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HOMOTOPY TYPE FINITENESS THEOREMS FOR CERTAIN 
PRECOMPACT FAMILIES OF RIEMANNIAN MANIFOLDS 

TAKAO YAMAGUCHI 

(Communicated by David G. Ebin) 

ABSTRACT. In this paper, we consider a precompact family of Riemannian 
manifolds with respect to the Hausdorff distance, and prove the homotopy 
type finiteness of elements in the family. This is an extension in the homotopy 
type version of the Cheeger and Weinstein finiteness theorems. 

The notion of Hausdorff distance between Riemannian manifolds was introduced 
by Gromov [11], and has played an important role in global Riemannian geometry. 
In [11], he proved the so-called precompactness theorem: 

THEOREM (GROMOV). For given m, A, D, the family of compact Rieman- 
nian m-manifolds M, whose curvatures RicM and diameters dM satisfy RicM > 
-(m - 1)A2 and dM < D, is precompact with respect to the Hausdorff distance. 

It was also proved in [11] that the first Betti numbers of manifolds in the above 
family are uniformly bounded in terms of m, A, D, and that the convergences with 
repsect to the Hausdorff distance and the Lipschitz distance coincide on the family 
of compact m-mainfolds M with bounded sectional curvatures IKM I < A2, volumes 
volM < V and injectivity radii iM > E for given positive constants A, V, E. From 
the last result, the Cheeger and Weinstein finiteness theorems [4, 20] are derived. 
For related results, see [6, 7, 8, 14, 16]. 

The purpose of the present paper is to prove the homotopy type finiteness for any 
precompact family of complete manifolds whose contractibility radii are uniformly 
bounded below by a positive constant. The contractibility radius cM of a complete 
manifold M is defined as the supremum of r such that every metric ball of radius r 
contains no critical points of the distance function from the center. For the precise 
definition, see ?1. Thus cM is greater than or equal to the injectivity radius iM. 

Let 91 be a precompact family of complete m-manifolds with respect to the 
Hausdorff distance dH. For given R > 0, we set 9XR = {M E 93; CM > R}. In this 
situation, we shall prove the following 

THEOREM 1. The set of homotopy types of manifolds in 9iR is finite. 

Theorem 1 is a direct consequence of the following theorem. 

THEOREM 2. Let M, M' be complete m-manifolds with CM, CM, > R. If 

dH(M,M') < R/25m, 

then M has the same homotopy type as M'. 
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From Theorem 1, we have immediately 

COROLLARY 1. For given m and positive numbers A, D, R, the set of homotopy 
types of compact m-manifolds M with RicM > -(m - 1)A2, dM < D and CM > R 
is finite. 

COROLLARY 2. For given m and L, the set of homotopy types of compact m- 
manifolds M with bounded embolic volumes volM /im < L is finite. 

COROLLARY 3. For given m, A and R E (7r/2, 7r], the set of homotopy types of 
compact m-manifolds M with RicM > (m - 1), KM > -A2 and volM > a(m, R) 
is finite, where ca(m, R) is the volume of the R-ball in the unit m-sphere. 

Corollaries 1 and 2 could be thought of as extensions of the Cheeger and Wein- 
stein finiteness theorems, though the results tell us only homotopy types. Corollary 
3 gives an affirmative answer to the problem proposed by Shiohama [19], who first 
considered the notion of contractibility radius by specializing the notion of content 
of a metric ball introduced by Gromov [9]. It shold also be noted that in the case 
when all manifolds in the family 91 are compact, the number of homotopy types 
in 9iR given by Theorem 1 can be estimated explicity in terms of an invariant 
depending of R and 91. 

1. Uniform contractibility. In this section, we provide a technical tool 
needed in the proof of Theorem 2. We first recall the definition of critical points 
of distance functions. For a fixed point x in a complete manifold M, consider the 
distance function d,: d,(y) = d(x, y). A point y ($ x) is called a critical point 
of d, if for every nonzero tangent vector v E TyM, there is a minimal geodesic -y 
from y to x such that v and -y make an angle at most 7r/2. Obviously, a critical 
point of d. lies in the cut locus of x. The contractibility radius c2 at x is defined 
by cx = inf{d(x, y); y a critical point of dx}. Since the (open) metric ball B(x, cx) 
around x of radius cx contains only noncritical points of dx, for every yo in the 
ball there is a neighborhood U of yo and a smooth vector field t on U such that 
for each y E U, t(y) and every minimal geodesic from y to x make an acute angle. 
We call such a vector field t gradient-like for dx. From this observation, an easy 
Morse theoretic argument implies the contractibility of B(x, cx) (cf. Gromov [11, 
1.1]. Clearly cx is lower semicontinuous in x and not less than the injectivity radius 
at x. The contractibility radius CM of M is defined as the infimum of cx when x 
runs over M. 

Now observe that every two points x and y with d(x, y) < iM can be joined by a 
unique minimal geodesic -y,v: [0, 1] -- M and that -yx (t) is smoothly depending 
on x, y and t. This fact is extended in a sense to the contractibility radius in the 
following way. For every E > 0, put Ql = {(x, y) E M x M; d(x, y) < CM -}. 

PROPOSITION 1.1. There is a smooth map h: Ql x [0, 1] -* M satisfying the 
following conditions: 

(1) h(x, y, 0) = y, h(x, y, 1) = x. 
(2) The function t -+ dx(h(x, y, t)) is strictly decreasing. 

We call such an h a uniform retraction of contractible metric balls. For the proof, 
we prepare two lemmas. We denote by As the diagonal set of S. 7r: UM -* M 
denotes the unit tangent bundle of M. For a metric R-ball B and 6 > 0, 6B denotes 
the concentric ball of radius 6R. 
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LEMMA 1.2. Let B be a convex ball around x in M. For a sufficiently small 
neighborhood 0 C B of x, there is a smooth map X: O x B- AO -- UM, X,(y) = 

X(z, y), with the following properties: 
(1) 1r o X(z, y) = y, that is, X, is a smooth vector field on B - {z}. 
(2) For every point y on a neighborhood of the boundary GB, X,(y) is tangent 

to the minimal geodesic from y to x. 
(3) For every point y on a neighborhood of 1B, Xz(y) is tangent to the minimal 

geodesic from y to z. 
(4) For every point z in 0, Xz is gradient-like for dz. 

PROOF. Every point y in B - 1B lies in the minimal geodesic from a point y' 
in OB to x. By the diffeomorphism of B- B onto 9B x [0,1], y -(y',t), t= 
2 d(y, y')/6 (6 is the radius of B), we identify y and (y', t). Take a monotone 
function f: [0, 1] -* [0, 1] such that f ([0, a)) = 0 and f ((1 - a, 1]) = 1 for some 
a > 0. For every z E 0, let y,,,: [0, 1] - M be the minimal geodesic from x 
to z. We define X(z, y) as the unit initial velocity of the minimal geodesic from 
y = (y', t) to -yx,y(f(t)). X can be extended to 0 x B - A0 so as to satisfy (1), (2), 
(3) and (4) if 0 is taken sufficiently small. 

LEMMA 1. 3. For every large positive number R' and every 8mall E > 0, we set 
R = min{cM, R'} and W, = {(x,y) E M x M; O$ d(x,y) < R-e}. Then there is 
a smooth map X: We -* UM, X2(y) = X(x,y), such that 

(1) r o X(x, y) = y, 
(2) For every x E M, Xx is a gradient-like vector field of dx on B(x, R -F) 

PROOF. We fix a point x for a mement. From the definition of critical points, for 
each y E B(x, R) we can find a neighborhood Oy(x) of x, a neighborhood U(y) of y 
and a smooth vector field ty on U(y) such that ty is a gradient-like vector field of dx 
for all z E Oy (x). Take a small convex ball B around x and choose Y1, .. , Yk with 
B(x, R) - B C Uk=1 U(yi), where U(yi), Oy, (x) and ty, are chosen so as to have 
the above properties. Putting Xx = Aity,/ Ai ty, where {Ai} is a partition 
of unity dominated with {U(yi)}, we obtain a vector field Xx on B(x, R) - B such 
that Xx is a gradient-like vector field of dz for all z in O(x) = nfl1 Oy, (x). We may 
assume that O(x) is included in B(x, E) and that for every y in a neighborhood of 
e9B, Xl(y) is tangent to the velocity vector of the minimal geodesic from y to x. By 
Lemma 1.2, we can construct a smooth map X(): O(x) x B(x, R) - Ao(x) ,' UM 
with the following properties: 

(i) For every z E 0(x), X(z) is an extension of Xx: B(x, R) - B -* UM. 
(ii) For every point y on a neighborhood of 2 B, X(x) (y) is tangent to the minimal 

geodesic from y to z. 
(iii) For every z E O(x), X(x) is a gradient-like vector field of d, on B(x, R), 

and hence on B(z, R - e). 
Now we move x on M, and take a locally finite covering {0(xj)} of M and a 

partition of unity {uj} dominated with {O(xj)}. The required smooth map X is 
defined by 

Xl (y) = Z xE Xxi(j) (y)/ mZ j(x)Xx(J ) (y) 

PROOF OF PROPOSITION 1.1. Assume first CM < 00. For R = CM, take a 
smooth map X: WE -- UM as in Lemma 1.3. For (x,y) E WE = Ql - AM, let 
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kX,9(t) be the integral curve of Xx with Ox,y(O) = y, and let t(x,y) be the time 
at which Ox,y reaches x; Ox,y(t(x, y)) = x. The uniform retraction h is given by 
h(x, y, t) = Ox y(t * t(x, y)). In the case CM = o0, an obvious iterated precedure in 
Lemma 1.3 for an increasing sequence of concentric balls would supply h. 

2. Proof Theorem 2. We recall the definition of the Hausdorff distance. For 
details, see [11, Chapters 3, 5, 8]. For subsets A and B in a metric space Z, we 
denote by dz (A, B) the infimum of positive E such that the E-neighborhoods of A 
and B include B and A respectively. The Hausdorff distance between two metric 
spaces X and Y is by definition 

dH(X, Y) = inf dz (f(X), g(Y)) 

where Z is a metric space and f: X - Z and 9: Y - Z are isometric imbeddings. 
PROOF OF THEOREM 2. For given R > 0, we set 6 = R/25m and r = R/lOOm. 

Let M and M' be complete m-manifolds such that CM, CM, > R and dH(M, M') < 
6. Let {Bi}i=i,...,N (N < oo) be a locally finite covering of M by r-balls and let pi 
be the center of Bi. By the definition of Harsdorff distance, there are pi in M' such 
that Id(pi, pj) - d(p', p[j) I < 26, and that the balls BR around P' of radius r' = r + 26 
cover M'. Let {fi} and {f}i' be partitions of unity dominated with {Bi} and {B'} 
respectively such that fi > 0 on Bi, fi = 0 outside Bi and fi' > 0 on Bi, fi' = 0 
outside BY. We define mappings f: M -- RN, f': M' -- RN by 

f(X) = (flG(X)... fN(x)) f'(y) = (AM, fN M) 

Let K and K' be the nerves of the coverings {Bi} and {Bi} respectively. They are 
realized as subcomplexes of the unit simplex E = {(xl,... , XN); Z Xi = 1, Xi > O}. 
Let L be the union of K and K', which is also a subcomplex of E. Thus f and 
f' can be considered as mappings into K C L and K' C L respectively. For 
vi = (0, ..., 1, ..., 0) E RN (1 in the ith position), let Ak (io, . * *, ik), io < * < ik, 
be the k-simplex of E spanned by vio, .. ., vi,. We define a mapping fm of M into 
the m-skeleton Km of K inductively as follows: For x E M, f(x) is contained 
in a k-simplex Ak of K, where we may assume k > m. Then take a point p in 
Ak - f(M), and denote by fk 1(x) the image of f(x) under the radial projection 
from p onto the boundary d?Ak. We repeat this process to obtain the mapping 
fm: M - Km. Similarly, fm: M' -- (K')m is defined. Conversely, we construct a 
mapping g: Lm = Km U (K')m -4 M inductively as follows: We first put g(vi) = Pi 
on LO and assume a mapping g: Lk-l -* M, k - 1 < m, is defined so as to satisfy 

d(g(x),pi.) < (4r + 126)s for every simplex A' = A8(io,.. . ,i,) in Lk-l and for 
every x E A' and 0 < a < s. Now for a k-simplex Ak = Ak(iO ... ,ik) of L, 
let bak denote the barycenter of Ak, and define g on Ak by g((l - t)x + tbak) = 

h(pi.,g(x),t), where x E aAk, 0 < t < 1, and h is a uniform retraction given 
in Proposition 1.1. We have to check that h(pio, g(x), t) is well defined. Choose 

a vertex vi, in the open simplex containing x, and notice that if Ak E K, then 

d(pio,pip) < 2r and if Ak E K', then d(pio pi,p) < d(pi ,p P) + 26 < 2r + 66. It 
follows that 

d(pio, g(x)) < d(pio, XPi,p,) + d(pi,Q, g(x)) 
< (2r + 66) + (4r + 126)(k - 1) < R. 
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Thus h(pi., g(x), t) is well defined, and we have for every 0 < / < k, 

d(h(pi., g(x), t), pi,) < d(h(pio, g(x), t), pio) + d(pi., pi,) 
< d(pi. X g(x) ) + d(pio I pi$ ) 
< (2r+66) + (4r+ 126)(k - 1) + (2r+66) 
= (4r + 126)k. 

We have just constructed the mapping g: Lm - M. Similarly, a mapping g': Lm > 

M' is also constructed so as to satisfy d(g'(x), p ) < (4r + 86)s for every simplex 
As = A8 (io,...,i) in Lm and for every x E A' and O < ca < s. We set = 
9 o fm, ' = g o fm. To show that 1 is a homotopy equivalence with V' as a 
homotopy inverse, we estimate the CO distance between V' o 1' and the identity. 
For a fixed x E M, let Ak = Ak(iO,.. , ik) and A, = A'(jo,... j,j) be the simplices 
of Lm with fm(x) E ik, fm o 4(x) E i'. From the construction, we see for every 
O < ce < k and 0 < ,B < s, 

d(x, pi.) < r, d((D(x), p )< r', 

d((D(x), p'.) < (4r + 86)k < (4r + 86)m, 
d(V' o 4'(x),pj,,) < (4r + 126)s < (4r + 126)m. 

It follows that 

d(x, 'V o 4(x)) < d(x, pi.) + d(pi., pj/3) + d(pj3, V' o 4(x)) 

< r + d(pi., pj,) + (4r + 126)m, 

where d(pi., pj,3) < d(p' , pj) + 26 and d(pi , pj) < d(p' , ?(x)) + d('1(x), p') < 

(4r + 86)m + r'. This implies 

d(x, V' o 4(x)) < (8m + 2)r + (20m + 4)6 < R. 

Similarly, we get d(y, 1)o V'(y)) < (8m + 2)r + (20m + 4)6 < R for every y in M' . 
Thus M has the same homotopy type as M' by Proposition 1.1. 

3. Precompact families. Let 9) be a precompact family of complete m- 
manifolds with repsect to the Haudorff distance. This means for every E > 0, 
there exist finitely many elements M1,.. ., Mk(, in 9? such that for every M in 
91, dH(M, Mi) < E for some 1 < i < k(E). Hence Theorem 2 shows that for a given 
R > 0, the number of homotopy types in 91R does not exceed k(6) for 6 = R/25m. 

In the case when all manifolds in 91 are compact, we estimate the number k(6) 
explicitly as follows: For M in 9? and E > 0, let N(E, M) be the maximal number 
of disjoint E-balls in M. The precompactness of 9? implies that the supremum 
Nm(E) = sup{N(E, M); M E 91} is finite. Put N = Nm3(6/2). Notice dM < 26N 
for all M in 9?. Then using the Dirichlet drawer principle and the argument in [11, 
5.2], we get k(6) < N4. Thus we have Theorem 1 with the explicit bound. 

THEOREM 1'. In the case when all manifolds in 91 are compact, the number of 
homotopy types in 91R does not exceed Nx,,(R/50m)4. 

We should remark that in the compact case, it is already known, from the Topo- 
logical Lemma of Gromov [9] that the Betti number sum %m bi (M; F) with any 
coefficient field F does not exceed (m + 1)2Nm(R/(5l1Om+l)) for every M in 9?R. 



HOMOTOPY TYPE FINITENESS THEOREMS 665 

Next we consider the following families of compact m-manifolds M: 

9)1 = {M;RicM > -((m - 1)A2, dM < D}, 

9)2 = {M;VOIM < V, iM > R}. 

The volume comparison theorem due to Bishop and Gromov [11., 5.3], implies 
Nu i (R/50m) < bA(D)/bA(R/50m), where bA(E) is the volume of an E-ball in the 
simply connected space of constant curvature -A2. On the other hand, the volume 
estimate due to Croke [5, Proposition 14] states that for each r < 1 M, the volume 
of every r-ball is greater than c1 (m)rm, where cl (m) depends only on m. From this, 
the precompactness of 9)2 and the following estimate are derived: Nm2 (R/50m) < 
c2(m)m(V/Rm), C2(M) = (50m)m/c, (m). Thus we restate Corollaries 1 and 2 with 
the explicit estimates: 

COROLLARY 1'. The number of homotopy types of compact m-manifolds M 
with 

RicM > -(m-1)A2, dM D and CM >R 

does not exceed (bA(D)/bA(R/50m))4. 

COROLLARY 2'. The number of homotopy types of compact m-manifolds M 
with volM /im < L does not exceed c(m)L4, where c(m) depends only on m. 

Finally, for given m, A and R E (7r/2, ir], we consider the subfamily 9)3 of 911 
consisting of certain manifolds with positive Ricci curvature: 

9X3 = {M; RicM > (m - 1), KM > -A2, volM > a(m, R)}. 

Notice dM < ir and M is simply connected for every M in 9X3 by the classical 
theorems of Myers [15] and Biship [3]. A uniform estimate on the contractibility 
radii CM for all M in 9)3 was given by Shiohama [19]. Together with this, Corollary 
1' would provide an explicit estimate on the number of homotopy types in W1. 

Notice, in [19], the restriction R E (27r/3, 7r] was needed for the uniform estimate 
on CM, but this is not essential. A similar proof applies to our situation. It will be 
easily seen that the family UR>,/2 9X3 contains the following manifolds with the 
standard Einstein metrics: For m < 8, for example, 

m=23: S2, S3; m=4: S4,P2(C),S2 x S2; m=5: S5,S2 X S3; 

m = 6: S6 P3(C),S2 X S4,S3 X S3 S2 X P2(C); 

m = 7: S7,S2 X S5,S3 X S4 S3 X P2(C); 
i = 8: S8,P4(C),P2(H) S2 X S6, S3 X S5, S4 X S4, S4 X P2(C), 

S2 X S2 X S4,S2 X S3 X S3,S2 X S2 X S2 X S2. 

The sphere theorem due to Shiohama [19] (see also Itokawa [13]) shows that 
when R is close to ir, the set of homeomorphism classes in 9X3 consists of the single 

m stm. 
On the other hand, according to the Berger isoembolic inequality [1], 

volM /im > volsm /ismX 

where Sm is a round sphere and the equality holds if and only if M is a round 
sphere. Corollary 2 will support the following problem. 

PROBLEM. Is there a positive constant b(m) depending only on m such that if 
volM /im < volsm /imm + b(m), then M is homeomorphic to Sm? 
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