+1dVdP +

n−2−
m=1

(Nmµm)2k+1dNmdµm


. (17)

For the space of equilibrium states E we choose the extensive variables Ea
= {S, V ,Nm} with the embedding map

ϕ : {Ea
} → {ZA

}. Then, the condition ϕ∗(Θ) = 0 generates the first law of thermodynamics and the equilibrium conditions

dU = TdS − PdV +

n−2−
m=1

µmdNm, (18)

T =
∂U
∂S

, P = −
∂U
∂V

, µm =
∂U
∂Nm

, (19)

respectively. Furthermore, the metric of E is determined by (16) that becomes

g = Λ


S
∂U
∂S

k̃
∂2U
∂S2

dS2 +


V

∂U
∂V

k̃
∂2U
∂V 2

dV 2
+

n−2−
m=1


Nm

∂U
∂Nm

k̃
∂2U
∂N2

m
dN2

m

+


S
∂U
∂S

k̃

+


V

∂U
∂V

k̃


∂2U
∂S∂V

dSdV +


S
∂U
∂S

k̃

+

n−2−
m=1


Nm

∂U
∂Nm

k̃


∂2U
∂S∂Nm

dSdNm

+


V

∂U
∂V

k̃

+

n−2−
m=1


Nm

∂U
∂Nm

k̃


∂2U
∂V∂Nm

dVdNm


, (20)
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where k̃ = 2k+ 1. This is the most general metric corresponding to a multicomponent system with n− 2 different species.
This metric turns out to be useful to describe chemical reactions which can then be classified in accordance to the geometric
properties of the manifold (E, g). This result will be presented elsewhere.

5.1. The ideal gas

Consider a monocomponent ideal gas characterized by two degrees of freedom (n = 2) and the fundamental equation
U(S, V ) = [exp(S/κ)/V ]

2/3, where κ = const. [12]. It is convenient to use the entropy representation in which the first law
reads dS = (1/T )dU + (P/T )dV , and the equilibrium conditions are 1/T = ∂S/∂U and P/T = ∂S/∂V . Consequently, for
the phase space we can use the coordinates ZA

= {S,U, V , 1/T , P/T } and the metric (15) takes the form

G =


dS −

1
T
dU −

P
T
dV
2

+ Λ


U
T

2k+1

dUd

1
T


+


VP
T

2k+1

dVd

P
T


. (21)

Moreover, the metric for the space of equilibrium can be derived from Eq. (16):

g = Λ


U

∂S
∂U

2k+1
∂2S
∂U2

dU2
+


V

∂S
∂V

2k+1
∂2S
∂V 2

dV 2
+


U

∂S
∂U

2k+1

+


V

∂S
∂V

2k+1


∂2S
∂U∂V

dUdV


. (22)

This form of the thermodynamic metric is valid for any system with two degrees of freedom represented by the extensive
variablesU and V . To completely determine themetric it is only necessary to specify the fundamental equation S = S(U, V ).
For an ideal gas S(U, V ) =

3κ
2 lnU + κ ln V , and the metric becomes

g = −κ2k+2Λ


3
2

2k+2 dU2

U2
+

dV 2

V 2


. (23)

All the geometrothermodynamical information about the ideal gas must be contained in the metrics (21) and (23). First,
we must show that the subspace of equilibrium (E, g) determines an extremal hypersurface in the phase manifold (T ,G).
Introducing (21) and (23) into the Nambu–Goto equations (12), the system reduces to

∂Λ

∂U
+

3κ
2U2

∂Λ

∂Z3
+ 2(k + 1)

Λ

U
= 0, (24)

∂Λ

∂V
+

κ

V 2

∂Λ

∂Z4
+ 2(k + 1)

Λ

V
= 0. (25)

If we choose Λ = const. and k = −1, we obtain a particular solution which is probably the simplest one. This shows that
the geometry of the ideal gas is a solution to the differential equations of GTD and, consequently, determines an extremal
hypersurface of the thermodynamic phase space.

We now investigate the geometry of the space of equilibrium states of the ideal gas. As can be seen from Eq. (23), the
geometry is described by a 2-dimensional conformally flat metric. If we calculate the curvature scalar R, and replace in the
result the differential conditions (24) and (25), we obtain

R ∝ 3V 2

2U2Λ

∂2Λ

∂U∂Z3
+

∂Λ

∂Z3

[
3κ

∂Λ

∂Z3
+ 2(k + 1)UΛ

]
+ 4


3
2

2k+2

U2

V 2Λ

∂2Λ

∂V∂Z4
+

∂Λ

∂Z4

[
κ

∂Λ

∂Z4
+ 2(k + 1)VΛ

]
. (26)

We see that it is possible to choose the conformal factorΛ such that R = 0. For instance, the choiceΛ = const. is a particular
solutionwhich also satisfies the differential conditions (24) and (25) for k = −1. Consequently, we have shown that the ideal
gas can be represented by a flatmetric in the space of equilibrium states. This result agreeswith our intuitive expectation that
a thermodynamic metric with zero curvature should describe a system in which no thermodynamic interaction is present.
The freedom involved in the choice of the function Λ is associated to the well-known fact that any 2-dimensional space is
conformally flat.

We now investigate the geodesic equations (14). For concreteness we take the values Λ = −1 and k = −1. Then, the
metric takes the form g = dU2/U2

+ dV 2/V 2 which can be put in the obvious flat form

g = dξ 2
+ dη2 (27)

by means of the transformation ξ = lnU, η = ln V , where for simplicity we set the additive constants of integration such
that ξ, η ≥ 0. The solutions of the geodesic equations are represented by straight lines, ξ = c1η + c0, with constants c0
and c1. In this representation, the entropy becomes a simple linear function of the coordinates, S = (3κ/2)ξ + κη. Since
each point on the ξη-plane can represent an equilibrium state, the geodesics should connect those states which are allowed
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by the laws of thermodynamics. For instance, consider all geodesics with initial state ξ = 0 and η = 0. Then, any straight
line pointing outwards of the initial state and contained inside the allowed positive quadrant connect states with increasing
entropy. A quasi-static process connecting states in the inverse direction is not allowed by the second law. Consequently,
the affine parameter τ along the geodesics can actually be interpreted as a time parameter and the direction of the geodesics
indicates the ‘‘direction of time’’. A detailed analysis of these geodesics is presented elsewhere [19].

5.2. The van der Waals gas

Amore realistic model of a gas, which takes into account the size of the particles and a pairwise attractive force between
the particles of the gas, is based upon the van der Waals fundamental equation

S =
3κ
2

ln

U +

a
V


+ κ ln(V − b), (28)

where a and b are constants. The metric of the manifold T is as before (21). For simplicity we consider the particular case
with k = −1. Then, introducing the fundamental equations (28) into the metric (22), the metric of the manifold E reads

g =
Λ

U(U + a/V )

[
−dU2

+
U
V 3

a(a + 2UV )(3b2 − 6bV + V 2) − 2U2V 4

(V − b)(3ab − aV + 2UV 2)
dV 2

+
a
V 2

3ab − aV − 3bUV + 5UV 2

3ab − aV + 2UV 2
dUdV

]
. (29)

The curvature of this thermodynamic metric is in general nonzero, reflecting the fact that the thermodynamic interaction
of the van der Waals gas is nontrivial. The differential equations (12) can be computed for this case by using the phase
space metric (21), with k = −1, and the metric (29) for the space of equilibrium. It turns out that they reduce to only two
first-order partial differential equations

∂Λ

∂U
+ F3

∂Λ

∂Z3
+ F4

∂Λ

∂Z4
+ F0Λ = 0, (30)

∂Λ

∂V
+ G3

∂Λ

∂Z3
+ G4

∂Λ

∂Z4
+ G0Λ = 0, (31)

where F0, F3, F4,G0,G3, andG4 are fixed rational functions ofU and V . Because of the arbitrariness of the conformal factorΛ,
it is always possible to find solutions to the above system.We conclude that there exists a family of nonflat thermodynamic
metrics that determines an extremal hypersurface in the phase space, and can be used to describe the geometry of the van
der Waals gas. The corresponding geodesic equations are highly nontrivial and require a detailed numerical analysis which
is beyond the scope of the present work.

5.3. New solutions

The above applications of GTD show that from a given fundamental equation one can find the corresponding geometric
representation. It is also possible to handle the inverse problem, i.e., we can find fundamental equations which are
compatible with the geometric structures of GTD and correspond to thermodynamic systems. Consider a very simple
generalization of the ideal gas

S(U, V ) =
3κ
2

lnU + κc ln V , (32)

where c is a constant. Although this seems to be a trivial generalization, we will see that it can contain interesting
thermodynamic systems. As before, we choose the thermodynamic metrics in T and E as in Eqs. (21) and (22). The
Nambu–Goto equations (12) are identically satisfied if we choose Λ = −1 and k = −1. Then, the space of states turns out
to be flat and, according to our interpretation of thermodynamic curvature, the system is characterized by the absence of
thermodynamic interaction. The geometric analysis of themanifold E is similar to that carried out in Section 5.1. To interpret
this solution it is convenient to use the energy representation in which the fundamental equation is U(S, V ) =

e2S/3κ

V2c/3 . The
conditions for equilibrium (19) and Euler’s identity (5) lead to

∂U
∂S

= T =
2
3κ

U,
∂U
∂V

= −P = −
2c
3

U
V

, S =
3βκ

2
+ cκ, (33)

where β is the degree of homogeneity of the thermodynamic potential. Hence,

U =
3κ
2

T , PV = κcT , (34)
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are the equations of state. The internal energy of the system coincides with that of an ideal gas, and the only difference
appears in the behavior of the pressure P which can be controlled by the constant c . If we define the energy density
ρ = U/V , then from the above equations we obtain the ‘‘barotropic’’ equation of state P = (2c/3)ρ. For the particular
choice c = −3/2, we obtain P + ρ = 0 with a negative value of the pressure. Consequently, the fundamental equation
(32) describes a systemwith no thermodynamic interaction and negative pressure. This behavior resembles that of the dark
energywhich is responsible for the recently observed acceleration of the universe. Amore detailed analysiswill be necessary
to determine if the above thermodynamic system can be used as a realistic model for dark energy.

The above example can be generalized to include a complete family of noninteracting thermodynamic systems. In fact,
if we consider a system with n degrees of freedom and the separable fundamental equation

S(E1, . . . , En) = S1(E1) + · · · + Sn(En), (35)

where S1, . . . , S2 are arbitrary smooth functions, we obtain fromEq. (16), withΛ = const, a diagonal thermodynamicmetric
of the form g = g11(E1)(dE1)2 + · · · + gnn(En)(dEn)2. The curvature of this metric vanishes as can be seen by applying the
coordinate transformation gaa(Ea)dEa

= dXa (no summation over repeated indices) which transforms the metric into the
flat form g = δabdXadXb. In this family of thermodynamically noninteracting systems one can include, for instance, all
known multicomponent generalizations of the ideal gas.

Turning back to the case of systems with two degrees of freedom, we mention that it is possible to find complete classes
of solutions of the form

S = S0UαV β or S = S0 ln(Uα
+ cV β), (36)

where S0, α, β , and c are arbitrary real constants. It turns out that in all these cases, one can chooseΛ and k in such away that
the resulting thermodynamic metric (22) is curved and satisfies the Nambu–Goto equations (12). This means that the above
fundamental equations can, in principle, represent nontrivial thermodynamically interacting systems. It is not difficult to
find exact solutions to the Nambu–Goto equations which are also compatible with the metric structure (21) of the phase
manifold and, consequently, with the thermodynamic metric of the manifold of equilibrium states. Nevertheless, a more
detailed analysis will be necessary in order to establish the physical significance of the solutions obtained in this manner.

6. Discussion and conclusions

Geometrothermodynamics (GTD) is a formalism that has been developed recently to describe ordinary thermodynamics
by using differential geometry. To this end, two known structures were joined together in a consistent manner: The natural
contact structure of the thermodynamic phase space T and themetric structure of the space of equilibrium states E . In GTD,
one introduces a Legendre invariant metric G in T which naturally induces a thermodynamic metric g in E by means of the
pullback ϕ∗ associated to the map ϕ : E → T . This additional construction confers to T and E the geometric structure of
Riemannian manifolds. In this work we established that ϕ can be handled as a harmonic map that allows us to introduce
a Polyakov-like action in E . Taking into account that the metric of E is induced by the metric of T , the variation of the
action of the harmonic map leads to a set of second-order differential equations which can be identified as the Nambu–Goto
motion equations. This is the main result that allows us to interpret thermodynamic systems as classical bosonic strings.
Thermodynamic systems are characterized in GTD by a specific metric g which determines the properties of E . Therefore,
if g satisfies the Nambu–Goto equations, we can conclude that it describes an n-dimensional membrane that ‘‘lives’’ in the
backgroundmanifold T . If we demand Legendre invariance of G, the background T turns out to be curved in general. So the
explicit case of a thermodynamic systemwith two degrees of freedomand thermodynamicmetric g resembles the dynamics
of a stringmoving on a nonflat backgroundG. The analogy, however, is only at themathematical level. In fact, in string theory
themetrics g and Gmust be Lorentzianmetrics in order to incorporate into the theory a relativistic dynamical behavior with
a genuine time parameter. In GTD the metrics are not necessarily Lorentzian and there is no explicit time parameter so that
we cannot really talk about dynamics. This is in agreement with our intuitive understanding of ordinary thermodynamics
of equilibrium states in which, strictly speaking, there is no dynamics at all and we are in fact handling with thermostatics.
Non-equilibrium thermodynamics is a different subject that cannot be incorporated in a straightforward manner in GTD as
formulated here. A generalization of the geometric structures considered in this work will be necessary in order to analyze
more general scenarios in which non-equilibrium states cannot be neglected. This is a task for future investigations.

Starting from the most general Legendre invariant metric in T we were able to show that the ideal gas and the van der
Waals gas are concrete examples of 2-dimensional extremal hypersurfaces E embedded in a 5-dimensional curvedmanifold
T . In the case of an ideal gas, the geometry of E is flat, whereas for the van der Waals gas the manifold E is curved. This
reinforces the interpretation of the thermodynamic curvature as a measure of thermodynamic interaction. Our formalism
is such that one only needs to postulate an arbitrary fundamental equation to derive the thermodynamic metric g of E .
One can then derive from the Nambu–Goto equations the conditions that the fundamental equation and g must satisfy in
order to correspond to an extremal hypersurface of T . In this manner, we obtained simple generalizations of the ideal gas
with vanishing thermodynamic curvature. It is also possible to derive new solutions with nonvanishing thermodynamic
curvature.

We used the concept of thermodynamic length in the manifold of equilibrium states E as a quantity representing the
geometric distance between two different states. It involves the explicit form of the thermodynamicmetric g . By demanding
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that the thermodynamic length be an extremal, we obtained that the geodesic equations for g must be satisfied. Not all the
solutions of the geodesic equations need to be physically realizable since they could connect, in a given direction, equilibrium
states that are not compatible with the laws of thermodynamics. We interpret geodesics which connect thermodynamically
meaningful states as representing a dense succession of quasi-static states. Moreover, we showed that the affine parameter
along a geodesic can be used to label each of the equilibrium states which can be reached in a specific quasi-static
thermodynamic process. The affine parameter can then be chosen in such a way that it increases as the entropy of a quasi-
static process increases. Then, a suitable selection allows us to interpret the affine parameter as a ‘‘time’’ parameter with a
specific direction which coincides with the direction of entropy increase. The geodesic equations for the more general van
der Waals gas cannot be solved analytically. It will be necessary to perform a detailed numerical study of these equations in
order to corroborate the physical significance of the geodesics.
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