An algebraic SU(1,1) solution for the relativistic hydrogen atom

DSpace/Manakin Repository

Show simple item record Martínez-y-Romero, RP Nunez-Yepez, HN Salas-Brito, AL 2011-01-22T10:26:33Z 2011-01-22T10:26:33Z 2005
dc.identifier.issn 0375-9601
dc.description.abstract The bound eigenfunctions and spectrum of a Dirac hydrogen atom are found takmg advantage of the SU(1, 1) Lie algebra in which the radial part of the problem can be expressed. For defining the algebra we need to add to the description an additional angular variable playing essentially the role of a phase. The operators spanning the algebra are used for defining ladder operators for the radial eigenfunctions of the relativistic hydrogen atom and for evaluating its energy spectrum. The status of the Johnson-Lippman operator in this algebra is also investigated. &COPY en_US
dc.description.abstract 2005 Elsevier B.V. All rights reserved. en_US
dc.language.iso en en_US
dc.title An algebraic SU(1,1) solution for the relativistic hydrogen atom en_US
dc.type Article en_US
dc.identifier.idprometeo 1616
dc.identifier.doi 10.1016/j.physleta.2005.03.046
dc.source.novolpages 339(40666):259-268
dc.subject.wos Physics, Multidisciplinary
dc.description.index WoS: SCI, SSCI o AHCI
dc.subject.keywords relativistic hydrogen atom
dc.subject.keywords ladder operators
dc.subject.keywords SU(1,1) Lie algebra
dc.relation.journal Physics Letters A

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search


My Account