Quantum derivation of Ginzburg-Landau equation. New formula for penetration depth

DSpace/Manakin Repository

Show simple item record Fujita, S Godoy, S 2011-01-22T10:27:52Z 2011-01-22T10:27:52Z 1998
dc.identifier.issn 0894-9875
dc.description.abstract The Cooper pair (pairon) field operator psi(r, t) changes in time, following Heisenberg's equation of motion. If the system Hamiltonian H contains the pairon kinetic energies ho, the condensation energy per pairon alpha(< 0) and the repulsive point-like potential beta delta(r(1)-r(2)), beta > 0, the evolution equation for psi is non-linear, from which we obtain the Ginzburg-Landau equation: h(0)(r, -i (h) over bar del) Psi(sigma)(r) + alpha Psi(sigma)(r) + beta / Psi(sigma)(r) /(2) Psi(sigma)(r) = 0 for the complex order parameter Psi(sigma)(r) := < r / n(1/2) / sigma >, where sigma denotes the state of the condensed pairons, and n the pairon density operator. The total kinetic energy h(0) for "electron" (1) and "hole" (2) pairons is h(0) Psi(sigma)(r) = {1/2v(F)((1)) / -i (h) over bar del + 2eA(r) / + 1/2v(F)((2)) / -i (h) over bar del - 2eA(r) /} Psi(sigma)(r), where v(F)((J)) = (2 epsilon(F/)m(j))(1/2) are Fermi velocities, and A the vector potential. A new expression for the penetration depth lambda is obtained: lambda = c/e [p/4 pi n<INF>0</INF>(v<INF>F</INF><SUP>(2</SUP>) + v<INF>F</INF><SUP>(1</SUP>))]<SUP>1/2 </SUP>where p and n(0) are respectively the momentum and density of condensed pairons. en_US
dc.language.iso en en_US
dc.title Quantum derivation of Ginzburg-Landau equation. New formula for penetration depth en_US
dc.type Article en_US
dc.identifier.idprometeo 2846
dc.source.novolpages 11(3):287-294
dc.subject.wos Physics, Multidisciplinary
dc.description.index WoS: SCI, SSCI o AHCI
dc.subject.keywords Ginzburg-Landau equations
dc.subject.keywords penetration depth
dc.subject.keywords microscopic derivation of G-L equations
dc.subject.keywords validity of G-L equations
dc.relation.journal Foundations of Physics Letters

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search


My Account