DSpace/Manakin Repository

Show simple item record GarcíaFERREIRA, S Tamariz, A 2011-01-22T10:28:35Z 2011-01-22T10:28:35Z 1994
dc.identifier.issn 0166-8641
dc.description.abstract In this paper, we study the p-Frechet-Urysohn property of function spaces, for p is-an-element-of beta(omega)\omega. We prove that C(pi)(X) is p-Frechet-Urysohn if and only if X has (gamma(p)), where (gamma(p) is the natural p-version of property (gamma) (this is a generalization of a result due to Gerlits and Nagy). We note the following implications: X is second countable double arrow pointing right X has (gamma(p)) for some p is-an-element-of beta(omega)\omega double line arrow pointing right X(n) is Lindelof for all 1 less-than-or-equal-to n < omega. We deal with the question when is C(pi)(R) a p-Frechet-Urysohn space. It is shown that there is p is-an-element-of beta(omega)\omega such that C(pi)(R) is p-Frechet-Urysohn en_US
dc.description.abstract if p is semiselective, then every subset X of R satisfying (gamma(p)) has measure zero and if p is selective, then X is a strong measure zero set en_US
dc.description.abstract and we can find p is-an-element-of beta(omega)\omega such that C(pi)(R) is p-Frechet-Urysohn and is not strongly p-Frechet-Urysohn. Finally, we prove that R(omega) does not have (gamma(p)) whenever p is a P-point of beta(omega)\omega. en_US
dc.language.iso en en_US
dc.type Article en_US
dc.identifier.idprometeo 3256
dc.source.novolpages 58(2):157-172
dc.subject.wos Mathematics, Applied
dc.subject.wos Mathematics
dc.description.index WoS: SCI, SSCI o AHCI
dc.subject.keywords FUNCTION SPACE
dc.subject.keywords OMEGA-COVER
dc.subject.keywords FU(P)-SPACE
dc.subject.keywords GAMMA(P)-ROPERTY
dc.subject.keywords RUDIN-KEISLER ORDER
dc.subject.keywords RAPID
dc.subject.keywords SEMISELECTIVE
dc.subject.keywords SELECTIVE
dc.subject.keywords P-POINT
dc.subject.keywords Q-POINT
dc.relation.journal Topology and Its Applications

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search


My Account