Rationale: Fibrocytes are progenitor cells characterized by the simultaneous expression of mesenchymal, monocyte, and hematopoietic stem cell markers. We previously documented their presence in lungs of patients with idiopathic pulmonary fibrosis. However, the mechanisms involved in their migration, subsequent homing, and local role remain unclear. Matrix metalloproteinases (MMPs) facilitate cell migration and have been implicated in the pathogenesis of pulmonary fibrosis. Objectives: To evaluate the expression and role of matrix metalloproteinases in human fibrocytes. Methods: Fibrocytes were purified from CD14(+) monocytes and cultured for 8 days
purity of fibrocyte cultures was 95% or greater as determined by flow cytometry. Conditioned media and total RNA were collected and the expression of MMP-1, MMP-2, MMP-7, MMP-8, and MMP-9 was evaluated by real-time polymerase chain reaction. Protein synthesis was examined using a Multiplex assay, Western blot, fluorescent immunocytochemistry, and confocal microscopy. MMP-2 and MMP-9 enzymatic activities were evaluated by gelatin zymography. Migration was assessed using collagen I-coated Boyden chambers. Stromal cell-derived factor-1 alpha and platelet-derived growth factor-B were used as chemoattractant with or without a specific MMP-8 inhibitor. Measurements and Main Results: Fibrocytes showed gene and protein expression of MMP-2, MMP-9, MMP-8, and MMP-7. MMP-2 and MMP-9 enzymatic activities were also demonstrated by gelatin zymography. Likewise, we found colocalization of MMP-8 and MMP-7 with type I collagen in fibrocytes. Fibrocyte migration toward platelet-derived growth factor-B or Stromal cell-derived factor-1 alpha in collagen I-coated Boyden chambers was significantly reduced by a specific MMP-8 inhibitor. Conclusions: Our findings reveal that fibrocytes express a variety of MMPs and that MMP-8 actively participates in the process of fibrocyte migration.