Ciencias,UNAM

Asymptotic measures of random logistic maps

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Ble, G
dc.contributor.author Castellanos, V
dc.contributor.author Falconi, M
dc.date.accessioned 2011-01-22T10:26:15Z
dc.date.available 2011-01-22T10:26:15Z
dc.date.issued 2007
dc.identifier.issn 1023-6198
dc.identifier.uri http://hdl.handle.net/11154/3167
dc.description.abstract In this paper, we consider a system whose state x changes to F-sigma(x) if a perturbation occurs at the time t, for t > 0 en_US
dc.description.abstract t is not an element of N and the state x changes to the new state F-eta(x) at the time t, for t is an element of N. Here, F-eta and F-sigma are logistic maps. We assume that the number of perturbations in the interval (n en_US
dc.description.abstract n + 1) is a discrete random variable c(n). We show that under certain conditions on the parameters eta and sigma, the system has, even for the non-contractive case, an unique stationary probability measure, the support of which can be either a Cantor set or an interval. en_US
dc.language.iso en en_US
dc.title Asymptotic measures of random logistic maps en_US
dc.type Article en_US
dc.identifier.idprometeo 1053
dc.identifier.doi 10.1080/10236190601073368
dc.source.novolpages 13(1):1-13
dc.subject.wos Mathematics, Applied
dc.description.index WoS: SCI, SSCI o AHCI
dc.subject.keywords Markov process
dc.subject.keywords logistic maps
dc.subject.keywords invariant measures
dc.subject.keywords random variable
dc.relation.journal Journal of Difference Equations and Applications

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account