dc.contributor.author |
Ble, G |
|
dc.contributor.author |
Castellanos, V |
|
dc.contributor.author |
Falconi, M |
|
dc.date.accessioned |
2011-01-22T10:26:15Z |
|
dc.date.available |
2011-01-22T10:26:15Z |
|
dc.date.issued |
2007 |
|
dc.identifier.issn |
1023-6198 |
|
dc.identifier.uri |
http://hdl.handle.net/11154/3167 |
|
dc.description.abstract |
In this paper, we consider a system whose state x changes to F-sigma(x) if a perturbation occurs at the time t, for t > 0 |
en_US |
dc.description.abstract |
t is not an element of N and the state x changes to the new state F-eta(x) at the time t, for t is an element of N. Here, F-eta and F-sigma are logistic maps. We assume that the number of perturbations in the interval (n |
en_US |
dc.description.abstract |
n + 1) is a discrete random variable c(n). We show that under certain conditions on the parameters eta and sigma, the system has, even for the non-contractive case, an unique stationary probability measure, the support of which can be either a Cantor set or an interval. |
en_US |
dc.language.iso |
en |
en_US |
dc.title |
Asymptotic measures of random logistic maps |
en_US |
dc.type |
Article |
en_US |
dc.identifier.idprometeo |
1053 |
|
dc.identifier.doi |
10.1080/10236190601073368 |
|
dc.source.novolpages |
13(1):1-13 |
|
dc.subject.wos |
Mathematics, Applied |
|
dc.description.index |
WoS: SCI, SSCI o AHCI |
|
dc.subject.keywords |
Markov process |
|
dc.subject.keywords |
logistic maps |
|
dc.subject.keywords |
invariant measures |
|
dc.subject.keywords |
random variable |
|
dc.relation.journal |
Journal of Difference Equations and Applications |
|